Recent results in Neutrino Physics

fefo

Universidad de Colima - FC - CUICBAS - DCPIHEP
XV Mexican School on Particles and Fields
Puebla, September 62012

A bit of History

Figure 2: The continuous electron spectrum observed by Chadwick.

A bit of History

A bit of history... 1930 - Wolfgang Pauli Dear Radioactive Ladies and Gentlemen....

Dear Radioactive Ladies and Gentlemen,
As the bearer of these lines, to whom 1 graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin $1 / 2$ and obey the exclusion principle and which further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant.

Unfortunately, I cannot appear in Tubingen personally since I am indisnensable here in Zurich because of a ball on the night of $6 / 7$ December. With my best regards to you, and also to Mr Back.

Your humble servant,
W. Pauli

N . Bohr suggested energy not conserved in β decays
L. Meitner proposed β^{-}loses energy through secondary interactions in nulceus yielding gamma rays

A bit of History

First Calculation of Neutrino Cross Sections

Bethe-Peierls (1934): calculation of first cross-section for inverse beta reaction using Fermi's theory for:
yields:

$$
\bar{v}_{e}+p \rightarrow n+e^{+} \quad \text { or } \quad v_{e}+n \rightarrow p+e^{-}
$$

$$
\sigma \approx 10^{-44} \mathrm{~cm}^{2} \text { for } E(\bar{v})=2 \mathrm{MeV}
$$

This means that the mean free path of a neutrino in water is:

$$
\lambda=\frac{1}{n \sigma} \approx 1.5 \times 10^{21} \mathrm{~cm} \approx 1600 \quad \text { light }- \text { years }
$$

Experimentalists groaned - need a very intense source of v 's to detect inverse Beta decay

A bit of recent history

A bit of recent history

- Experiments have shown that neutrinos oscillate \rightarrow they have mass

A bit of recent history

- Experiments have shown that neutrinos oscillate \rightarrow they have mass
- Few oscillation parameters are well measured

A bit of recent history

- Experiments have shown that neutrinos oscillate \rightarrow they have mass
- Few oscillation parameters are well measured
- Only upper limits on the absolute mass scale

A bit of recent history

- Experiments have shown that neutrinos oscillate \rightarrow they have mass
- Few oscillation parameters are well measured
- Only upper limits on the absolute mass scale
- We do not know the their nature

absolute mass scale

- Supernovae produce neutrinos copiously
- Measuring time shifts makes it possible to measure masses down to 30 eV

absolute mass scale

- Supernovae produce neutrinos copiously
- Measuring time shifts makes it possible to measure masses down to 30 eV
- Even tiny masses can have cosmological implications and current bounds set $M_{\nu}<0.17-0.33 \mathrm{eV}$ (model dependent... Results from Planck should be available soon)

absolute mass scale

- Supernovae produce neutrinos copiously
- Measuring time shifts makes it possible to measure masses down to 30 eV
- Even tiny masses can have cosmological implications and current bounds set $M_{\nu}<0.17-0.33 \mathrm{eV}$ (model dependent... Results from Planck should be available soon)
- Cannot replace direct lab. experiments
- Recent new value for Hubble's constant from HST $H_{0}=$
$74.3 \pm 2.1 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
- Recent new value for Hubble's constant from HST $H_{0}=$
$74.3 \pm 2.1 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
- This then leads to
$\omega=-1.08 \pm 0.10$, $\Omega k=0.007 \pm 0.007$, matter makes up $27.8 \pm 1.8 \%$ of total,
- Recent new value for Hubble's constant from HST $H_{0}=$
$74.3 \pm 2.1 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
- This then leads to
$\omega=-1.08 \pm 0.10$, $\Omega k=0.007 \pm 0.007$, matter makes up $27.8 \pm 1.8 \%$ of total, and $N_{\text {eff }}=4.3 \pm 0.67$

L. Freedman et al., Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant, arXiv:1208.3281, Submitted. Aug 16, 2012.
- Recent new value for Hubble's constant from HST $H_{0}=$
$74.3 \pm 2.1 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
- This then leads to
$\omega=-1.08 \pm 0.10$,
$\Omega k=0.007 \pm 0.007$, matter makes up $27.8 \pm 1.8 \%$ of total, and $N_{\text {eff }}=4.3 \pm 0.67$

- Planck should confirm/refute these results in early 2013
L. Freedman et al., Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant, arXiv:1208.3281, Submitted. Aug 16, 2012.

absolute mass scale

- Doble beta decay experiments at the tail can measure

$$
m_{\nu_{e}}^{2}=\sum_{1=1}^{3}\left|U_{e i}\right|^{2} m_{i}^{2}
$$

- current upper limit: $m_{\nu_{e}}<2.3 \mathrm{eV}$ Krauss C et al. 2005 Eur. Phys. J. c40 447-468

absolute mass scale

v_{e} Mass Measurements (Tritium β-decay Searches)

- Search for a distortion in the shape of the β-decay spectrum in the end-point region.

$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+v_{\mathrm{e}}+\mathrm{e}^{-}
$$

Current limit: $\mathrm{m}_{\mathrm{v}}<2.2 \mathrm{eV} @ 95 \% \mathrm{CL}$ (Mainz group 2000)

Next Generation β-decay Experiment ($\delta \mathrm{m} \approx 0.35 \mathrm{eV}$)

Karlsruhe Tritium Neutrino Experiment (KATRIN)

next-generation experiment with sub-eV neutrino mass sensitivity FH Fulda - FZ \& U Karlsruhe - U Mainz - INP Prague - U Seattle - INR Troitsk

Neutrinoless double beta decay experiments

Neutrinoless double beta decay experiments

- Majorana vs Dirac

Neutrinoless double beta decay experiments

- Majorana vs Dirac
- can also probe the absolute mass scale

Neutrinoless double beta decay experiments

- Majorana vs Dirac
- can also probe the absolute mass scale
- in combination with oscillation experiments, can give hint of mass hierarchy

Oscillation parameters

Oscillation parameters

- Neutrinos oscillate (Super-K, SNO)

Oscillation parameters

- Neutrinos oscillate (Super-K, SNO)
- Oscillations are governed by a 3×3 unitary matrix and by mass differences

Oscillation parameters

- Neutrinos oscillate (Super-K, SNO)
- Oscillations are governed by a 3×3 unitary matrix and by mass differences
- The mixing angles have been measured
- mass differences have been measured (although not the hierarchy)

Oscillation parameters

- Neutrinos oscillate (Super-K, SNO)
- Oscillations are governed by a 3×3 unitary matrix and by mass differences
- The mixing angles have been measured
- mass differences have been measured (although not the hierarchy)
- CP violating phase is unknown.

Mixing parameters

- Conventional (PDG) parameterization for the mixing matrices $U_{\text {CKM }}$ and $\mathrm{U}_{\mathrm{PMNS}}$:

$$
\begin{aligned}
& \text { "Dirac" CP phase б } \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot \underset{\text { (eventually) }}{\mathrm{P}_{\text {Maj }}} \\
& \text { mixing angle } \theta_{23} \\
& \text { mixing angle } \theta_{13} \\
& \text { mixing angle } \theta_{12}
\end{aligned}
$$

Stolen from Stefan Antusch @ Neutrino 2012

θ_{13}

- Accelerator experiments:

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\mathcal{F}\left(\theta_{13}, \delta_{C P}\right)
$$

- A year ago T2K presented candidates for ν_{e} appearance - six events (on an expected background of 1.5 ± 0.3)

θ_{13}

- Accelerator experiments:

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\mathcal{F}\left(\theta_{13}, \delta_{C P}\right)
$$

- A year ago T2K presented candidates for ν_{e} appearance - six events (on an expected background of 1.5 ± 0.3)
- MINOS followed with 62 events (on a background of 49.6)

```
Abe K et al.. (T2K Collaboration) 2011 PRL 107 041801
Adamson P et al. (MINOS Collaboration) 2011 PRL 107 181802
```

- Reactor experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{13}^{2} L / E\right)
$$

θ_{13}

- Reactor experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{13}^{2} L / E\right)
$$

- in march 2012
- Daya Bay excludes $\theta_{13}=0$ at 5.2σ

θ_{13}

- Reactor experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{13}^{2} L / E\right)
$$

- in march 2012
- Daya Bay excludes $\theta_{13}=0$ at 5.2σ
- RENO at 4.9σ

θ_{13}

- Reactor experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{13}^{2} L / E\right)
$$

- in march 2012
- Daya Bay excludes $\theta_{13}=0$ at 5.2σ
- RENO at 4.9σ
- Daya Bay: $\sin ^{2} 2 \theta_{13}=0.089 \pm 0.010$ (stat.) ± 0.005 (syst.)

θ_{13}

- Reactor experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{13}^{2} L / E\right)
$$

- in march 2012
- Daya Bay excludes $\theta_{13}=0$ at 5.2σ
- RENO at 4.9σ
- Daya Bay: $\sin ^{2} 2 \theta_{13}=0.089 \pm 0.010$ (stat.) ± 0.005 (syst.)
- RENO: $\sin ^{2} 2 \theta_{13}=0.113 \pm 0.013$ (stat.) ± 0.019 (syst.)

θ_{13}

- Reactor experiments:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{13}^{2} L / E\right)
$$

- in march 2012
- Daya Bay excludes $\theta_{13}=0$ at 5.2σ
- RENO at 4.9σ
- Daya Bay: $\sin ^{2} 2 \theta_{13}=0.089 \pm 0.010$ (stat.) ± 0.005 (syst.)
- RENO: $\sin ^{2} 2 \theta_{13}=0.113 \pm 0.013$ (stat.) ± 0.019 (syst.)
$\longrightarrow \theta_{13} \neq 0!$
An F et al.. (DAYA-BAY Collaboration) 2012 PRL 108171803
Ahn J et al. (RENO Collaboration) 2012 PRL 108191802

Daya Bay (left): Best-fit solution with $\sin ^{2} 2 \theta_{13}=0.089$

Daya Bay (left): Best-fit solution with $\sin ^{2} 2 \theta_{13}=0.089$ RENO (right): Best-fit solution with $\sin ^{2} 2 \theta_{13}=0.113$
Δm_{21}^{2} and θ_{12}

Δm_{21}^{2} and θ_{12}

- Current values

$$
\begin{gathered}
\Delta m_{21}^{2}=7.59_{-0.18}^{+0.20} \times 10^{-5} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{12}=0.312_{-0.015}^{+0.017}
\end{gathered}
$$

$$
\left|\Delta m_{31}^{2}\right|=\left\{\begin{array}{ll}
2.45 \pm 0.09 & \times 10^{-3} \mathrm{eV}^{2}(\mathrm{NH}) \\
2.34_{-0.09}^{+0.10} & \times 10^{-3} \mathrm{eV}^{2}(\mathrm{IH})
\end{array} \quad \text { and } \sin ^{2} \theta_{23}=0.51 \pm 0.06\right.
$$

Schwetz T, Tortola M and Valle J 2011 New J. Phys 13063004

Present status: Mixing parameters

Neutrino mass?

Neutrino mass?

There are no right-handed neutrinos in the SM

Neutrino mass?

There are no right-handed neutrinos in the SM
If there are no right-handed neutrinos in nature \rightarrow Lepton number violation and neutrinos are Majorana

Neutrino mass?

There are no right-handed neutrinos in the SM
If there are no right-handed neutrinos in nature \rightarrow Lepton number violation and neutrinos are Majorana
Mass: the simplest way (same particle content of the SM) is through the Weinberg term

$$
M_{\nu} \sim \frac{L L H H}{\Lambda}
$$

Neutrino mass?

There are no right-handed neutrinos in the SM
If there are no right-handed neutrinos in nature \rightarrow Lepton number violation and neutrinos are Majorana
Mass: the simplest way (same particle content of the SM) is through the Weinberg term

$$
M_{\nu} \sim \frac{L L H H}{\Lambda}
$$

$\Lambda \rightarrow$ LARGE mass scale.

Neutrino mass?

Next minimal setup: Radiative masses

Neutrino mass?

Next minimal setup: Radiative masses
Requires introduction of new fields

$$
m_{a b}=\kappa^{a b}\left(m_{b}^{2}-m_{a}^{2}\right) \frac{\lambda_{12} v_{2}}{v_{1}} F\left(m_{H}^{2}, m_{h}^{2}\right)
$$

Neutrino mass?

Next minimal setup: Radiative masses
Requires introduction of new fields

$$
m_{a b}=\kappa^{a b}\left(m_{b}^{2}-m_{a}^{2}\right) \frac{\lambda_{12} v_{2}}{v_{1}} F\left(m_{H}^{2}, m_{h}^{2}\right)
$$

$m_{h} \rightarrow$ LARGE

Neutrino mass?

Next possible setup: Right-handed neutrinos

Neutrino mass?

Next possible setup: Right-handed neutrinos
Dirac and Majorana mass terms are now possible

$$
M_{\nu}=\left(\begin{array}{ll}
m_{L} & m_{D} \\
m_{D} & m_{R}
\end{array}\right)
$$

$M R$ must be large

Neutrino mass?

Next possible setup: Right-handed neutrinos
Dirac and Majorana mass terms are now possible

$$
M_{\nu}=\left(\begin{array}{cc}
m_{L} & m_{D} \\
m_{D} & m_{R}
\end{array}\right)
$$

$M R$ must be large

$$
m_{\nu} \sim m_{D}^{2} / M R
$$

P. Minkowsli, Mohapatra, Senjanovic, Yanagida,

Gell-Mann, Ramond, Slansky, Schechter, Valle,

Neutrino mass?

... and implementation of these ideas into scenarios involving

Neutrino mass?

... and implementation of these ideas into scenarios involving SUSY, extra dimensions, GUT's,

Standard Model and beyond

Neutrino mass?

... and implementation of these ideas into scenarios involving SUSY, extra dimensions, GUT's,

Standard Model and beyond

- Of course, masses of all fermions must be explained!

Mixing angles?

Mixing angles?

Tri-bimaximal mixing

Harrison, Perkins, Scott ('02)

$$
\begin{aligned}
& \theta_{13}
\end{aligned}=0^{\circ}
$$

Mixing angles?

The TBM structure suggests an underlying symmetry (?)

Mixing angles?

The TBM structure suggests an underlying symmetry (?) Abelian, non Abelian, continuous, Discrete, Global, Local

Mixing angles?

The TBM structure suggests an underlying symmetry (?) Abelian, non Abelian, continuous, Discrete, Global, Local

Recall that the mixing matrix is given by

$$
U_{P M N S}=U_{j}^{\dagger} U_{\nu} \approx U_{T B}
$$

Mixing angles?

The TBM structure suggests an underlying symmetry (?) Abelian, non Abelian, continuous, Discrete, Global, Local

Recall that the mixing matrix is given by

$$
U_{P M N S}=U_{j}^{\dagger} U_{\nu} \approx U_{T B}
$$

If charged leptons are diagonal

$$
U_{P M N S}=U_{\nu} \approx U_{T B}
$$

Mixing angles?

The TBM structure suggests an underlying symmetry (?) Abelian, non Abelian, continuous, Discrete, Global, Local

Recall that the mixing matrix is given by

$$
U_{P M N S}=U_{1}^{\dagger} U_{\nu} \approx U_{T B}
$$

If charged leptons are diagonal

$$
U_{P M N S}=U_{\nu} \approx U_{T B}
$$

$\rightarrow M_{\nu}$ is magical and $2-3$ symmetric

Mixing angles?

$$
Z_{2}, Z_{4}, S_{3}, Q_{4}
$$

Mixing angles?

$$
Z_{2}, Z_{4}, S_{3}, Q_{4}, S_{4}
$$

Mixing angles?

$$
Z_{2}, Z_{4}, S_{3}, Q_{4}, S_{4}, A_{4}
$$

Mixing angles?

$$
Z_{2}, Z_{4}, S_{3}, Q_{4}, S_{4}, A_{4}, T^{\prime}, \ldots
$$

Mixing angles?

$Z_{2}, Z_{4}, S_{3}, Q_{4}, S_{4}, A_{4}, T^{\prime}, \ldots$
Altarelli, Araaki, Antusch, Bazzocchi, Bonilla, Branco, Chen, Datta, Frampton, Fukugita,
Feruglio, Gupta, Gross, Hagedorn, Kim, King, Kobayashi, Kumar, Lavoura, Lam, Ma,
Mohapatra, Mondragon, Morisi, Okada, Peinado, Petcov, Ramos, Romanino, Rojas, Ross, Seo,
Shimizo, Takahashi, Tanimoto, Valle, Wang, Watanabe, Yanagida, Yang, Zee,

Mixing angles?

$Z_{2}, Z_{4}, S_{3}, Q_{4}, S_{4}, A_{4}, T^{\prime}, \ldots$
Altarelli, Araaki, Antusch, Bazzocchi, Bonilla, Branco, Chen, Datta, Frampton, Fukugita,
Feruglio, Gupta, Gross, Hagedorn, Kim, King, Kobayashi, Kumar, Lavoura, Lam, Ma,
Mohapatra, Mondragon, Morisi, Okada, Peinado, Petcov, Ramos, Romanino, Rojas, Ross, Seo,
Shimizo, Takahashi, Tanimoto, Valle, Wang, Watanabe, Yanagida, Yang, Zee,
But $\theta_{13} \neq 0$

Mixing angles?

$$
U_{P M N S}=U_{I}^{\dagger} U_{\nu} \sim U_{T B}
$$

Mixing angles?

$$
U_{P M N S}=U_{I}^{\dagger} U_{\nu} \sim U_{T B}
$$

Could it come from modifications to U_{ν} ?

Mixing angles?

$$
U_{P M N S}=U_{I}^{\dagger} U_{\nu} \sim U_{T B}
$$

Could it come from modifications to U_{ν} ?
Could it come from modifications to U_{l} ?

Mixing angles?

$$
U_{P M N S}=U_{I}^{\dagger} U_{\nu} \sim U_{T B}
$$

Could it come from modifications to U_{ν} ?
Could it come from modifications to U_{l} ?
... from both?

Mixing angles?

$$
U_{P M N S}=U_{I}^{\dagger} U_{\nu} \sim U_{T B}
$$

Could it come from modifications to U_{ν} ?
Could it come from modifications to U_{l} ?
... from both?
Yes ...

a small step for M_{ν}, a giant leap for ?

Consider the following series of simple questions:

a small step for M_{ν}, a giant leap for ?

Consider the following series of simple questions: Minimally extending the SM particle content, is it possible to describe the mass patterns and mixings in both the quark and lepton sector? What is the minimum price?

a small step for M_{ν}, a giant leap for ?

Consider the following series of simple questions:
Minimally extending the SM particle content, is it possible to describe the mass patterns and mixings in both the quark and lepton sector? What is the minimum price?
Imposing renormalizability and a non-abelian family group:

a small step for M_{ν}, a giant leap for ?

Consider the following series of simple questions:
Minimally extending the SM particle content, is it possible to describe the mass patterns and mixings in both the quark and lepton sector? What is the minimum price?
Imposing renormalizability and a non-abelian family group:
If ν_{R} are introduced, it usually requires the additional introduction of SEVERAL scalar fields (doublets and singlets)

a small step for M_{ν}, a giant leap for ?

Consider the following series of simple questions:
Minimally extending the SM particle content, is it possible to describe the mass patterns and mixings in both the quark and lepton sector? What is the minimum price?

Imposing renormalizability and a non-abelian family group:
If ν_{R} are introduced, it usually requires the additional introduction of SEVERAL scalar fields (doublets and singlets)
minimizing the number of scalar fields leads to the possibility of using the group Q_{4} with $4 \mathrm{SU}(2)$ doublets and radiative masses for the neutrinos (which costs an additional singlet charged scalar).

AA, Bonilla, Ramos, Rojas

a small step for M_{ν}, a giant leap for ?

- Even cheaper: It has been known that quark mixing angles and masses can be obtained in a flavor scenario with 2 flavored Higgses and a Z_{4} flavor symmetry. Branco, Grimus, et al.

a small step for M_{ν}, a giant leap for ?

- Even cheaper: It has been known that quark mixing angles and masses can be obtained in a flavor scenario with 2 flavored Higgses and a Z_{4} flavor symmetry. Branco, Grimus, et al.
- Introducing a charged singlet, it is possible to extend this to the lepton sector (again with no ν_{R}).AA, Bonilla, Rojas

a small step for M_{ν}, a giant leap for ?

- Even cheaper: It has been known that quark mixing angles and masses can be obtained in a flavor scenario with 2 flavored Higgses and a Z_{4} flavor symmetry. Branco, Grimus, et al.
- Introducing a charged singlet, it is possible to extend this to the lepton sector (again with no ν_{R}).AA, Bonilla, Rojas
- A bit more expensive, but still interesting: What is the smallest Abelian group that can be used such that it reproduces both sectors using 3 flavored Higgses?

a small step for M_{ν}, a giant leap for ?

- Even cheaper: It has been known that quark mixing angles and masses can be obtained in a flavor scenario with 2 flavored Higgses and a Z_{4} flavor symmetry. Branco, Grimus, et al.
- Introducing a charged singlet, it is possible to extend this to the lepton sector (again with no ν_{R}).AA, Bonilla, Rojas
- A bit more expensive, but still interesting: What is the smallest Abelian group that can be used such that it reproduces both sectors using 3 flavored Higgses?
- $Z_{5 \text { aA, Bonilla, Diaz-Cruz }}$

a small step for M_{ν}, a giant leap for ?

- Even cheaper: It has been known that quark mixing angles and masses can be obtained in a flavor scenario with 2 flavored Higgses and a Z_{4} flavor symmetry. Branco, Grimus, et al.
- Introducing a charged singlet, it is possible to extend this to the lepton sector (again with no ν_{R}).AA, Bonilla, Rojas
- A bit more expensive, but still interesting: What is the smallest Abelian group that can be used such that it reproduces both sectors using 3 flavored Higgses?
- $Z_{5 \text { aA, Bonilla, Diaz-Cruz }}$
- Forgetting economy and consciously contributing to the evidently catastrophic global warming, it is possible to embed some of these economical models in more ambitious settings,

a small step for M_{ν}, a giant leap for ?

- Even cheaper: It has been known that quark mixing angles and masses can be obtained in a flavor scenario with 2 flavored Higgses and a Z_{4} flavor symmetry. Branco, Grimus, et al.
- Introducing a charged singlet, it is possible to extend this to the lepton sector (again with no ν_{R}).AA, Bonilla, Rojas
- A bit more expensive, but still interesting: What is the smallest Abelian group that can be used such that it reproduces both sectors using 3 flavored Higgses?
- $Z_{5 \text { aA, Bonilla, Diaz-Cruz }}$
- Forgetting economy and consciously contributing to the evidently catastrophic global warming, it is possible to embed some of these economical models in more ambitious settings, for example in a Randall-Sundrum scenario Alvarado, AA, Corradini,

Rojas, Santos

... almost there!

- Neutrino physics has always played a decisive role in the developments of particle physics.

... almost there!

- Neutrino physics has always played a decisive role in the developments of particle physics.
- Most of the time they confuse us and lead to interesting and unexpected results.

... almost there!

- Neutrino physics has always played a decisive role in the developments of particle physics.
- Most of the time they confuse us and lead to interesting and unexpected results.
- It is currently a very active and promising area of investigation

... almost there!

- Neutrino physics has always played a decisive role in the developments of particle physics.
- Most of the time they confuse us and lead to interesting and unexpected results.
- It is currently a very active and promising area of investigation
- Finaly, they are my favorite particles!

addvertisement 1

2012
 2013 DCPIHEP workshop

Category: Uncategorized / Tags: no tag / Add Comment

Neutrino Physics

January 7-18 @ Colima

Invited Lectures

André de Gouvêa (Northwestern U.): Neutrino Physics (theory)
Stefano Morisi (IFIC - Valencia) Neutrino mass models
TBC: Jonathan Paley (Argonne Natl. Lab.): Neutrino Physics (experiment)

Preliminary Program

The purpose of the workshop is to bring together people interested in BSM physics. There will be a series of lectures and abundant time for discussion and actual work. Organization of informal seminars and talks are encouraged. If you are interested in leading a specific discussion session please send us the topic and hourly sessions needed. The time table for the lectures is shown below. Information regarding other activities will be posted as it becomes available. Please note that some of the informal talks and discussion sessions will be organized while at the workshop.

addvertisement 2

Postdoctoral position

The High Energy group at the University of Colima has an opening for a postdoctoral position. There is no fixed starting date (except that it is expected to be available not before October 2012) and it is for one year with the possibility of extension for an additional year.

We are looking for candidates interested in any aspect of theoretical and/or phenomenological high energy physics, specially those associated with physics beyond the Standard Model. Candidates must posses a Ph. D. in physics.

Interested candidates should prepare an application consisting of

- A brief research statement specifying previous research experience as well as future research interests.
- An updated Curriculum Vitae.
- Two (at least) letters of recommendation. Letters should be sent electronically and directly by the reference person.

Please send all material (and ask for the letters of recommendation to be sent) electronically to the attention of Alfredo Aranda to the following email address: fefo.aranda at gmail.com

Applications will be accepted and reviewed until the position is filled. First offers are expected to be made in late September.

