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Quark flavor physics

Lecture I: Concepts of Quark Flavor Physics

• Introduction and motivation

• Yukawa couplings, CKM matrix, unitarity triangle

• Neutral meson mixing, some UT determinations

Lecture II: Indirect Searches for New Physics

• CP violation in the interference of mixing and decay

• Effective weak interactions

• Testing the Standard Model with rare FCNC processes



Effective field theory

Lecture III: Concepts of Effective Field Theory

• Basic ideas, Wilsonian effective action

• Scale separation, integrating out high-energy modes, low-
energy effective Lagrangian, dimensional analysis

• Modern view of QFTs and general principles

Lecture IV: Applications of Effective Field Theory

• The Standard Model as an effective field theory

• Several examples of applications beyond the Standard Model

• Interesting insights
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Remembering Puebla ...



May 25, 2005 CTEQ Summer School 1 

Heavy Quark Physics  
Cracking the Standard Model? 

Matthias Neubert – Cornell University 

CTEQ Summer School 2005 
Puebla – Mexico 

May 2005 



Unitarity triangle then and now

Winter 2005: Winter 2012:

Many other lessons have been learned, not all were pleasant ...



May 25, 2005 CTEQ Summer School 8 

Searching for the unknown 
! So far, all measurements in the flavor sector 

are in agreement with the SM 
! However, there are tantalizing hints of New 

Physics effects in some rare, penguin-
dominated decays 

! Not in contradiction with anything we know 
from other processes (e.g., B→Xsγ) 

! Experimental situation stabilizes, and theory 
is under good control 



May 25, 2005 CTEQ Summer School 10 

! Experimental situation: (after LP 03) 
"  S(ΦKS) =+0.45±0.43±0.07   BaBar 
"  S(ΦKS) = -0.96±0.50±0.10   Belle 

S(ΦKS) - S(J/ψ KS) = -0.88±0.33 (2.7σ) 

-0.15±0.33 

Belle data 

Standard Model 
[press release] 



May 25, 2005 CTEQ Summer School 12 

7 reasons for excitement! 

Theory 

0.42±0.08 Avg.: 

May 25, 2005 CTEQ Summer School 13 

Measurements now consistent! 

Deviation is 3.8σ !!! 



Current status (Winter 2012)

... effect has evaporated in all modes !
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The Standard Model still stands, but ...

... we have entered an era of significant changes

“This could be the discovery of the century.
Depending, of course, on how far down it goes.” 



Most amazingly, LHC discovered a Higgs boson

Diphoton mass distribution

«inclusive»: All categories together
CMS: events are weighted by S/B, more typical of sensitivity after the exact analysis per 
category
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Diphoton mass distribution

«inclusive»: All categories together
CMS: events are weighted by S/B, more typical of sensitivity after the exact analysis per 
category
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The most important discovery in 30 years !



30 8 Conclusions

SMσ/σBest fit 
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ττ→H
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CMS -1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbs

 = 125.5 GeVH m

Figure 19: Values of s/sSM for the combination (solid vertical line) and for individual decay
modes (points). The vertical band shows the overall s/sSM value 0.87 ± 0.23. The symbol
s/sSM denotes the production cross section times the relevant branching fractions, relative to
the SM expectation. The horizontal bars indicate the ±1 standard deviation uncertainties on the
s/sSM values for individual modes; they include both statistical and systematic uncertainties.

Most amazingly, LHC discovered a Higgs boson

combined:
μ=0.87±0.23
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.

The best-fit signal strength µ̂ is shown in Fig. 7(c) as
a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126 GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126 GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.

In order to test which values of the strength and
mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while
in the absence of a signal the contours will be upper
limits on µ for all values of mH .

Asymptotically, the test statistic −2 ln λ(µ,mH) is dis-
tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in

)µSignal strength (
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Figure 10: Measurements of the signal strength parameter µ for
mH=126 GeV for the individual channels and their combination.

Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.

The probability for a single Higgs boson-like particle
to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 20%.

The contributions from the different production
modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.

Since there are four Higgs boson production modes at
the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µt  tH have been grouped together as they
scale with the t  tH coupling in the SM, and are denoted
by the common parameter µggF+t  tH . Similarly, µVBF and
µVH have been grouped together as they scale with the
WWH/ZZH coupling in the SM, and are denoted by the
common parameter µVBF+VH . Since the distribution of
signal events among the 10 categories of the H→ γγ

search is sensitive to these factors, constraints in the

19

Preliminary indications:
• overall production rate agrees very well with SM
• decays to ZZ+WW agree well with SM (ATLAS: 1.34±0.38,  CMS: 0.67±0.30) 
• h→γγ rate tends to be higher than SM, but perhaps we should not get too 

excited yet ...



Lecture I:  Concepts of Quark Flavor Physics



Flavor physics as an indirect BSM probe

The hierarchy problem (mechanism of EWSB) and the origin of 
flavor are two big, unsolved mysteries of fundamental physics

• connected to deep questions such as the origin of mass of 
elementary particles, the stability of the electroweak scale, 
the matter-antimatter asymmetry in the Universe, the origin 
of fermion generations, and the reason for the hierarchies 
observed in the spectrum of fermion masses and mixing angles

• in SM, flavor physics is connected to EWSB via the Higgs 
Yukawa interactions

Higgs and flavor physics provide unique opportunities to probe the 
structure of electroweak interactions at the quantum level, 
thereby offering sensitive probes of physics beyond the SM
Following the Higgs discovery (July 2012), both routes can now be 
pursued with vigor



Flavor physics

•  What is �flavor�? 

•  Generations: triplication of  

fermion spectrum without 

obvious necessity 

•  Dynamical explanation of flavor?  

•  Equally mysterious as dynamics 

of electroweak symmetry 

breaking    

•  Connection between           

two phenomena? 



Flavor physics

•  Hierarchies in fermion mass spectrum: 

•  Likewise, hierarchies in quark mixings 

Masses of quarks and leptons 



Flavor physics

•  Flavor physics studies communication between 

different generations  

•  Standard Model: present only in charged-current 

interactions 

(uL,cL,tL)i 

(dL,sL,bL)k 

W 

Vik 

Cabibbo-Kobayashi-Maskawa 

matrix elements 



Yukawa couplings and CKM matrix



Yukawa couplings

•  Most general, gauge invariant and renormalizable 
interactions of Higgs and matter fields: 

SU(2)L    U(1)Y 

2           -1/2 

2           +1/6 

1             -1 

1           +2/3 

1           -1/3 

generation index 



Yukawa couplings

SU(2)L    U(1)Y 

2           ±1/2 

•  Yukawa couplings: 

•  Ye,Yd,Yu:  arbitrary complex 3x3 matrices 

•  Electroweak symmetry breaking:  <φ2
0> = v/√2 

Y:     1       -1/2 -1/2     1/3    -1/2 +1/6     -2/3    +1/2 +1/6   



Yukawa couplings

•  Gauge principle allows arbitrary generation-

changing interactions, since fermions of different 

generations have equal gauge charges! 

•  Usually such couplings are eliminated by field 

redefinitions: 

ψi → Uij ψj 
unitary (i.e., probability preserving) “rotation” in 

generation space 



Yukawa couplings

•  Diagonalize Yukawa matrices using biunitary 

transformations, e.g.: 

•  Then perform field redefinitions: 

    eL → Ue eL ,   eR → We eR 

    uL → Uu uL ,   uR → Wu uR 

    d
L
 → U

d
 d

L 
,   d

R
 → W

d
 d

R
 

•  This diagonalizes the mass terms, giving masses 

 mf = yf (v/√2) to all fermions 



CKM matrix

•  Effect of field redefinitions on weak interactions 

in the mass basis (QCD and QED invariant) 

•  Charged currents: 

–  generation changing couplings proportional to Vij: 

dL
i → uL

j + W-  ∝ Vji  uL
i → dL

j + W+  ∝ Vij
*  

(Cabibbo-Kobayashi-Maskawa matrix) 



CKM matrix

•  Neutral currents: 

–  no generation-changing interactions!   

 (at level of elementary vertices) 

–  GIM mechanism (Glashow-Iliopoulos-Maiani, 1970) 

–  led to prediction of charm quark (K-K mixing) 

cancel each other 



CKM matrix

•  Unitary 3x3 matrix V can by parameterized by      

3 Euler angles und 6 phases 

•  Not all phases are observable, since under phase 

redefinitions q→eiϕq q of the quark fields: 

•  5 of 6 phases can be eliminated by suitable 

choices of phase differences! 



CKM matrix

•  Remaining phase δCKM is source of all CP-violating 

effects in Standard Model (assuming θQCD=0) 

–  weak interactions couple to left-handed fermions and 

right-handed antifermions 

–  violate P and C maximally, but         

would be invariant under CP and T     

if all weak couplings were real 

–  physical phase of CKM matrix          

breaks CP invariance  

•  Allows for an absolute distinction between matter 

and antimatter! 





CKM matrix

•  CP violation required to explain the different 

abundances of matter and antimatter in the 

universe (baryogenesis) 

•  CP violation in quark sector requires N≥3 fermion 

generations 

•  Model for explanation of CP violation led to 

prediction of the third generation!  

 Kobayashi, Maskawa (1973) 



CKM matrix

•  Form of V not unique (phase conventions) 
•  Several parameterizations used; a very useful one 

is due to Wolfenstein (1983): 

•  Hierarchical structure in λ≈0.22 
•  Remaining parameters O(1) 
•  Complex entries O(λ3) 



CKM matrix

•  Jarlskog determinant:     
 for arbitrary choice of i,j,k,l the quantity 

   is an invariant of the CKM matrix (independent of 
phase conventions) 

•  CP invariance is broken if and only if J≠0 

•  Wolfenstein parameterization: 

  

Im(VijVklVil
*Vkj

*) = J ∑m,n εikm εjln 

J = O(λ6) = O(10-4)  rather small 



Unitarity triangle

•  Unitarity relation V† V= V V† =1 implies: 

•  For i≠k this gives 6 triangle relations, in which a 

sum of 3 complex numbers adds up to zero: 

Vji
* Vjk = δik  and  Vij

* Vkj = δik  

Vui
* Vuk Vci

* Vck 

Vti
* Vtk 

(i≠k) 
area = J/2 



Unitarity triangle

•  Phase redefinitions turn triangles  

•  For two triangles, all sides are of same order in λ; 

the unitarity triangle is: 

•  Graphical representation: 

Vub
* Vud + Vcb

* Vcd + Vtb
* Vtd = 0  

(0,0) (1,0) 

(ρ,η) 

α 

γ β 



Present knowledge of the unitarity triangle



Oscillations of neutral mesons

B0, B0 

BH 

BL 

•  Neutral mesons can be transformed into their 
antiparticles by second-order weak processes  

•  Analogy with quantum-mechanical system of 
coupled pendulums: state B0 at t=0 develops into    
a superposition of states B0 and B0 with time-
oscillating amplitudes 

B0 B0
b d

bd
t t

W

W

V

V V

Vtb td
*

tbtd
*

Δm 



Oscillations of neutral mesons

•  B-factories produce pairs of B0 and B0 mesons in 

coherent quantum states 

•  Decay of one meson (with reconstruction of its 

flavor) initiates time measurement for the other 

meson 



Quantum-mechanical treatment

B0 B0
b d

bd
t t

W

W

V

V V

Vtb td
*

tbtd
*

•  Schrödinger equation for B0 and B0: 

•  Non-diagonal entry due to box diagram: 

mass eigenvalues: 

∝ (VtbVtd
*)2 ∝ e2iβ 

(neglect exponential decay for simplicity)



Quantum-mechanical treatment

B0 B0
b d

bd
t t

W

W

V

V V

Vtb td
*

tbtd
*

•  Schrödinger equation for B0 and B0: 

•  Non-diagonal entry due to box diagram: 

mass eigenvalues: 

∝ (VtbVtd
*)2 ∝ e2iβ 

•  Time evolution of an initial (at t=0) B0 state: 

(neglect exponential decay for simplicity)



Oscillations of neutral mesons



Determination of |Vtd| from Δm

•  Master formula: 

•  Discovery of B-B mixing (ARGUS experiment, 1987) 

pointed to a very heavy top quark! 

perturbative QCD 

correction  

(from lattice QCD) 



Determination of |Vtd| from Δm

result derived from 

Bd mixing alone  

(large theoretical  

uncertainties) 

result derived from 

ratio of Bd and Bs  

mixing frequencies   

(reduced theoretical  

uncertainties) 



Some more constraints on the unitarity triangle



•  Determination of Im(V
td

2) 
from CP violation in K0-K0 

mixing 

•  Large hadronic uncertain-

ties (lattice QCD) 

Determination of Im(Vtd2) from kaon mixing

K0 K0
s d

sd
t t

W

W

V

V V

Vts td
*

tstd
*



•  Determination of |Vub| 
in inclusive and 

exclusive semileptonic  

B decays 

/+B0

i

lï

b u

d

WVub

Determination of |Vub| from semileptonic decays



Quark flavor physics

Lecture I: Concepts of Quark Flavor Physics

• Introduction and motivation

• Yukawa couplings, CKM matrix, unitarity triangle

• Neutral meson mixing, some UT determinations

Lecture II: Indirect Searches for New Physics

• CP violation in the interference of mixing and decay

• Effective weak interactions

• Testing the Standard Model with rare FCNC processes



A more subtle quantum-mechanical effect:

Study interference of mixing and decay in neutral 
B-meson decays into CP eigenstates

Time-dependent CP asymmetry provides direct 
access to angles of the unitarity triangle

To see how this works, use our previous result for the 
time dependence of an initial B0 state (at t=0) 



CP violation in interference of mixing and decay

•  Time evolution of an initial (at t=0) B0 state: 

•  Consider decay of a CP eigenstate f,        

with decay amplitudes A for B0�f         

and A for B0�f  

•  Amplitude for this decay at time t>0: 

B0         B0 

 

f 

direct decay indirect decay via mixing



CP violation in interference of mixing and decay

•  Time dependence of decay rate: 

•  Rate for CP-conjugate process B0→f given by same 

expression with A↔A and β→-β  



CP violation in interference of mixing and decay

•  Time-dependent CP asymmetry: 

•  Special case: decay amplitude dominated by a 

single partial amplitude with weak phase ϕA  

(direct CP asymmetry) 

C = 0    and    S = sin[2(β-ϕA)] ⇒ 



CP violation in interference of mixing and decay

•  Allows determination of a weak phase (almost) 

free of hadronic uncertainties! 

•  2 possibilities in SM: 

•  Comparing sin2β values extracted from tree-

dominated vs. loop-dominated processes is a 

sensitive probe for New Physics 

ϕA = 0   ⇒   S = sin(2β) 

ϕA = -γ   ⇒   S = sin[2(β+ γ)] = -sin(2α) 

(e.g. B→J/ψKS, φKS) 

(e.g. B→ππ,ρρ) 



CP violation in interference of mixing and decay



CP violation in interference of mixing and decay

•  �Golden� decay                

B→J/ψ KS: 

•  Amplitude is real to very 

good approximation, φA= 0 

•  CP asymmetry S(f)=sin2β 

determines CP-violating 

phase β without knowledge 

of decay amplitude! 

•  Theoretical uncertainty 

only ~1% 

•  Very precise measurement 

of an angle of the unitarity 

triangle: 

B0 

b 

s 
c 

c 

d 
K

S
 

J/ψ 

W 

sin2β=0.691±0.020



A very precise constraint on the unitarity triangle



sin2β from tree- and loop-dominated processes

No hint yet for New Physics !

tree dominated

loop dominated⎬

sin(2`eff) > sin(2qe
1
ff)
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Indirect searches for New Physics



Effective field theory (a first encounter)

•  At low energies, the exchange of heavy, virtual 

particles (M»E) leads to local effective interactions 

•  Effective field theory offers systematic description 

of effects of modes with large virtualities through 

an expansion in local operators 

exchange of heavy, virtual particles  

between light SM particles 

M 

M 

M 

induced, effective local interactions 

at low energies 



W exchange at low energy (Fermi theory)

•  Fermi theory of weak interactions describes       

W-boson exchange in terms of local 4-fermion 

couplings 

•  Consider: 

•  Fermi constant: 

–  determines scale of weak interactions 

E«MW 

GF/√2 =g2
2/8MW

2 

(local operator) 



W exchange at low energy (Fermi theory)

•  Semileptonic decay: QCD corrections influence 

both graphs in same way 

•  Resulting �effective�        

interaction for E«M
W

: 

•  Scaling 1/MW
2 for d=6 operators explains weakness 

of “weak” interactions 

C
1
=1 



W exchange at low energy (Fermi theory)

•  W exchange between four different quark fields 

(nonleptonic decays): 

•  At tree level, analogous treatment as before 

E«MW 

c s 
c s 



W exchange at low energy (Fermi theory)

•  Complications for loop graphs: 

•  Naïve Taylor expansion of W-boson propagator no 

longer justified! 



W exchange at low energy (Fermi theory)

•  Problem with large loop momenta: 

•  But no differences at low loop        

momenta!  

•  Effect can be calculated and         

corrected for using perturbation     

theory, since effective coupling     

αs(MW) is small 



W exchange at low energy (Fermi theory)

•  Resulting effective interaction: 

   with Wilson coefficients: 

→ accounts for effects of hard gluons (p~MW) 



Main idea of effective field theory

•  Separation of short- and long-distance effects; 
schematically: 

•  Short-distance effects (p~MW) are      
perturbatively calculable   

•  Long-distance effects must be treated using 
nonperturbative methods 

•  Dependence on arbitrary separation scale µ 
controlled by RG equations 

MW 

ΛQCD 

µ 

Ci(µ) 

〈Oi(µ)〉 



Main idea of effective field theory

•  Why useful? 

•  Any sensitivity to high scales (including to physics 

beyond the Standard Model) can be treated using 

perturbative methods: 

•  Nonperturbative methods (operator product 

expansion, lattice gauge theory, …) usually only 

work at low scales (typically µ~few GeV)  

Ci(µ) = Ci
SM(MW,mt,µ) + Ci

NP(MNP,gNP,µ) 



FCNC processes

•  While generation-changing couplings of W bosons 

to quarks exist, flavor-changing neutral currents 

such as 

   do not exist as elementary vertices in the Standard 

Model (GIM mechanism) 

b→sγ,  b→sZ0,  b→sνν,  b→sdd,  bd→db,  etc. 

(and others, also for light quarks) 



FCNC processes

•  But such processes can be induced at loop level, 

e.g.: 

b s 
t t 
W 

Z 
ν ν 

loop-induced  

decay b→sνν 

penguin diagram 



FCNC processes

•  Effective interaction at low energies 

(E«M
W
,M

Z
,m

t
): 

Z 

b s 

ν ν 
C(MW,MZ,mt,µ) 

penguin diagram approximated 

by local 4-fermion operator 



FCNC processes

•  Detailed analysis (penguin autopsy) exhibits that 

GIM mechanism is �incomplete” in this case: 

b s 
q= 

u,c,t 

W 

Z 
ν ν 

Unitarity relation: 

 

 

→  residual effect due to nontrivial mass  

dependence, often ∝(mt/MW)2 or ln(mt/µ) 



FCNC processes

•  Rich structure of couplings of Z0,g,γ lead to a 

plethora of effective local d=6 operators 

•  Consider, e.g., decays of type b→s+X (or b→d+X,  

s→d+X), where X is flavor neutral: 

W-boson exchange penguin and box graphs 



Operator basis

•  Current-current operators (W exchange): 

•  Results analogous to        

earlier discussion): 

p=u,c b 

p=u,c s 

p=u,c b 

p=u,c s 

←  results quoted at 

µ=MW for simplicity 



Operator basis

•  QCD penguin operators: 

•  Results: 

s b 

Loop function: 



Operator basis

•  Electroweak penguin operators: 

•  Results: 

s b s b 

Loop functions: 



Operator basis

•  Dipol operators: 

•  Results (x=m
t
2/M

W
2) : 

chirality flip ∝ mb 

That�s it ! 
(apart from operators  

containing leptons …) 



Operator basis for neutral meson mixing

•  Consider finally B-B or K-K mixing processes 

mediated by transitions bd→db (or bs→sb, sd→ds)  

•  Effective interaction: 

–  dominant contribution (∝mt
2) due    

 to top-quark loop 

–  first hint toward very heavy top quark 



Probing New Physics in the quark flavor sector

Effective Lagrangians offer a systematic way to 
parameterize possible New Physics contributions in weak-
interaction processes in terms of Wilson coefficients 

The corresponding effects are suppressed by (gX/ΛNP)2,  in 
analogy with GF ~ (g/MW)2 in the Standard Model

Rare FCNC processes have very strong, indirect sensitivity 
to New Physics scales in the multi-TeV range, often outside 
the reach for direct production of new particles at the LHC 

Flavor physics thus complements direct searches at LHC
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Probing New Physics in the quark flavor sector

The fact that the generic New Physics scales in flavor 
physics are in the multi-TeV range is sometimes called the 
flavor puzzle

Either new particles are really as heavy as 10-1000 TeV, and 
the hierarchy problem is solved by fine-tuning, or there must 
be a mechanism explaining why the flavor-changing New 
Physics interactions are strongly suppressed (gX≪1)

The latter calls for flavor symmetries or an alignment 
mechanism, which correlated these couplings with the small 
flavor-violating parameters of the Standard Model to New

⇒ important impact on BSM model building !        



Effective field theory

Lecture III: Concepts of Effective Field Theory

• Basic ideas, Wilsonian effective action

• Scale separation, integrating out high-energy modes, low-
energy effective Lagrangian, dimensional analysis

• Modern view of QFTs and general principles

Lecture IV: Applications of Effective Field Theory

• The Standard Model as an effective field theory

• Several examples of applications beyond the Standard Model

• Interesting insights

Z 

b s 

ν ν C(MW,MZ,mt,µ) μ μ



Effective field theory

Effective field theories are a very powerful tool in quantum field 
theory (QFT):

• systematic formalism for the analysis of multi-scale problems 
(“Taylor expansion of Feynman graphs”)

• simplifies practical calculations, often makes them feasible

• particularly important in QCD, where short-distance effects are 
calculable perturbatively but long-distance effects are not

• provides new perspective on renormalization

• basis of factorization (i.e. scale separation) and resummation 
of large logarithmic terms



Effective field theory

Useful reviews:

• E. Witten, Nucl. Phys. B 122 (1977) 109

• S. Weinberg, Phys. Lett. B 91 (1980) 51

• L. Hall, Nucl. Phys. B 178 (1981) 75

• J. Polchinsky, hep-th/9210046

• A. Buras, hep-ph/9806471

• M. Neubert, hep-ph/0512222



Lecture III:  Concepts of Effective Field Theory



Derivation of the effective Lagrangian

Consider a QFT with a characteristic (fundamental) high-energy 
scale M

We are interested in performing experiments at energies

Step 1:  Choose a cutoff              and divide all quantum fields 
into high- and low-frequency components (            and            ):

Recall:

often makes such calculations feasible. As we will discuss, EFT also provides a new, modern
meaning to “renormalization”.

The main idea of EFT is simply stated: Consider a quantum field theory with a large,
fundamental scale M . This could be the mass of a heavy particle, or some large (Euclidean)
momentum transfer. Suppose we are interested in physics at energies E (or momenta p) much
smaller than M . How can we expand scattering or decay amplitudes in powers of E/M? The
answer to this question proceeds in several steps:

1. Choose a cutoff Λ < M and divide the fields of the theory into low-frequency and
high-frequency modes,

φ = φL + φH , (2)

where φL contains the Fourier modes with frequency ω < Λ, while φH contains the
remaining modes with frequency ω > Λ. We can think of the cutoff as a “threshold
of ignorance” in the sense that we may pretend to know nothing about the theory for
scales above Λ (which is indeed often the case). By construction, low-energy physics
is described in terms of the φL fields. Everything we ever wish to know about the
theory (Feynman diagrams, scattering amplitudes, cross sections, decay rates, etc.) can
be derived from vacuum correlation functions of these fields. These correlators can be
obtained using

〈0| T{φL(x1) . . .φL(xn)} 0〉 =
1

Z[0]

(
−i

δ

δJL(x1)

)
. . .

(
−i

δ

δJL(xn)

)
Z[JL]

∣∣∣
JL=0

, (3)

where

Z[JL] =

∫
DφL DφH eiS(φL,φH)+i

∫
dDx JL(x) φL(x) (4)

is the generating functional of the theory. Here S(φL,φH) =
∫

dDxL(x) is the action, D
is the dimension of space-time, and we have only included sources JL for the light fields,
as this suffices to compute the correlation functions in (3).

2. In the next step, we perform the path integral over the high-frequency fields. This yields

Z[JL] ≡
∫

DφL eiSΛ(φL)+i
∫

dDx JL(x) φL(x) , (5)

where

eiSΛ(φL) =

∫
DφH eiS(φL,φH) (6)

is called the “Wilsonian effective action”. Note that, by construction, this action depends
on the choice of the cutoff Λ used to define the split between low- and high-frequency
modes. SΛ is non-local on scales ∆xµ ∼ 1/Λ, because high-frequency fluctuations have
been removed from the theory. The process of removing these modes is often referred to
as “integrating out” the high-frequency fields in the functional integral.
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scale M
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Step 1:  Choose a cutoff              and divide all quantum fields 
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Physics (i.e. Green functions) at low energies              is entirely 
described in terms of the fields      ; Green functions of these 
fields can be derived from the generating functional: 
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Derivation of the effective Lagrangian

Step 2:  Since the high-frequency fields      do not appear in the 
generating functional, we can “integrate them out” in the path 
integral:

where

and              is called the Wilsonian effective action 

Dependence on the cutoff     enters via the condition on the 
frequencies of the fields 
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Derivation of the effective Lagrangian

Step 3:  Effective action is non-local on the scale                  , 
corresponding to the propagation of high-energy modes that 
have been removed from the Lagrangian 

Since the remaining fields have energies             , the non-local 
effective action can be expanded in an infinite series of local 
operators:

where:

�t ⇠ 1/!

! < ⇤
3. In the final step, we expand the non-local action functional in terms of local operators

composed of light fields. This process is called the (Wilsonian) operator-product expan-
sion (OPE). This expansion is possible because E ! Λ by assumption. The result can
be cast in the form

SΛ(φL) =

∫
dDxLeff

Λ (x) , (7)

where
Leff

Λ (x) =
∑

i

gi Qi(φL(x)) . (8)

This object is called the “effective Lagrangian”. It is an infinite sum over local operators
Qi multiplied by coupling constants gi, which are referred to as Wilson coefficients. In
general, all operators allowed by the symmetries of the theory are generated in the
construction of the effective Lagrangian and appear in this sum.

Since there is always an infinite number of such operators, the question arises: How can
the effective low-energy theory be predictive? This is where the simple, but powerful trick of
“naive dimensional analysis” comes to play. As is common practice in high-energy physics,
let us work in units where h̄ = c = 1. Then [m] = [E] = [p] = [x−1] = [t−1] are all measured
in the same units. We denote by [gi] = −γi the mass dimension of the effective couplings gi.
It follows that

gi = Ci M
−γi (9)

with dimensionless coefficients Ci. Since by assumption there is only a single fundamental
scale M in the theory, we expect that Ci = O(1). This assertion is known as the hypothesis
of “naturalness”. Unless there is a specific mechanism that could explain the smallness of the
dimensionless numbers Ci, we should assume those numbers to be of O(1). The presence of
unusually large (e.g. 106) or small (e.g. 10−6) numbers in a theory would appear “unnatural”
and call for further explanation.

At low energy (E ! Λ < M), the contribution of a given operator Qi in the effective
Lagrangian to an observable (which for simplicity we assume to be dimensionless) is expected
to scale as

Ci

(
E

M

)γi

=






O(1) ; if γi = 0,

! 1 ; if γi > 0,

# 1 ; if γi < 0.

(10)

It follows that only operators whose couplings have γi ≤ 0 are important at low energy. This
very fact is what makes the OPE a useful tool. Depending on the precision goal, one may
truncate the series in (8) at a given order in E/M . Once this is done, only a finite (often
small) number of operators Qi and couplings gi need to be retained.

Let us go through the above arguments once again, being slightly more careful. Assuming
weak coupling,1 we can use the free action to assign a scaling behavior with E to all fields and

1Interactions can change the naive scaling dimensions γi, as we will see later. For this reason, the γi are
referred to as “anomalous dimensions”.
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Dimensional analysis

Does a Lagrangian consisting of an infinite number of 
interactions and hence an infinite number of (renormalized) 
coupling constants give any predictive power?

• Not if one adopts an old-fashioned view about renormalization 
and renormalizable QFTs

• But not all is lost...

We can use naive dimensional analysis to estimate the size of 
individual terms in the infinite sum to any given matrix element



Dimensional analysis

As is common practice in particle physics, we adopt units   
where                 , such that                                                  are all 
measured in the same units (mass units)

Denote by                  the mass dimension of the coupling 
constants in the effective Lagrangian

Since by assumption the theory has only a single fundamental 
scale M, it follows that:          
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~ = c = 1
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Dimensional analysis

At low energy, it follows that the contribution of a given term      
gi Qi to an observable (which for simplicity we assume to be 
dimensionless) scales like:

Therefore, only operators with            are important for

This is what makes the effective Lagrangian useful ! 

Depending on the precision goal, one can truncate the infinite 
sum over terms by only retaining operators whose      value is 
smaller than a certain value
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Dimensional analysis

Since the Lagrangian has mass dimension D = dimensionality of 
spacetime (the action is dimensionless), it follows that 

Hence we can summarize:

Only a finite number of relevant and marginal operators exist !

�i = [Qi] = D + �i

Table 1: Classification of operators and couplings in the effective Lagrangian

Dimension Importance for E → 0 Terminology

δi < D, γi < 0 grows relevant operators

(super-renormalizable)

δi = D, γi = 0 constant marginal operators

(renormalizable)

δi > D, γi > 0 falls irrelevant operators

(non-renormalizable)

couplings in the low-energy effective theory. Consider scalar φ4 theory as an example. The
action is

S =

∫
dDx

(
1

2
∂µφ ∂

µφ−
m2

2
φ2 −

λ

4!
φ4

)
. (11)

Using that x ∼ E−1 and ∂µ ∼ E, and requiring that the action scale like O(1) (in units of
h̄), we see that φ ∼ E

D
2
−1. If we denote by δi the mass dimension of an operator Qi, then

γi = δi − D. For the operators in the Lagrangian (11) we find:

δi γi Coupling

∂µφ ∂µφ D 0 1

φ4 2D − 4 D − 4 λ ∼ Λ4−D

φ2 D − 2 −2 m2 ∼ Λ2

More generally, an operator with n1 scalar fields and n2 derivatives has

δi = n1

(
D

2
− 1

)
+ n2 , γi = (n1 − 2)

(
D

2
− 1

)
+ (n2 − 2) . (12)

It follows that for D > 2 only few operators have γi ≤ 0.
A summary of these considerations is presented in Table 1. The common terminology

of “relevant”, “marginal”, and “irrelevant” operators given there is without a doubt one of
the worst misnomers is the history of physics. Really, “relevant” operators are usually unim-
portant, because they are forbidden by a symmetry (else they are disastrous, see below).
“Marginal” operators are all there is in renormalizable quantum field theories. And “irrele-
vant” operators are those that are really interesting, because they teach us something about
physics at the fundamental scale M .

A crucial insight, which one may term the “theorem of modesty”, is that no quantum field
theory is ever complete at arbitrarily high energy. At best it is an EFT valid up to some cutoff
scale Λ. This “scale of ignorance” is often a physical scale, such as the mass of a new particle,
which has not yet been discovered. When interpreted that way, many theories we know and
love can be seen as EFTs:

6



Dimensional analysis
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Example:      - theory at weak coupling 

Use the free Lagrangian to derive the mass dimension of all 
fields and couplings, assuming the theory is weakly coupled:

In D dimensions, it follows that:

Hence:
• The mass term is a relevant operator
• The interaction term is marginal in D=4 (relevant in D<4)

�4
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Example:      - theory at weak coupling 

Use the free Lagrangian to derive the mass dimension of all 
fields and couplings, assuming the theory is weakly coupled:

In D dimensions, it follows that:

Hence:
• An operator containing n1 fields     and n2 derivatives has 

dimension:

• For D>2, adding fields or derivatives increases the dimension !

�4
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“Marginal” operators are all there is in renormalizable quantum field theories. And “irrele-
vant” operators are those that are really interesting, because they teach us something about
physics at the fundamental scale M .

A crucial insight, which one may term the “theorem of modesty”, is that no quantum field
theory is ever complete at arbitrarily high energy. At best it is an EFT valid up to some cutoff
scale Λ. This “scale of ignorance” is often a physical scale, such as the mass of a new particle,
which has not yet been discovered. When interpreted that way, many theories we know and
love can be seen as EFTs:
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Comments

High-energy theory Fundamental scale Low-energy theory

Standard Model MW ∼ 80 GeV Fermi theory

GUT MGUT ∼ 1016 GeV Standard Model

String theory MS ∼ 1018 GeV QFT

11-dim. M theory . . . String theory

. . . . . . . . .

The arguments just presented provide a new perspective on renormalization. Instead of
a paradigm of renormalizable theories based on the concept of systematic “cancellations of
infinities”, we should adopt the following, more physical point of view:

• Low-energy physics depends on the short-distance structure of the fundamental theory
via relevant and marginal couplings, and possibly through some irrelevant couplings
provided measurements are sufficiently precise.

• “Non-renormalizable” interactions are not forbidden; on the contrary, irrelevant opera-
tors always contribute at some level of precision. Their effects are simply numerically
suppressed if the fundamental scale M is much larger than the typical energies achievable
experimentally.

• These non-renormalizable, “irrelevant” interactions tell us something about the physics
at the cutoff scale Λ ∼ M .

A corrolary to the second item is that, at low energies, all EFTs are “automatically” renor-
malizable quantum field theories, provided that the cutoff scale Λ is large.

The comment about “irrelevant” interactions in the third item is very powerful, so let
us illustrate it with two prominent examples: i) Early measurements of the magnitude and
energy dependence of weak-interaction processes at low energy have indicated the relevance
of a high mass scale M ∼ 100 GeV. This was instrumental in finding the correct theory of
the weak interactions. ii) The local gauge symmetries of the Standard Model allow us to
write down a dimension-5 operator of the type g νT HHν with g ∼ 1/Λ. After electroweak
symmetry breaking, this operator gives rise to a neutrino Majorana mass term mν ∼ v2/Λ,
where v ∼ 246 GeV is the vacuum expectation value of the Higgs field. Seen as an EFT, the
Standard Model thus predicts the existence of neutrino masses, even though there are no right-
handed neutrino fields in the theory. The seasaw mechanism provides an explicit example of
how such a mass term might be realized in a more fundamental theory. But unless we forbid
the dimension-5 operator by imposing a symmetry such a lepton-number conservation, the
existence of neutrino masses is a generic prediction of the Standard Model. The fact that
the observed neutrino masses imply Λ ∼ 1014 GeV not far from the energy scale where the
three gauge couplings approximately unify is a strong argument in favor of the idea of Grand
Unification.

On the other hand, super-renormalizable terms in an effective Lagrangian are problematic.
Consider as an example the operator φ2 in scalar φ4 theory (i.e., the mass term for the scalar
field). In D = 4 dimensions we have δi = 2, γi = −2, and so we expect that m2 ∼ Λ2 by virtue
of the hypothesis of naturalness. Since such large fluctuations are indeed generated in the
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Examples of effective field theories: 

• SM and GUTs are perturbative QFTs
• Fermi theory contains only irrelevant operators (4 fermions)
• String/M theory: fundamental theory is non-local and even 

spacetime breaks down at short distances

QCD mb ~ 5 GeV HQET, NRQCD

MChSM ~ 1 GeV ChPT



Comments

Examples of effective field theories: 

• QCD at low energy: example with strong coupling, where the 
relevant degrees of freedom at low energy (hadrons) are 
different from the degrees of freedom of QCD

• Low-energy theory is strongly coupled, yet ChPT is useful
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write down a dimension-5 operator of the type g νT HHν with g ∼ 1/Λ. After electroweak
symmetry breaking, this operator gives rise to a neutrino Majorana mass term mν ∼ v2/Λ,
where v ∼ 246 GeV is the vacuum expectation value of the Higgs field. Seen as an EFT, the
Standard Model thus predicts the existence of neutrino masses, even though there are no right-
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how such a mass term might be realized in a more fundamental theory. But unless we forbid
the dimension-5 operator by imposing a symmetry such a lepton-number conservation, the
existence of neutrino masses is a generic prediction of the Standard Model. The fact that
the observed neutrino masses imply Λ ∼ 1014 GeV not far from the energy scale where the
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of the hypothesis of naturalness. Since such large fluctuations are indeed generated in the

7

QCD mb ~ 5 GeV HQET, NRQCD

MChSM ~ 1 GeV ChPT



Running couplings / Wilson coefficients

Often the fields       correspond to heavy particles, whose effects 
become unimportant at low energies

But the frequency decomposition implies that high-energy 
excitations of massless particles (such as gauge bosons) are 
also integrated out from the low-energy effective theory

Consider now the situation where we lower the cutoff          
without crossing the threshold for a heavy particle that            
could be integrated out:
• the structure of the operators Qi in the effective        

Lagrangian remains the same
• hence, the effect of lowering the cutoff must be entirely 

absorbed into the values of the coupling constants gi

Follows that                   are running,    -dependent parameters !

�H

⇤

E

MM
⇤

gi = gi(⇤) ⇤



Modern quantum field theory

“Theorem of modesty”: 
• no QFT ever is complete on all length and energy scales
• all QFTs are low-energy effective theories valid in some energy 

range, up to some cutoff

Giving up renormalizability as a construction criterion for 
“decent” QFTs: 
• at low energy, any effective theory will automatically reduce to 

a “renormalizable” QFT, meaning that “non-renormalizable” 
interactions give rise to small contributions ~(E/M)n

• this does not make renormalization irrelevant, but it provides a 
different point of view (Wilsonian picture of the RG)

⇤



Modern quantum field theory

Forget the folklore about “cancellations of infinities”

Get used to more physical viewpoint that: 
• low-energy physics depends on the short-distance 

dynamics of the fundamental theory only through a small 
number of relevant and marginal couplings, and possibly 
through some irrelevant couplings if our measurements are 
sufficiently precise

• this finite number of couplings can be renormalized (i.e., 
infinities can be removed consistently) using a finite number 
of experimental data

• textbook criterion of “renormalizability” is automatically 
fulfilled (approximately) by any effective field theory



Modern quantum field theory

Forget the folklore about “cancellations of infinities”

Get used to more physical viewpoint that: 
• contrary to the old paradigm of strictly forbidding non-

renormalizable interactions, we always expect them to be 
present and give rise to small effects, which may or may not 
be observable at a given level of accuracy

• this provides an “indirect way” to search for hints of physics 
beyond the (current) Standard Model:

low-energy, high-precision measurements



Modern quantum field theory

Instead, relevant (“super-renormalizable”) interactions cause 
problems!

Consider, e.g., the mass term            in scalar field theory

Dimensional analysis suggests that 

But then a light scalar particle should not be present in the low-
energy effective theory!

The same argument applies for all mass terms in any QFT (and 
likewise for the cosmological constant) !

m2�2

m2 ⇠ M2 ⇠ ⇤2
UV

Hierarchy problem!



Modern quantum field theory

New paradigm:  EFTs must be natural in the sense that all mass 
terms should be forbidden by (exact or broken) symmetries!

Indeed: 
• gauge invariance:  forbids mass terms for gauge fields 

(photons and gluons in the Standard Model)
• chiral symmetry:  forbids mass terms for fermions (all matter 

fields in the Standard Model)

• Supersymmetry: would link the masses of scalars and 
fermions and, in combination with chiral symmetry, forbid 
mass terms for scalar fields (solves the hierarchy problem)

Explains why the SM is a chiral gauge theory!



Effective field theory

Lecture III: Concepts of Effective Field Theory

• Basic ideas, Wilsonian effective action

• Scale separation, integrating out high-energy modes, low-
energy effective Lagrangian, dimensional analysis

• Modern view of QFTs and general principles

Lecture IV: Applications of Effective Field Theory

• The Standard Model as an effective field theory

• Several examples of applications beyond the Standard Model

• Interesting insights

Z 

b s 

ν ν C(MW,MZ,mt,µ) μ μ



Lecture IV:  Applications of Effective Field Theory



Standard Model as an effective field theory

Some interesting insights can be gained by considering the 
Standard Model (SM) as a low-energy effective theory of some 
more fundamental theory (supersymmetry, extra dimensions, 
new strongly coupled physics, GUT, ...)

We will denote the scale of New Physics by M; this could be as 
large as 1016 GeV for some applications, but as small as 103 GeV 
for others

The SM Lagrangian should then be extended to an effective 
Lagrangian, which besides the SM terms contains additional, 
irrelevant operators

These operators must respect the symmetries of the SM 
(gauge invariance, Lorentz symmetry, CPT) but are otherwise 
unrestricted 



Standard Model as an effective field theory

•  Standard Model is most successful effective field 
theory to date, even though it leaves open some 
questions: 

renormalizable quantum field theories 

Higgs mass (hierarchy problem) 

possible effects of �new physics�,  
proton decay, flavor physics, … 

cosmological constant 

neutrino masses 
(see-saw mechanism) 



Standard Model as an effective field theory

We will discuss a couple of interesting aspects of SM physics 
from the perspective of this constructions:

• weak interactions

• anomalous magnetic moment of the muon

• proton decay

• conservation of baryon and lepton numbers (accidental 
symmetries)

• neutrino masses and see-saw mechanism

• Higgs production at the LHC



Weak interactions at low energies (flavor physics)

Fermi’s description of the weak interactions at low energy is a 
prime example of an effective field theory, which has provided 
first evidence for the scale of electroweak symmetry breaking

At the low energies relevant for neutron β-decay, kaon physics, 
charm physics or B-meson physics (few MeV - few GeV), we can 
integrate out the heavy W and Z bosons as well as the top-quark 
and Higgs boson from the SM

This gives rise to a low-energy effective theory containing          
4-fermion interactions (Fermi theory) and dipole interactions 
between fermions and the photon and gluon

This effective Lagrangian successfully describes the huge 
phenomenology of flavor-changing processes



Weak interactions at low energies (flavor physics)

Example: Effective Lagrangian for b→s FCNC transitions       
(see Buras lectures for a derivation)all other B decays into two light, flavour-nonsinglet pseudoscalar mesons. Using the

unitarity relation −λt = λu + λc, we write

Heff =
GF√

2

∑

p=u,c

λp

(

C1 Qp
1 + C2 Qp

2 +
∑

i=3,...,10

Ci Qi + C7γ Q7γ + C8g Q8g

)

+ h.c. , (1)

where Qp
1,2 are the left-handed current–current operators arising from W -boson exchange,

Q3,...,6 and Q7,...,10 are QCD and electroweak penguin operators, and Q7γ and Q8g are the
electromagnetic and chromomagnetic dipole operators. They are given by

Qp
1 = (p̄b)V −A(s̄p)V −A , Qp

2 = (p̄ibj)V −A(s̄jpi)V −A ,

Q3 = (s̄b)V −A

∑

q (q̄q)V −A , Q4 = (s̄ibj)V −A

∑

q (q̄jqi)V −A ,

Q5 = (s̄b)V −A

∑

q (q̄q)V +A , Q6 = (s̄ibj)V −A

∑

q (q̄jqi)V +A ,

Q7 = (s̄b)V −A

∑

q
3
2eq(q̄q)V +A , Q8 = (s̄ibj)V −A

∑

q
3
2eq(q̄jqi)V +A ,

Q9 = (s̄b)V −A

∑

q
3
2eq(q̄q)V −A , Q10 = (s̄ibj)V −A

∑

q
3
2eq(q̄jqi)V −A ,

Q7γ =
−e

8π2
mb s̄σµν(1 + γ5)F

µνb , Q8g =
−gs

8π2
mb s̄σµν(1 + γ5)G

µνb , (2)

where (q̄1q2)V ±A = q̄1γµ(1±γ5)q2, i, j are colour indices, eq are the electric charges of the
quarks in units of |e|, and a summation over q = u, d, s, c, b is implied. (The definition of
the dipole operators Q7γ and Q8g corresponds to the sign convention iDµ = i∂µ +gsAµ

ata
for the gauge-covariant derivative.) The Wilson coefficients are calculated at a high scale
µ ∼ MW and evolved down to a characteristic scale µ ∼ mb using next-to-leading order
renormalization-group equations. The essential problem obstructing the calculation of
nonleptonic decay amplitudes resides in the evaluation of the hadronic matrix elements
of the local operators contained in the effective Hamiltonian.

Applying the QCD factorization formula and neglecting power-suppressed effects, the
matrix elements of the effective weak Hamiltonian can be written in the form [14, 15]

〈πK|Heff |B̄〉 =
GF√

2

∑

p=u,c

λp 〈πK|Tp + T ann
p |B̄〉 , (3)

where

Tp = a1(πK) δpu (ūb)V −A ⊗ (s̄u)V −A

+ a2(πK) δpu (s̄b)V −A ⊗ (ūu)V −A

+ a3(πK)
∑

q (s̄b)V −A ⊗ (q̄q)V −A

+ ap
4(πK)

∑

q (q̄b)V −A ⊗ (s̄q)V −A

+ a5(πK)
∑

q (s̄b)V −A ⊗ (q̄q)V +A
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Weak interactions at low energies (flavor physics)

Example: Effective Lagrangian for b→s FCNC transitions       
(see Buras lectures for a derivation)
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Figure 3: Typical diagrams in the Standard Model which generate the different operators
in the effective weak Lagrangian. The current-current operators Q1,2 result from graphs of
type (a), the QCD penguin operators Q3,...,6 from graphs of type (b), the electroweak penguin
operators Q7,...,10 from graphs of type (c), and the dipole operators from graphs of type (d).
Digram (f) generates the operators with leptons shown in (31), while diagram (e) contributes
to B–B̄ and K–K̄ mixing. (Figure taken from [8] with permission from the authors)

Some particular features of the Standard Model have been implicitly incorporated in the
above considerations, namely that only left-handed fields are involved in flavor-changing weak
interactions, that light (approximately massless) quarks have identical couplings with respect
to the strong interactions, and that all up-type (u, c) and down-type (d, s, b) quark fields couple
identically to the weak force.

The unitarity of the CKM matrix implies λu +λc +λt = 0, where λp ≡ VpbV ∗
ps. We will use

this relation to eliminate CKM factors involving couplings of the top quark. Note also that
in the limit mu = mc = 0 (which is justified at dimension-6 order) the penguin graphs always
involve λt = −(λu + λc). The final result for the effective weak Lagrangian reads

Leff = −
GF√

2

[
∑

p=u,c

λp

(
C1Q

(p)
1 + C2Q

(p)
2

)
+

∑

i=3,...,10,7γ,8g

(λu + λc) CiQi

]

. (36)
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SM diagrams involving virtual 
heavy-particle exchanges 
contributing to the low-energy 
effective weak Lagrangian



Weak interactions at low energies (flavor physics)

Example: Effective Lagrangian for b→s FCNC transitions       
(see Buras lectures for a derivation)

From the fact that the leading operators in the low-energy 
effective theory have dimension 6, it follows that the 
corresponding couplings are irrelevant and proportional to MW2, 
indeed: 

The strong suppression of these contributions at low energies 
explains why we refer to these interactions as the weak 
interactions, even though the coupling constants of the     
SU(2)L⊗U(1)Y electroweak interactions is about as large as the 
electromagnetic coupling constant

GFp
2
=

g22
8M2

W



Anomalous magnetic moment of the muon

In a celebrated calculation that was the birth of modern QFT, 
Schwinger computed the anomalous magnetic moment of the 
electron in 1948 and found:

How will this result be affected if the SM is considered as an 
effective field theory?

µe =
ge
2me

ae =
ge � 2

2
=

↵

2⇡
+ . . ., with



Anomalous magnetic moment of the muon

In a celebrated calculation that was the birth of modern QFT, 
Schwinger computed the anomalous magnetic moment of the 
electron in 1948 and found:

How will this result be affected if the SM is considered as an 
effective field theory?

Add unique dimension-5 operator (                        ): 

µe =
ge
2me

ae =
ge � 2

2
=

↵

2⇡
+ . . ., with

� = 5 , � = �1

gv

M2
 ̄ �µ⌫F

µ⌫ 

factor v required by EWSB



Anomalous magnetic moment of the muon

In a celebrated calculation that was the birth of modern QFT, 
Schwinger computed the anomalous magnetic moment of the 
electron in 1948 and found:

This adds         to      and hence:

As long as                 the additional term will be very small, and 
by comparing a measurement of        with theory we can 
constrain M

g/M µe

M � me

µe

ae =
↵

2⇡
+

gmev

M2
+ . . .

µe =
ge
2me

ae =
ge � 2

2
=

↵

2⇡
+ . . ., with



Anomalous magnetic moment of the muon

Analogous discussion (with      replaced by       ) holds for the 
muon

In this case, there is presently a 3.6σ discrepancy between 
theory and experiment:

Interpreting this effect in terms of our irrelevant operator implies 
that:

me mµ

aSMµ � aexpµ ⇡ �2.8 · 10�9

One of the best hints for BSM physics!

M ⇠ p
g ⇥ 100TeV

contains loop factor (small)



Proton decay

Suppose you know the gauge symmetry SU(3)c⊗SU(2)L⊗U(1)Y of 
the SM but nothing else (no GUTs). What could you say about 
proton decay?

The effective Lagrangian must contain at least three quark 
fields (change baryon number by 1 unit) and one lepton field 
(change lepton number by 1 unit)

Hence:

Since the lowest-dimension operators have dimension 6 
(corresponding to              ), the proton can be made sufficiently 
long-lived by raising the fundamental scale M into the 1016 GeV 
range

L
proton decay

⇠ g

M2

qqq`

�i = �2



Proton decay

Now imagine that you do not know about the existence of 
quarks (no one has seen any) but you do know about protons 
and pions

Then an effective Lagrangian giving proton decay could be:

This is a marginal operator, and hence proton decay would not 
be suppressed by any large mass scale!

In some sense, we see that the longevity of the proton provides 
a hint for a substructure of the proton: replacing a fundamental 
field by a composite of several fields raises the dimension of 
the operators and hence gives rise to additional suppression

L
proton decay

⇠ g ⇡  ̄e  p



Proton decay

The same trick can be applied to other fine-tuning problems

For example, the hierarchy problem can be solved by supposing 
that the Higgs boson is not an elementary scalar particle but 
instead a composite of a pair of elementary fermions

If this is the case, then the Higgs mass term corresponds to a 4-
fermion operator, which is irrelevant

This is the main idea of technicolor theories



Baryon and lepton number conservation

In the construction of the SM, the conservation of baryon and 
lepton number is not imposed as a condition 

There are no corresponding U(1) symmetries of the Lagrangian

How can we understand that in nature we have not seen any 
hints of baryon- or lepton-number violating processes?



Baryon and lepton number conservation

In the construction of the SM, the conservation of baryon and 
lepton number is not imposed as a condition 

There are no corresponding U(1) symmetries of the Lagrangian

How can we understand that in nature we have not seen any 
hints of baryon- or lepton-number violating processes?

The answer is that it is impossible to construct any relevant or 
marginal operator that would respect the gauge symmetries of 
the SM and violate baryon or lepton number!

Hence, at the level of renormalizable interactions, baryon- and 
lepton-number conservation are accidental symmetries of the 
SM



Neutrino masses

The discovery of non-zero neutrino masses is often described 
as a departure from the SM 

But this is no longer true if we consider the SM as an effective 
low-energy theory

Without a right-handed neutrino (which indeed is not part of 
the SM), it is impossible to write a neutrino mass term at the 
level of relevant or marginal operators

However, it is possible to write a gauge-invariant neutrino mass 
term at the level of irrelevant operators of dimension ≥5:

L
neutrino mass
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M
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Neutrino masses

However, it is possible to write a gauge-invariant neutrino mass 
term at the level of irrelevant operators of dimension ≥5:

After electroweak symmetry breaking, this gives rise to a 
Majorana mass term of the form:

The SM as an effective field theory predicts that neutrinos 
should be massive, with                     suppressed by the 
fundamental scale of some BSM physics 

L
neutrino mass

=
g

M

�
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Neutrino masses and the see-saw mechanism

Experiments hints at the fact that the fundamental scale relevant 
for the generation of neutrino masses is very heavy, 

which is not far from the scale of grand unification

M ⇠ 1014 GeV

Extensions of the SM containing heavy, 
right-handed neutrinos (with masses that 
are naturally of order M) provide explicit  
examples of fundamental theories which 
yield such a Majorana mass term when 
the heavy, right-handed neutrinos are 
integrated out (see-saw mechanism) 



Higgs production at the LHC

The protons collided at the LHC contain only light quarks (u,d, 
and a little bit of s), which in the SM have negligible couplings to 
the Higgs boson, and gluons, which do not couple to the Higgs 
boson at all

How, then, is the Higgs boson produced in pp collisions at the 
LHC?



Higgs production at the LHC

The protons collided at the LHC contain only light quarks (u,d, 
and a little bit of s), which in the SM have negligible couplings to 
the Higgs boson, and gluons, which do not couple to the Higgs 
boson at all

How, then, is the Higgs boson produced in pp collisions at the 
LHC?

We can gain insight by assuming (as seems to be the case) that 
the Higgs boson is lighter than the top quark

We can then construct an effective low-energy theory for Higgs 
physics, in which the top quark is integrated out



Higgs production at the LHC

In this effective low-energy theory, direct couplings of the Higgs 
boson to pairs of gluons and photons arise at the level of 
irrelevant dimension-5 operators, with coefficients that scale 
like 1/mt , e.g.:

These operators appear first at one-loop                                
order, via the exchange of a virtual top-quark

The effective hgg interaction provides the                    
dominant production mechanism for the Higgs                     
boson in gluon-gluon fusion at the LHC

Lhgg =
ytp
2mt

↵s

12⇡
hGa

µ⌫G
µ⌫,a

g

g

h
q(n)

q(n)

q(n)

Figure 1: Effective couplings of the Higgs boson to two gluons induced by the exchange
of KK quarks.

that it has unit area. The η-dependence of the Yukawa couplings is implicit in our notation,
but it will play an important role in our analysis.

In the presence of the regularized Higgs profile, the bulk equations of motion for the profile
functions read

d

dt
U (n)
L (t) = −xn U (n)

R (t) +Mu(t) U (n)
L (t) ,

−
d

dt
U (n)
R (t) = −xn U (n)

L (t) +Mu(t) U (n)
R (t) ,

(8)

where

Mu(t) =
1

t

(
cQ 0

0 −cu

)
+

v√
2MKK

δη(t− 1)

(
0 Yu

Y †
u 0

)
(9)

is the generalized mass matrix. Here cQ = MQ/k and cu = −Mu/k are hermitian matrices
containing the bulk mass parameters of the 5D theory, which without loss of generality can
be taken to be diagonal. The boundary conditions are such that the odd profiles vanish on
the two branes, which implies

(0 1) U (n)
L (ti) = 0 , (1 0) U (n)

R (ti) = 0 ; for ti = {ε, 1} . (10)

3 Low-energy effective Lagrangian for the hgg couplings

We are now ready to derive the effective low-energy Lagrangian for the Higgs-boson couplings
to a pair of gluons, which are induced by the exchange of KK quarks. This Lagrangian is valid
at energies below the scale MKK, at which these states can be integrated out. The relevant
Feynman diagram arising at one-loop order is shown in Figure 1. Since the gluon couplings
to fermions are diagonal, a single quark state q(n) runs in the loop. Summing over the KK
tower, we obtain1

Leff,KK
hgg = CKK

1 (µ)
αs(µ)

12πv
hGa

µν G
µν,a − CKK

5 (µ)
αs(µ)

8πv
hGa

µν G̃
µν,a , (11)

1Note that the Higgs vacuum expectation value v in the RS model can differ from its value in the SM by
a small amount. [What shall we do about this?]
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Summary

Effective field theories are a very powerful tool in quantum field 
theory

The are of great practical use, but also provide the conceptual 
tools to understand scale separation (factorization) and 
renormalization in a physical and systematic way

Effective field theories are abundant, since any QFT can be 
considered as an effective low-energy theory of some more 
fundamental theory, which is often not yet known

Because of this fact, effective field theories provide the tools to 
perform indirect searches for new physics beyond the 
Standard Model


