

- Descripción del detector
- Descripción de la muestra
- Variables
- Cortes
- Resultados y conclusiones
- Perspectivas

Introducción

La cantidad de trazas de alto Momento en ALICE es alrededor de 2% para P_{T} > 5 GeV/c en pp 14 TeV.

Las trazas de alto P_T no han habían sido estudiadas en detalle en ALICE.

La probabilidad de migraciones de partículas de bajo P_T reconstruidas como trazas de alto P_T necesita ser cuantificada, así como cualquier otro caso de un falso alto P_T

En la reconstrucción de JETs juegan un papel importante.

El detector ALICE

El detector ALICE

ITS en ALICE

Seis capas de detectores de silicio para un rastreo precios en $|\eta| < 0.9$

- 3-D reconstrucción (< 100µm) del vértice primario
- vértices secundarios (Hyperones, mesones D y B)
- Identificación de partículas via dE/dx para momentos < 1 GeV
- Reconstrucción de trazas de muy bajo momento

ALICE Time Projection Chamber – TPC

TPC convencional optimizada para densidades extremas de trazas

Eficiencia (>90%) en rastreo en $\eta < 0.9$ $\sigma(p)/p < 2.5\%$ hasta10 GeV/c PID con resolucion en dE/dx < 10%

Resolución espacial 0.8 (1.2) mm en xy,(z), ocupancia del 40% a 15%

Versión del software

- AliRoot Head (Enero 2007)
- ◆ Root v5-13-04
- ♦ Geant v1-6

Generación

- AliGen Box
- Distribución plana en Momento Total de 0-100 GeV/v
- *300 kaones, piones y protones por evento
- ◆Vértice primario en (0,0,0)
- Supresión de decaimientos
- •Rango en Phi (0, 360)
- Eta (-0.9.0.9) que es la aceptancia de la TPC
- Campo magnético 5 Teslas

Reajuste en el ITS

Trazas que fallan el reajuste en ITS

Trazas que cumplen reajuste en ITS

Reajuste en la TPC

kinks

Trazas que son candidatos a kinks,

La muestra se separo en 2 tipos basados en el pull en $1/P_{T}$:

 $Pull(1/P_{T}) = \frac{1/P_{T}(Generado) - 1/P_{T}(reconstruido)}{Error(1/P_{T}(Reconstruido))}$

```
"Buena" calidad : Pull(1/P_T) \le 3.0
"Mala" Calidad : Pull(1/P_T) \ge 3.0
```

Reducir la cantidad de los de mala calidad con la mayor eficiencia posible es el objetivo de implementar los cortes aprovechando al correlacione en los parametros . La resolución esta definida

 $\text{Res}(1/P_T) = 1/P_T(\text{Generado}) - 1/P_T(\text{reconstruido})$

Variables

En Rojo los de mala calidad en negro los de buena calidad Solo el numero de clusters en la TPC muestra un diferencia entre calidades

Pulls para los parámetros de la traza

Resoluciones para los parámetros de la traza

Eficiencia en función de la multiplicidad

Eficiencia =<u>Trazas reconstruidas</u> Trazas generadas

Resultados

- Los cortes mas importante son el reajuste en el el ITS y en la TPC. Pero existe la posibilidad de mejorarlos.
- Solo el numero de clusters en la TPC parece ser importante, pero podría deberse a que solo son partículas primarias
- La presencia de kinks es desconcertarte ya que están suprimidos los decaimientos.

Repetir el analisis para colisiones mas "realistas" pp a 900 GeV y a 14 TeV. Es importante mencionar que sera hecho por GRID, dado que es unica forma de accesar los datos.

Incluir partículas secundarias y restricción de vértice.

• Usar datos ya sea de cósmicos y en un futuro de los primero datos.

• Estimar este efecto para JETS.