KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Experimental High-Energy Astroparticle Physics

Andreas Haungs haungs@kit.edu

Content:

- **1. Introduction in HEAP**
 - source-acceleration-transport
 - short history of cosmic ray research
 - extensive air showers
- 2. High-Energy Cosmic Rays
 - KASCADE, KASCADE-Grande and LOPES
- 3. Extreme Energy Cosmic Rays
 - Pierre Auger Observatory, JEM-EUSO
- 4. TeV-Gamma-rays & High-energy Neutrinos
 - TeV gamma rays

H.E.S.S., MAGIC, CTA

high-energy neutrinos

IceCube and KM3Net

Multi-messenger Approach in Astroparticle Physics

Cosmic rays, gammas and neutrinos are linked.

GZK:

$$p + \gamma_{2.7K} \rightarrow \Delta^{+} (1232)$$
$$\rightarrow p + \pi^{0} \rightarrow p \gamma \gamma$$
$$\rightarrow n + \pi^{+} \rightarrow p e^{+} v$$

TeV Gamma Rays

Andreas Haungs

P,He,...Fe

The broad-band electromagnetic spectrum

Andreas Haungs

Karlsruhe Institute of

The electromagnetic spectrum Absorption

TeV – γ-ray astronomy science questions

- What is the origin of cosmic rays ?
- How works particle acceleration by accretion into a massive black hole
- Do pulsars produce VHE gamma rays ?
- Does Dark Matter annihilate producing gamma rays ?
- Is the origin of Extragalactic Background Light understood ?
- What is the impact of the measurements on EBL absorption in the understanding of the history of structure formation ?
- Can the absorption pattern in the spectrum of distant Blazars be used to measure Dark Energy ?
- Can VHE gammas emitted by flaring AGNs or GRBs unveil the quantum structure of gravity ?
- Do GRB produce VHE gamma rays ?

TeV – γ-ray astronomy science topics

TeV – γ-ray production processes

By interaction with matter

 $\frac{\pi^{o} - \text{decay:}}{\text{In hadronic interactions}}$ produced neutral pions decay
immediately: $\pi^{0} \rightarrow \gamma + \gamma (\tau = 8.4 \cdot 10^{-17} \text{ s})$

Electron - Bremsstrahlung:

Deflected electrons in the coulomb field of nuclei emit radiation with the probability $\phi \propto z^2 \ Z^2 \ E_e \ / \ m^2$

ambient photon π^0 χ^0 χ^0 high energy photons Δ^+ η χ^0 χ^0 high energy

Annilihation and radioactive decay:

In dense matter annihilate electronpositron (proton-antiproton) pairs $e^+ + e^- \Rightarrow \gamma + \gamma \quad (\Rightarrow E_{\gamma} = 511 \text{ keV})$ $p + p^- \Rightarrow \pi^+ + \pi^- + \pi^0$

In elemental synthesis radioisotopes exist which have β – decay.

proton acceleration

TeV – γ-ray production processes

By interaction with magnetic fields

Synchrotron radiation: Radiation of accelarated charged particles (electrons) in magnetic fields. Power of the radiation: $P \propto E_e^2 \cdot B^2$

Synchrotron radiation

Inverse Compton scattering

By interaction with photon fields

Inverse compton scattering: fast electrons transfer energy on low energy photons → Blue shifted photons

High energy e- initially e- loses energy

High Energy γ-rays detection principle

Photon search at the Pierre Auger Observatory $E_{\gamma} = 10^{18} - 10^{20} eV$

Photon inititated showers penetrate deeper in the atmosphere →higher X_{max} (FD)

Photon inititated showers are pure electromagnetic EAS
→less muons, different signal
→shape in particle detector (SD)

Limit on fraction of photons in UHECR flux

Astropart. Phys. 29 (2008) 243 Astropart. Phys. (2009) in press, arxiv 0903-1127

Photon-shower detection: Tibet AS\g – Argo – Grapes - ... $E_v = 10^{13}-10^{16}eV$

shower detection: Milagro \rightarrow HAWC E_v = 10¹²-10¹⁴eV

Milagro was a first generation wide-field gamma-ray telescope:

Discovered:

- more than a dozen TeV sources
- diffuse TeV emission from the Galactic plane
- a surprising directional excess of cosmic rays

HAWC will use what we have learned from Milagro

HAWC will:

- extend the reach of IACTs to ~100 TeV
- point to the sources of cosmic rays
- be the best instrument to study short
- **GRBs and prompt emission at 100s of GeV**

Gamma/Hadron Separation

TeV – γ-rays: detection principle of Imaging Air-Cherenkov Telescopes

Large collection areas ~50000 m²

Single telescope event Three telescope event in common camera plane

- Image intensity → energy
- Image orientation → direction
- Image shape → primary particle

TeV – γ -rays: detection principle

G.Maier

TeV – γ-ray astronomy the beginning

Copyright Digital Image Smithsonian Institution, 1998

TeV – γ-ray astronomy nowadays telescopes

Andreas Haungs

Karkruhe Institu

TeV – γ-rays: MAGIC

MAGIC Major Atmospheric Gamma Imaging Cherenkov

Single 17 meter (250 sqm)
Cherenkov Telescope with several new technological elements
Located at the La Palma Canary island (Northern Hemisphere)
Fully operational since 2004
Analysis E_th about 60 GeV and Crab-like detection in about 2 minutes

•Many of discoveries and high impact results

TeV – γ-rays: H.E.S.S. H.E.S.S. High Energy Stereoscopic System

•Array of 4 x 12 meter (100 sqm) Cherenkov Telescopes
•Located at the Khomas Highland Namibia (Southern Hemisphere)
•Fully operational since 2003
•Analysis E_th about 150 GeV and Crab-like detection in about 30 seconds
•Lots of discoveries and high impact results

The TeV γ-ray sky Source Hunting

Class	2003	2005	2007
PWN	1	6	18
SNR	2	3	7
Binary	0	2	4
Diffuse	0	2	2
AGN	7	11	19
UnId	2	6	21
Total	12	33	71!

2011: 130 sources

Background colours indicating northern / southern sky

Graphics by Konrad Bernlöhr 2008

TeV – γ-ray astronomy from source hunting to astronomy

Emission model: synchrotron and inverse compton.

Proof by multiwavelength observation

TeV – γ-ray astronomy from source hunting to astronomy

Model works fine for most sources, but where are the hadronic cosmic rays produced?

Supernova remnant shell type: Shock wave acceleration up to E > 100 TeV

• Primary particle type (electrons, hadrons) still uncertain

TeV – γ -rays: from source hunting to astronomy

TeV – γ -rays: from source hunting to cosmology

Dark Matter Search

TeV – γ-rays: from source hunting to cosmology Dark Matter Search

TeV – γ-rays: from source hunting to cosmology Dark Matter Search

TeV – γ -rays: The present future

MAGIC-II

Twin 17 meter
Cherenkov telescopes
with state-of-the-art
technology
Three times better
sensitivity and physics
E_{th} < 50 GeV

H.E.S.S.-II

 Giant 28m (600 sqm area) telescope at center of the HESS array (4x12m)

- Commissioning in 2011
- E_{th} reduction to ~30 GeV

TeV – γ -rays: what comes next

We just see the tip of an iceberg! Future provides guaranteed physics program and large discovery potential

TeV – γ -ray astronomy: The future: **CTA**

Array of >50 telescopes factor 10 improvement in sensitivity 20 GeV to >300 TeV energy range significantly improved angular resolution two observatories: North and South High-energy section

limitation: effective area telescopes with ~4-7 m Ø energy range: > 5 TeV

Midsize telescopes limitation: gamma/hadron separation telescopes with 12 m Ø energy range: 100 GeV - 10 TeV Low energies limitation: photon collection and gamma/hadron separation large telescopes with 23 m Ø energy threshold: some 10 GeV

TeV – γ -ray astronomy: The future: CTA

- -- Larger sensitivity (x10)
- Lower threshold (few 10 GeV)
- Larger energy range (>PeV)
- Larger field of view
- Improved angular resolution
- Larger detection rates

- more sources
- Pulsars, distant AGN, source mechanisms
- Cut-off of galactic sources
- extended sources, surveys
- structure of extended sources
- transient phenomena

TeV – γ-ray astronomy: The future: CTA Sensitivity

Andreas Haungs

TeV – γ-ray astronomy: Summary

TeV gamma-ray astronomy is reality!

High Energy Neutrinos

Andreas Haungs

P,He,...Fe
Motivation for the ν - approach

• <u>Gammas:</u>

>30 TeV interaction with IR background

- <u>Charged particles:</u>
 - Low energies: deflection in magnetic fields
 - High energies: GZK effect with CMB
- Neutrinos:

straight tracks from source But: needs huge detector volumes due to low crosssections

UHE neutrinos and HE photons are by-products of GZK and hadronic acceleration

Cosmic Neutrinos

Andreas Haungs

Neutrino Astronomy

- + Neutrinos penetrate the whole Universe
- + Neutrinos direction points back to the source
- + Neutrinos are produced at the sources of the cosmic rays
- + Neutrinos are not reprocessed at the sources
- + Neutrinos expected from dark matter particle annihilation
- Low expected flux of extragalactic neutrinos
- Small cross section
- Needs gigantic detector volumes: water, ice, salt, rock, moon,

Observing Neutrinos

Fermi acceleration of protons gives particle spectrum

 $dN_p/dE \sim E^{-2}$

Neutrino production at source:

p+ γ or p+p collisions gives pions $\pi \rightarrow \mu_{\nu} + \nu_{\mu}$ $\mu_{\nu} \rightarrow e^{-} + \nu_{\mu} + \nu_{e}$

Neutrino flavors:

 $\begin{array}{l}
\mathbf{v}_{\mathbf{e}} : \mathbf{v}_{\mu} : \mathbf{v}_{\tau} \\
1:2:\sim 0 \text{ at source} \\
1:1:1 \quad \text{at detector (?)}
\end{array}$

High-Energy Neutrinos: Detection principle

Neutrino interaction in ice and water

Neutrino signatures

- + good pointing
- + large event rates due long muon range

Neutrino signatures

High-Energy Neutrinos: Nowadays Experiments $E_v = 10^{12}-10^{17}eV$

BAIKAL, Sibiria

Mediterranean: ANTARES, France NESTOR, Greece NEMO, Italy

AMANDA & IceCube, South pole

High Energy Neutrinos: the present future

IceCube: A cubic kilometer neutrino detector

km

Icecube

High Energy Neutrinos: the present future IceCube

High Energy Neutrinos: actual result

IceCube-40 = 40 strings

(Live time 375 days, 14121 upgoing events, 22779 downgoing events)

- →no statistically significant excess → limits
- (= Atmospheric neutrinos from air showers)
- → 2 PeV cosmic neutrino candidates detected (cascades)

High Energy Neutrinos: actual result

High Energy Neutrino Astronomy present experiments

BAIKAL = Water-Cherenkov-Experiment NESTOR = Water-Cherenkov-Experiment ANTARES = Water-Cherenkov-Experiment

SHORT ARM (1/3 the usual diameter) HEXAGONAL TITANIUM FLOOR

DELTA BERENIKE

High Energy Neutrinos: the present future

Andreas Haungs

Karlsruhe Institute of

High Energy Neutrinos: the present future

ANTARES hundreds of neutrinos

High Energy Neutrinos: the future: KM3Net → high-energy neutrino astronomy

Neutrino search at Auger: horizontal air showers $E_v = 10^{17} \cdot 10^{20} eV$

nearly horizontal air showers from extremely

high energy ν_{e} or ν_{μ} neutrinos

air showers from skimming ν_τ neutrinos

Limit on flux of neutrinos in UHECR flux

Horizontal or Earth skimming EAS with electromagnetic component

PRL 100 (2008) 211101 ApJ (2012) accepted

No Neutrinos detected

Radio detection of Neutrinos Advantages

- Strong emission process given in nature by the so-called Askaryan-effect
- Large attenuation lengths (up to ~km) for radio emission in different dense media like Antarctic ice or salt in salt domes
- Large detector volumes can be equipped with relatively small detector sampling
- Different concepts for the detection of high-energetic neutrinos by their radio emission in dense media are available

Askaryan mechanism

G.A. Askaryan

- Neutrino interacts with detector material and generates an electromagnetic shower
- The electromagnetic shower has more electrons than positrons
- Charge enhancement propagates in the medium with v > c_{med}
 Redic Charankey emission
 - → Radio-Cherenkov emission
- Dominant mechanism in dense media

Askaryan mechanism: proof at accelerators

- Large bundle of photons in a 3,6 t sand-target (also ice)
- measures 2 GHz radio emission
- →experimental proof of the Askaryan-effect

Experiment: RICE @ AMANDA

RICE:

- 17 receiver and 5 transmission antennas in 200 x 200 x 200 m³ above AMANDA
- Frequency-range 200-500 MHz
- DAQ since 1999
- Limits from 1,5 years data

Planned: AURA

Radio measurements in ICECUBE

Kravchenko et al, Astrop Phys 20(2003)195

Experiment: ANITA

- Balloon experiment watching a huge detector volume (200-1200 MHz)
- first test: ANITA Lite
- 45 day flight planned for end of 2006

Experiment: GLUE

- Use moon as detector volume for neutrino detection >10²⁰ eV
- Frequency 2.2 GHz
- Radio-attenuation length is only ~10 m at 2,2 GHz
 - Only events which interacts close to the moon surface
- All together ~123 hours observation time
- No results, only limits

Gorham et al, Phys Rev Let 93(2004)041101

Experiment: FORTE

- Records Cherenkov emission
 of particle cascades in ice
- Large detector volumes
- Frequency 30-300 MHz
- Event examples (not neutrinos, due to length of pulse 10µs)
- No results, only limits

Experimental Limits

Performed Experiment: NuMoon

- Moon observation at 120 175 MHz with WSRT, later LOFAR
- At these frequencies attenuation length ~100 m and broader emission pattern → larger detector volume than GLUE
- Detection of extreme high energetic neutrinos (and Cosmic Rays) >10²¹ eV

Scholten et al. (NuMoon Collab.) 2006,

Astropart. Phys., in press

The present future: ARA @ Southpole $E_v = 10^{17} \cdot 10^{21} eV$

Planned Experiment: ARIANNA

- Antarctic Ross Ice shelf
 ANtenna Neutrino Array
- Ice thickness ~500 meters
- Enough ice for interactions
- Thin enough for detecting reflections
- Array of antennas atop the Ross Ice Shelf looking down
- No deep holes
- Very competitive predicted sensitivity
- Prototype in construction

Conolly et al, ARENA workshop 2006, Newcastle, UK

Planned Experiment (Concept): SALSA (Saltdome Shower Array)

- Salt domes are extremely transparent for radio waves (as well as Antarctic ice)
- Factor ~2,4 more dense than ice

- Simpler environment conditions
 - Easier for installation and operation
 - But: unexpected high drilling costs

Summary Neutrino Detection By Radio

 $E_v = 10^{20} - 10^{23} eV$

- Radio technique allows covering very large detector volumes for the detection of UHE neutrinos
 - Needed statistics in principal reachable in short time
- Different activities
 - Radio in ice
 - Radio in salt
 - Radio in the moon
 - Radio in air (horizontal EAS)
- Presently very active field, but yet no positive detection

But we will hear it!!

The High Energy Universe

- Gamma Rays
 CTA
- Neutrinos
 KM3NeT
- Charged Cosmic Rays
 Next Ground Array + JEM-EUSO

The next phase in Astroparticle Physics: (European) Roadmap Priorities: High-Energy Universe

Neutrinos: KM3NeT

Charged Cosmic Rays:

Next... + JEM-EUSO

Gamma Rays: CTA

Roadmap from scientists for Funding Agencies!

Can we do Particle Astronomy?

i.e. multi-messenger observations of individual sources? example: Centaurus A (NGC 5128, Cen A)

closest radio-loud (d ~ 3.4Mpc) AGN
one of the best studied active galaxies
observed at many frequencies: from radio to X-ray

• gamma-rays

70's: Narrabri [Grindlay et al., 1975] 90's: EGRET [Sreekumar et al., 1999] Feb. 2009: Fermi-LAT [Abdo et al., 2009] March 2009: H.E.S.S. [Aharonian et al, 2009] • <u>UHECRs</u> 2007: PAO [Abraham et al., 2007] possible, but no agreement [Lemoine, 2008]

• neutrinos

no observation ... yet

➔ detailed calculations and predictions!

Can we do Particle Astronomy?

i.e. multi-messenger observations of individual sources?

Andreas Haungs

Discussion / Question / Exercise

- why TeV-Gamma-ray physics is already astronomy?
 - source morphology
 - source classes
 - used to model astrophysical processes
- what are the implications if IceCube events are real?
 - multi-messenger astroparticle physics is opened
 - one need more: support for larger experiment
 - why no muon-neutrinos seen?
- why radio measurements of neutrinos are so difficult?
 - too high treshold: maybe no neutrinos exist?
 - low cross-section: huge area required
 - homogeneous radio transparent medium is rare

