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String theory

I What is string theory ?

I Theory of quantum strings.



I Originally proposed as a theory for QCD.

I Later shown to contain gravity in 10 (26) dimension.

Rµν + O(ls) = 0 (1)

I Does it contain other forces and particles ? It does.

I Can we reproduce some thing like Standard model ? TOE ?

I Possible, the “problem” of landscape.



Holography

I Large N SU(N) gauge theory and t’Hooft exapansion.

L =

∫
TrF a

µνF
a
µν (2)

Fµν = ∂µAν − ∂νAµ − igYM [Aµ,Aν ] (3)

Aµ = Aa
µτ

a (4)

τ a’s are traceless hermitian matrices. There are N2 − 1
matrice. For QCD (N = 3) they may be identify as gluons.

I t’Hooft expansion in λ = g2
YMN

I f0(λ) +
1
N2 f1(λ) + ...

I 1
N2 ∝ gs



Gauge/Gravity duality

I String theory in AdS5 × S5 is equivalent to N = 4SU(N)
gauge theory.

I ds2 = −r2dt2 + dr2

r2
+ r2(dx2 + dy2). A funnel like space.

I ls ∝ λ−
1
4

I Various variation is known now.



Superfluidity

I What is Bose condensation ?
Cool down a bosonic system and a macroscopic fraction of
the particles will go to the ground state.

I What is superfluidity ? The condensate shows strange
properties like zero viscosity flow.



Landau’s criterion

I Fluid moving through a capilary.

I Ground state is moving with velocity v .

I The ground state may loose energy with an excitation of
momentum −p,

I The energy of the quasiparticle in the capillary frame,

E ′(p) = E (p)− p.v (5)

(6)

I min(E ′(p)) < 0 or min(E (p) < p.v .



For free particles E (p) = p2/2m, so we always need interaction for
superfluidity.



I First order transition at low temperature.

I Second order near superfluid transition temperature.



EYMH model I
Based on JHEP 1010 (2010) 006 Daniel Arean,PB, Chethan Krishnan
Also, Phys.Rev. D79 (2009) 045010, PB, Anindya Mukherjee, Hsein-Hang Shieh
Phys.Rev. D79 (2009) 066002, Kovtun, Son, Herzog

We start with minimal ingredients,

I Holographic back ground at finite temperature, we have a
black hole.

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2(dx2 + dy2) (7)

f (r) = r2
(
1− 1

rd−1

)
(8)

I A complex scalar field φ and a gauge field Aµ.



I Holography : global symmetry in boundary ⇒ Local
symmetry in bulk.

I Boundary value of gauge field At ⇒ Chemical potential for
boundary particle number.

I Boundary value of Ax is superfluid velocity.

I At(∞) = µ and Ax(∞) = S .



I The action is given by,

S =
1

q2

∫
dd+1x

√
−g

(
−1

4
F abFab − V (|Ψ|)− |∇Ψ− iAΨ|2

)
(9)

I EOM’s

ψ′′ +
( f ′
f
+

d − 1

r

)
ψ′ +

(A2
t

f 2
− A2

x

r2f

)
ψ − m2

f
ψ = 0 (10)

A′′
t +

d − 1

r
A′
t +

ψ2

f 2
At = 0

A′′
x + (

f ′

f
+

d − 3

r
)A′

x +
ψ2

f 2
Ax = 0

I ψ = 0,At = µ(1− 1
rd−3 ),Ax = S is the normal phase.

I This phase becomes unstable as we increase µ. A zero mode
of ψ forms at µ = µc .



I The scalar EOM is (assuming V (ψ) = m2ψ2)

ψ′′ +
( f ′
f
+

d − 1

r

)
ψ′ +

(A2
t

f 2
− A2

x

r2f

)
ψ − m2

f
ψ = 0 . (11)

I After applying the following change of variables:

ψ =
ψ̃

r
d−1
2

,
dr

dy
=

1

f
, (12)

the scalar EoM (??) takes the form of a Schrödinger equation:

d2

dy2
ψ̃ − Ṽeff(y)ψ̃ = 0 (13)

Notice that y → ∞ as r → 1 and y → 0 as r → ∞.

I The potential Veff , written in terms of r , reads

Veff(r) = −f 2
(
− (d − 1)(d − 3)

4r2
− (d − 1)f ′

2rf
+

A2
t

f 2
− A2

x

r2f
− m2

f

)
.(14)



I The phase with ψ = 0,At = µ(1− 1
r2
),Ax = Sx is always

there.

Veff(r) = −µ2
((

1− 1

r2
)2 − S̃2 f

r2

)
(15)

−f 2
(
− (d − 1)(d − 3)

4r2
− (d − 1)f ′

2rf
− m2

f

)
,

I This phase becomes unstable as we increase µ. A zero mode
of ψ forms at µ = µc .

I The questions are:

1 Which phase dominates?

2 What is the associated phase transition?





I For Sx = 0 this question may be answered without getting
into too much detail. With a chemical potential fixed to µ,
the solution of At in the new phase can be written as

At = µ(1− 1

rd−2
) + δAt (16)



where δAt → 0 at r → 1 and r → ∞. Then, from eq. (??) we get,

Ωnew

T dV
= −µ

2(d − 2)2

2
+ (d − 2)

∫
dr∂r (δAt)−

∫
rd−1 (δAt)

′2

2
dr =

= −µ
2(d − 2)2

2
+ (d − 2)δAt

∣∣∣∞
0

−
∫

rd−1 (δAt)
′2

2
dr =

= −µ
2(d − 2)2

2
−

∫
rd−1 (δAt)

′2

2
dr . (17)

Hence

δΩ = Ωnew − Ωnormal = −(T dV )

∫
rd−1 (δA

′2
t )

2
dr < 0 . (18)

Therefore if a phase with non-trivial ψ exists it will always have a
lower free energy than the normal phase.



Double Scaling limit
I How to solve the scalar equation of motion. Only partial

results to solve scalar equation of motion. None at finite S̃ .
I We define double scaling limit where S̃ → 1 and µ→ ∞.
I In this limit the potential is negative only in a very small

neighbourhood near the boundary y = 0 (or r = ∞),

Veff(r) = −µ2
((

1− 1

r

)2 − S̃2 f

r2

)
(19)

−f 2
(
− (d − 1)(d − 3)

4r2
− (d − 1)f ′

2rf
− m2

f

)
,

I We define the following double scaling limit:

S̃ −→ 1 , µ −→ ∞ ,

µ̃ ≡ µ2−2α(1− S̃2) kept fixed and α =
2

d
. (20)

I Where we have taken into account that at leading order in y ,
f (y) ∼ 1

y2 , At = µ(1− yd−2), and Ax = Sx . In this limit

equation (??) reduces to



Zero temperature limit

I Extremal solutions at zero temperature,

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2(dx2 + dy2)(21)

f (r) = r2
(
1− 1 + Q2

r4
+

Q2

r3

)
(22)

T ∝
√

(3− Q2) (23)

AdS4 → AdS2.

I What is the zero temperature limit of holographic
superfluid/supercondcutor ?

I We may include gravity back reaction.

I How these solutions look at zero temperature ? New extremal
solutions. AdS4 → AdS4. Zero sized horizon.



I Frequency response of such back grounds ? For example
conductivity ?

I What is the energy gap(mass gap) at zero temperature ? δ2
I It seems that δ2 = 0 for holographic supercondcutors.

Horowitz and Roberts.

I For p-wave supercondcutor δ2 6= 0. Phys.Lett. B689 (2010)
45-50 Pallab Basu, Jianyang He, Anindya Mukherjee,
Hsien-Hang Shieh.



I <(σ(0)) ∝ exp(− δ1
T )

I δ1 6= δ2

I for p-wave superconductors δ1
δ2

≈ 0.699 (analytic)
arXiv : 1101.0215 Pallab Basu



People have studied various things like,

I Frequency response.

I Velocity of second sound.

I Fluid dynamics.

I Josephson junction.

I Frequency dependence of conductivity.

I Fermionic propagator.

I Competing order.



QCD application I

I Flavor superconductivity. U(Nf ) global symmetry in the
boundary. Hign isospin chemical potentail. Meson
condensation may happen.

I D-Brane construction. We have a nonabelian model like
p − wave supercondcutor.

I Color supercondcutor, ψψ condensation. Can we model that
in string theroy?



Non-fermi liquid from holography I

I What is a fermi liquid?

I Near the fermi surface. ω ∝ k

I Liu et al, considered fermion’s in an extremal black hole
background.

ds2 = (24)

I They got non-fermi liquid like behaviour ω ∝ kα.

I We studied the same problem using dyonic black hole.

I We got Landau level and De Haas-Van Alphen like oscillations.
Phys.Rev. D82 (2010) 044036 Pallab Basu, JianYang He,
Anindya Mukherjee, Hsien-Hang Shieh.



Current research I

I What is a quench ?. Some parameter(s) of a theory is
changing with time.

I A simple scalar system in 0 + 1 dim.

I For a time dependent J(t) we have,

m2φ+ φ3 + J = 0 (25)

Denote the solution of this static equation by φ0(J,m).

I We then introduce a J(t) which is slowly varying with time.
The idea is to start with adiabatic initial conditions at some
early enough time and study the time evolution of the order
parameter. To study the adiabatic expansion we write,

φ = φ0(J(t),m) + εφ1(t) + · · · (26)



Current research II

I To lowest order in ε, the equation governing φ1 is,

φ1(m
2 + 3φ20(t)) = φ̇0(t) = J̇(t)

∂φ0
∂J

(27)

I The adiabatic expansion is good for a finite m, φ0 for a
sufficiently slowly varying J(t). The adiabatic expansion fails
when

φ1 ∼ φ0 (28)

⇒ 1

m2 + 3φ20
φ̇0 ∼ φ0 (29)

For a sufficiently slowly varying J(t), this is possible if both
m2 and φ0 are small. i.e. when we are close to the critical
point m2 = J = 0.



Current research III
I What happens if the system goes through a phase transition

point? Approaching the critical point along the direction

m2 = 0 we have φ0(t) ≈ (−J(t))
1
3 .

I The condition for breakdown of adiabaticity ,

J̇ ∼ J
5
3 . (30)

I If the quench is linear near the critical point, that is
J(t) ∼ J0vt for small J, we get

vt
5
2 ∼ 1 (31)

as the condition for breakdown of adiabaticity.

I When adiabaticity breaks down, the system enters a scaling
region. We have a scaling solution,

φ(t) = v
1
5 φ̃(v

2
5 t). (32)



Current research IV

I This scaling solution leads to an estimate of the magnitude of
fluctuations (δφ(0)) ,i.e. the departure of φ from the
equilibrium value at t = 0.

I Outside the critical region δφ(0) ∼ v
m2 , whereas in the critical

region δφ(0) ∼ v
1
5 .

I We also have the “zero crossing time”(t?) defined by

φ(t?) = 0. We have t? ∼ v−
2
5 at the critical point. Which

diverges in the v → 0 limit. Out of criticality t? actually
approaches a constant in the v → 0 limit.



Holographic setup
I

L =
1

2κ2λ

√
−g [−1

2
(∂φ)2 − 1

4
(φ2 +m2)2 − m4

4
] (33)

I

φ = φ0r
−∆− + J(t)r−∆− (34)

I Needs a system with second order phase transition.
I There is one! Scalar field in extremal black hole back ground

with

−9

4
< m2 < −3

2
(35)

I Make the black hole a little non-extremal.
I Near the phase transition point what happens?
I Only zero mode is important.
I The radial direction is non-important. We get back similar

results to that of 0 + 1 dim theory.



Future direction

I What happens at zero temperature ? BKT like transition.

I Non-integrability and Chaotic motion : in generic the
dynamics of a scalar fields in AdS (attractors, Langevin
equations: non-equilibrium stat mechs).

I More understand of applicability of holography in various
setup.


