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Figure 2: The continuous electron spectrum observed by Chadwick.




A bit of History

A bit of history... 1930 - Wolfgang Pauli
Dear Radioactive Ladies and Gentlemen.. ..

he bearer of these lines, to whom I graciously

listen. will explain to you in more detail, how because of the

statistics of the N and Li6 nuclei and the cantinuous
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The continuous beta spectrum would then become
understandable by the assumption that in beta decay a neutron
i emitted in addition to the electron such that the sum
energies of the neutron and the electron is constant...
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on the night
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r humble servant,

W. Pauli
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Observed (like a-decay) ed energy not ¢ d in f3 decay
Spectra roposed [~ loses energy through secondar
interactions in nulceus yielding gamma rays

Energy of Beta Particle




A bit of History

First Calculation of Neutrino Cross Sections

Bethe-Peierls (1934): calculation of first cross-section for inverse
beta reaction using Fermi’s theory for:

. v+ nte" or v +n t+e
yields: L o R

[o~10" cem’ for E(v)=2MeV |

This means that the mean free path of a neutrino in water is:

[
A=—=15x10" cm=1600 light — vears
no y

Experimentalists groaned - need a very intense
source of v‘s to detect inverse Beta decay
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A bit of recent history

e Experiments have shown that neutrinos oscillate — they have
ERS

e Few oscillation parameters are well measured
e Only upper limits on the absolute mass scale

e We do not know the their nature
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absolute mass scale

e Supernovae produce neutrinos copiously

e Measuring time shifts makes it possible to measure masses

down to 30 eV

Even tiny masses can have cosmological implications and
current bounds set M, < 0.17 — 0.33 €V (model dependent...
Results from Planck should be available soon)

Cannot replace direct lab. experiments
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L. Freedman et al., Carnegie Hubble
Program: A Mid-Infrared Calibration of
the Hubble Constant, arXiv:1208.3281,
Submitted. Aug 16, 2012.



e Recent new value for
Hubble's constant from
HST Hy =
743£2.1 km/s/Mpc

e [his then leads to
w = —1.08 £+ 0.10,
Qk = 0.007 £ 0.007,
matter makes up
27.8 +1.8% of total, and

N.g = 4.3 + 0.67

e Planck should
confirm/refute these L. Freedman et al., Carnegie Hubble
results in early 2013 Program: A Mid-Infrared Calibration of
the Hubble Constant, arXiv:1208.3281,
Submitted. Aug 16, 2012.
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absolute mass scale

e Doble beta decay experiments at the tail can measure

3
my, =D | Veilm?
1=1

o current upper ||m|t myE < 23 eV Krauss C et al. 2005 Eur. Phys. J. C40




absolute mass scale

v, Mass Measurements
(Tritium pB-decay Searches)

« Search for a distortion in the shape of the p-decay spectrum in
the end-point region.
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only 2 x 1073 of all
decays in last 1 8V
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electron energy E [keV/] E-EqleV]

Current limit: m, < 2.2 eV @ 95% CL (Mainz group 2000)




Next Generation B-decay Experiment (6m=0.35 eV)

.?Y’T '_,Ré Karisruhe Tritium Neutrino Experiment
8

(KATRIN)

& next-generation expenment with sub-eV neutrino mass sensitivity
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e UKRAINE

discovery potential:
0.35¢V (50)
= 0.3eV (30)

sensitivity:
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Neutrinoless double beta decay experiments

e Majorana vs Dirac
e can also probe the absolute mass scale

e in combination with oscillation experiments, can give hint of
mass hierarchy




Im,, [ ineV

KKDC Claim
Lbest fit 0.32 eV)

Final Cucricino limit
arXiv:1012.3266v1 [nucl-ex]
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Oscillation parameters

e Neutrinos oscillate (Super-K, SNO)

e Oscillations are governed by a 3 x 3 unitary matrix and by

mass differences

e [he mixing angles have been measured

e mass differences have been measured (although not the

hierarchy)

CP violating phase is unknown.



Mixing parameters

~ Conventional (PDG) parameterization for the mixing matrices Uy,

and Upyns:
“Dirac* CP phase 6
1 C19 S19 0]
U=10 =i @y 0 5 P )
0 . T kot
(eventually)

mixing angle 8,3 mixing angle 6,, mixing angle 6,,
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e Accelerator experiments:
P(l/‘u — Ve) = .7'—(913,(50:)

e A year ago T2K presented candidates for v, appearance - six
events (on an expected background of 1.5 4 0.3)

o MINOS followed with 62 events (on a background of 49.6)

Abe K et al.. (T2K Collaboration) 2011 PRL 107 041801

Adamson P et al. (MINOS Collaboration) 2011 PRL 107 181802
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e Reactor experiments:

P(e — ) = 1 — sin® 2013 sin*(1.267Am?;L/E)

in march 2012

Daya Bay excludes 613 = 0 at 5.20

RENO at 4.90

Daya Bay: sin?26;3 = 0.089 4 0.010(stat.) 4 0.005(syst.)
RENO: sin?26;3 = 0.113 4 0.013(stat.) #+ 0.019(syst.)

—)91:;#0'

An F et al.. (DAYA-BAY Collaboration) 2012 PRL 108 171803

Ahn J et al. (RENO Collaboration) 2012 PRL 108 191802
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E= Fast neutron
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Daya Bay (left): Best-fit solution with sin? 2613 = 0.089
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E= Fast neutron
7] 5‘\:c idental
E9°Li/ ' He
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Daya Bay (left): Best-fit solution with sin? 2613 = 0.089
RENO (right): Best-fit solution with sin®26;3 = 0.113
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Am3; and 61,

o Current values

Amsy; = 7.597020 x 107%eV?

sin® 01, = 0.3121291f




’Am%l‘ and @23

2.45 + 0.09 (NH) .9 . )
2-34t3:(l)8 V2 (TH) and sin® fa3 = 0.51 £ 0.06

elobal

Schwetz T, Tortola M and Valle J 2011 New J. Phys 13 063004



Present status: Mixing parameters

Up-type quarks Down-type quarks

. Uckm:
Upmns:

MU <) Md
0,5°VNS = 45° & 3°

8,,CKM = 2.4°
= Jut yd
GWSPMNS =9°+1° UCKM uvty

8,,CKM = 0.2°

Neutrinos Charged leptons
(¢4, = unknown) — very small 2-3 and
1-3 mixings
— two large mixings mV “ Me — only not-so-small mixing
— 815"MNS = O(B.) is the Cabibbo angle 8¢
— unknown phases

Uppne = UstUY — “large” CP phase 5CKM

Stolen from Stefan Antusch @ Neutrino 2012
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Neutrino mass?

There are no right-handed neutrinos in the SM

If there are no right-handed neutrinos in nature — Lepton
number violation and neutrinos are Majorana

Mass: the simplest way (same particle content of the SM) is
through the Weinberg term

LLHH

M,
A

A — LARGE mass scale.
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Neutrino mass?

Next minimal setup: Radiative masses

Requires introduction of new fields

my; — LARGE

A. Zee, Phys. Lett 93B, 389 (1980)
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Neutrino mass?

Next possible setup: Right-handed neutrinos
Dirac and Majorana mass terms are now possible

mg m
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mp MR

mR must be large
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Neutrino mass?

Next possible setup: Right-handed neutrinos
Dirac and Majorana mass terms are now possible

mg m
M,=< L D>
mp MR

mR must be large

muwm%/mR

P. Minkowsli, Mohapatra, Senjanovic, Yanagida,

Gell-Mann, Ramond, Slansky, Schechter, Valle,
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Neutrino mass?

. and implementation of these ideas into scenarios involving
SUSY, extra dimensions, GUT's,

Standard Model and beyond

4% generation  extended Higgs left-right leptoquarks
sectors technicolor

symmetry

universal extra  large extra

warped extra
dimensions dimensions

dimensions umflcanon

¥ .

VMSSM SUSY GUTs

<
hidden valleys

unparticles Little Higgs not yet thought of ...

e Of course, masses of all fermions must be explained!



Mixing angles?

@ O oq  w Vi dy

Z, v g W

8: unit matrix V- CKM matrix

h=0.22: Cabibbo angle




Mixing angles?

Tri-bimaximal mixing

Harrison, Perkins, Scott ('02)

0,3=0°
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Mixing angles?

The TBM structure suggests an underlying symmetry (7)

Abelian, non Abelian, continuous, Discrete, Global, Local

Recall that the mixing matrix is given by

Upmns = U,TUV ~ Urg

If charged leptons are diagonal

Upuns = U, = Ut

— M, is magical and 2 — 3 symmetric
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Mixing angles?

Zs, Za, S3, Qu, Su, Ag, T, ..

Altarelli, Araaki, Antusch, Bazzocchi, Bonilla, Branco, Chen, Datta, Frampton, Fukugita,
Feruglio, Gupta, Gross, Hagedorn, Kim, King, Kobayashi, Kumar, Lavoura, Lam, Ma,

Mohapatra, Mondragon, Morisi, Okada, Peinado, Petcov, Ramos, Romanino, Rojas, Ross, Seo,

Shimizo, Takahashi, Tanimoto, Valle, Wang, Watanabe, Yanagida, Yang, Zee, ..........

But 613 75 0
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Upmns = U,Jr U, ~ Urs

Could it come from modifications to U,?

Could it come from modifications to U,;?
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a small step for M,,, a giant leap for 7

Consider the following series of simple questions:

Minimally extending the SM particle content, is it possible to
describe the mass patterns and mixings in both the quark and
lepton sector? What is the minimum price?

Imposing renormalizability and a non-abelian family group:

If vg are introduced, it usually requires the additional
introduction of SEV ERAL scalar fields (doublets and
singlets)

minimizing the number of scalar fields leads to the possibility
of using the group Q4 with 4 SU(2) doublets and radiative
masses for the neutrinos (which costs an additional singlet charged scalar).

AA, Bonilla, Ramos, Rojas
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a small step for M,,, a giant leap for 7

e Even cheaper: It has been known that quark mixing angles and
masses can be obtained in a flavor scenario with 2 flavored
nggses and a Z4 ﬂavor Symmetry Branco, Grimus, et al.

e Introducing a charged singlet, it is possible to extend this to
the lepton sector (again with no vg).aa, Bonilla, Rojas

e A bit more expensive, but still interesting: What is the
smallest Abelian group that can be used such that it
reproduces both sectors using 3 flavored Higgses”

() ZS AA, Bonilla, Diaz-Cruz

e Forgetting economy and consciously contributing to the
evidently catastrophic global warming, it is possible to embed
some of these economical models in more ambitious settings,
for example in a Randall-Sundrum scenario Aivarado, AA, Corradini,

Rojas, Santos
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almost therel

Neutrino physics has always played a decisive role in the
developments of particle physics.

Most of the time they confuse us and lead to interesting and
unexpected results.

e It is currently a very active and promising area of investigation

e Finaly, they are my favorite particles!
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2013 DCPIHEP workshop

Category: Uncategorized / Tags: no tag / Add Comment

Neutrino Physics
January 7 — 18 @ Colima

Invited Lectures

André de Gouvéa (Northwestern U.): Neutrino Physics (theory)
Stefano Morisi (IFIC — Valencia) Neutrino mass models
TBC: Jonathan Paley (Argonne Natl. Lab.): Neutrino Physics (experiment)

Preliminary Program

The purpose of the workshop is to bring together people interested in BSM physics. There will be a series
of lectures and abundant time for discussion and actual work. Organization of informal seminars and talks
are encouraged. If you are interested in leading a specific discussion session please send us the topic and
hourly sessions needed. The time table for the lectures is shown below. Information regarding other
activities will be posted as it becomes available. Please note that some of the informal talks and

will be while at the workshop.
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Postdoctoral position

The High Energy group at the Uni » of Colima has an opening for a postdoctoral position. There is no
fixed starting date (except that it is expected to be available not before October 2012) and it is for one year
with the possibility of extension for an additional year.

We are looking for candidates interested in any aspect of theoretical and/or phenomenological high energy
physics, specially those associated with physics beyond the Standard Model. Candidates must posses a Ph. D.
in physics.

Interested candidates should prepare an application consisting of

- A brief research statement specifying previous research experience as well as future research interests.

- An updated Curriculum Vitae.

- Two (at least) lemers of recommendation. Letters should be sent elecronically and direcdy by the
reference person.

Please send all material (and ask for the lerers of recommendation t be sent) electronically to the
attention of Alfredo Aranda to the following email address: fefo.aranda at gmail.com

Applications will be accepted and reviewed until the positon is filled. First offers are expected to be made
in late September.
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