Collider physics II: Jets

I

Two aspects of new developments

- Better QCD jet.
 - **–** Smarter jet algorithm.
 - Noise suppression with jet grooming.
- Jet substructure.
 - Boosted top.
 - Higgs.

Boston Jet Workshop:

http://jets.physics.harvard.edu/workshop/Main.html Northwest Terascale workshop http://www.physics.uoregon.edu/~soper/Jets2011/talks.html Boost 2011, May, 23-27, Princeton. http://boost2011.org Boost 2012, July, 23-27, Valencia, Spain. http://ific.uv.es/boost2012/

Want to play with it?

- Parton level Signal and background:
 - Madgraph, Alpgen, ...
- ME+PS matching, UE, Pileup:
 - Pythia, Herwig, Sherpa, ...
- Some detector effect, in particular, granularity
 0.1x0.1
 - ▶ PGS, Delphes, "by hand".
- Jet tools.
 - Fastjet. <u>http://www.lpthe.jussieu.fr/~salam/fastjet/</u>
 - SpartyJet <u>http://projects.hepforge.org/spartyjet/</u>

The importance of jets:

- "Everywhere" at hadron colliders. p p, or, $p\bar{p}$ initial state.
- Present in (almost) all new physics signals.
 - ▶ Many of them only have hadronic channels.

Jet look likes

- When produced at TeV-scale energies, they have a large boost.

Jets with substructure.

Challenge: distinguishing them from QCD jets (q and g).

Need new jet tools for the LHC.

- More energetic, bigger, jet at the LHC.
 - LHC jet: 50 GeV several TeV
 - ▶ Tevatron jet: 50 100s GeV
- Much higher "noise" level at the LHC.
 - LHC: I0-100 GeV / rapidity
 - **–** Tevatron: 2-10 GeV / rapidity

adron collision

Why can we calculate at all?

- Perturbatively, we can only calculate with quark and gluon in hard collisions.
- Factorization.
- IRC safety, need proper choice of observable.
 - Soft or collinear radiation should not be able to induce "large" changes in the observable.
 - Otherwise, we cannot compare calculation with observables.

time(distance) scale m_{proton}-1

"talking" to the rest of the proton time(distance) scale m_{proton}-1

Factorization

- Schematics of production at hadron colliders.

Hadron collision.

Hard interaction, $gg \Rightarrow g h t tbar$ $\Rightarrow h t tbar decay$

Hadron collision

Clusters of hadronic energy final state object: jet $p_{jet} = \sum p$ of constituents

Inclusive: independent of final states, just energy

Hadron collision

Clusters of hadronic energy final state object: jet $p_{jet} = \sum p$ of constituents

Inclusive: independent of final states, just energy

Very important: need $p_{jet} \approx p_{parton}$ Can use parton level calculation to predict jet properties

Hadron collision

Factorization

$\sigma = B_1 \otimes B_2 \otimes H \otimes J_1 \otimes J_2 \otimes S$

 $B_{1} = dx_{1} f(x_{1}), B_{2} = dx_{2} f(x_{2}).$ $\hat{\sigma} = H \otimes J_{1} \otimes J_{2} \otimes S$

Well tested.

ATLAS-CONF-2011-043, 7 TeV, 2.43 pb⁻¹

 p_i

Tuesday, September 11, 12

 p_i

- To best preserve $p_{jet} \simeq p_{[initial parton]}$ we would like to:
 - Use "smart" jet shapes.
 - Reduce "noise".

What do jets look like?

Parton splitting, collinear limit

Relevant kinematical variables

The main feature of radiation can be seen by considering the Collinear limit: $\theta \Rightarrow 0$, t $\ll E_M^2$

Collinear factorization

 $|\mathcal{M}_{n+1}|^2 = |\mathcal{M}(p_1, \dots p_A, p_B)|^2$

$$\mathcal{M}_{n+1}|^2 d\Pi_{n+1} \simeq |\mathcal{M}_n|^2 d\Pi_n \frac{dt}{t} \frac{\alpha_{\rm S}}{2\pi} P(z) dz d\phi$$

Collinear factorization

 $|\mathcal{M}_{n+1}|^2 = |\mathcal{M}(p_1, \dots p_A, p_B)|^2$

$$\mathcal{M}_{n+1}|^2 d\Pi_{n+1} \simeq |\mathcal{M}_n|^2 d\Pi_n \frac{dt}{t} \frac{\alpha_{\rm S}}{2\pi} P(z) dz d\phi$$

collinear singularity: t=0

Collinear factorization

 $|\mathcal{M}_{n+1}|^2 = |\mathcal{M}(p_1, \dots p_A, p_B)|^2$

Splitting function, IR singular as $z \Rightarrow 0, 1$

Combining with

$$|\mathcal{M}_{n+1}|^2 d\Pi_{n+1} \simeq |\mathcal{M}_n|^2 d\Pi_n \frac{dt}{t} \frac{\alpha_{\rm S}}{2\pi} P(z) dz d\phi$$

Radiation wants to be collinear and soft
Shape of a jet: parton shower

• From the initial parton, a jet is built up by many radiations (splittings).

QCD jet: a cluster of radiation a) relatively soft b) close to the direction of P_M

c) approximately symmetrical around P_M

0

-6

- Two type of decisions, based on two types criteria:
 - What to cluster.
 - When to stop cluster.
- Choice of the criteria determines the properties of the jets.

First consideration: IRC safety

collinear splitting

soft radiation

First consideration: IRC safety

- Soft or collinear radiation should not be able to induce "large" changes in the observable.
- Otherwise we cannot compute and compare with experiments.

First consideration: IRC safety

soft radiation

collinear splitting

All of these should be 2 jet events!

- Soft or collinear radiation should not be able to induce "large" changes in the observable.
- Otherwise we cannot compute and compare with experiments.

Seeded cone

- Starting with a set of seeds (momenta which are "more likely" to be the centers of the jets).
- Draw a cone of certain size around each seed.
- Within each cone, add up all momenta. Use the new direct as the new seed.
- Iterate this process until we end up with stable cones.

Seeded Cone, IR unsafe

an event with 2 jets becomes an event with one jet because of a soft radiation

Sequential recombination jet algorithm

- Basic ingredients of a "sequential" jet algorithm.
- Two types of "distances"
 - Jet-jet distance: d_{ij} "when to cluster"
 - Jet-beam distance: d_{iB} "when to stop clustering"
- Pair wise comparison of all distances
 - If smallest distance at any stage in clustering is jet-jet, add together corresponding four-momenta, else take jet with smallest jet-beam distance and set it aside.
 - Repeat till all jets are set aside.

Coordinate System

Distance measure: $(\Delta R)^2 \equiv (\Delta \eta)^2 + (\Delta \phi)^2$

Recombination Algorithms p_{TB}

- **k**_T algorithm $d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^2$ A
 B
- C/A algorithm

$$d_{ij} = \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = 1$$

• anti-k_T algorithm

$$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2}) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^{-2}$$
$$(\Delta R)^2 \equiv (\Delta \eta)^2 + (\Delta \phi)^2$$

C/A

Messy environment

* Example: here's an event with 500 GeV dijets (left), and the same event with fifty pileup events (right).

- * We'll encounter this level of pileup next year,
 - * Somehow we're going to have to find new physics in this mess!

Some "clean up" procedure, filtering, pruning, trimming.

Shape of jets.

G. Salam, 0906.1833

"best" R

Shape of jets.

G. Salam, 0906.1833

radiation out of the cone

"best" R

Shape of jets.

G. Salam, 0906.1833

Going beyond anti-KT: "noise" control

 Noise: Initial state radiation (ISR), multiple interaction (MI), underlying events (UE), pile-up (PU).

Including ISR, MI, UE, pile-up

Room for improvement!

Jet trimming.

- Introducing a "cut" on soft radiation.
 - Discard "stuff" below the cut after jet clustering.
- Our implementation.
 - Cluster all calorimeter data using any algorithm
 - Take the constituents of each jet and recluster with smaller radius Rsub (Rsub = 0.2 seems to work well).
 - Discard the subjet i if $p_{Ti} < f_{cut} \cdot \Lambda_{hard}$ \leftarrow ISR argument.
- Best choice of the hard scattering scale and fcut.
 - Process dependent.
 - Can be optimized experimentally.

Why is it possible to gain?

- MI, UE, and pile-up are incoherent soft background. They can be effectively removed with a cut on soft radiation.
- Both FSR (want to keep) and ISR (want to discard) have soft radiation, but

• **ISR:**
$$d\sigma \propto \frac{dp_{\rm T}^{\rm ISR}}{p_{\rm T}^{\rm ISR}}$$

• FSR is controlled by both collinear and soft singularities:

$$d\sigma \propto \frac{d(\Delta R)}{\Delta R} \times \frac{dp_{\rm T}^{\rm FSR}}{p_{\rm T}^{\rm FSR}}$$

- Tends to be clustered into subjet, and kept.
- Therefore, a soft cut relative to the jet energy flow could enhance FSR relative to ISR.

₹^{1.5}

0.5

-0.5

-1.5⊑ -1.5

-0.5

-1

2

1.5 Δη

0.5

0

Tuesday, September 11, 12

Reassemble

Simple test case: di-jet resonance

• We provide plugins fully compatible with Fastjet.

http://jthaler.net/jets/VR_Jets.html http://jthaler.net/jets/Jet_Trimming.html

Jet mass: help from new jet algorithm

More faithful (smaller) jet mass for the background.

• Effect of radiation contamination on the jet mass

$$\langle \delta M^2 \rangle \simeq (\Lambda_{\text{soft}} + p_{\text{T}}^{\text{ISR}}) p_{\text{T}}^j \left(\frac{(\Delta R)^4}{4} + \dots \right)$$

• Trimming gives large improvement by reducing effective jet size significantly.

Jet substructure

When to consider substructure

• Have to consider the boosted objects.

For example, boost tops Brooijmans; Lillie, Randall, LTW; Thaler, LTW; D. Kaplan, K. Reherman, M. Schwartz, B. Tweedie; L. Almeida, S. Lee, G. Perez, G. Sterman, I. Sung, J.Virzi S. Chekanov and J. Proudfoot.

• It is beneficial to consider the boosted objects.

Lower combinatorics, SM background boost differently.

Butterworth, Davidson, Bubin, Salam

For a summary of recent developments: C.Vermilion, 1001.1335

Shape of a jet: parton shower

• From the initial parton, a jet is built up by many radiations.

(hadronic) Top tagging at the LHC

- Fully collimated tops look like QCD jets.
 - QCD: radiation.

Basic distinction:

• Top decay: $t \rightarrow bW(\rightarrow qq')$ 3 hard objects.

Zooming in near the first splitting

QCD. Soft radiation:
$$z = \frac{\operatorname{Min}(E_1, E_2)}{E_1 + E_2} \rightarrow 0$$

Jet mass: $d\sigma \propto \frac{1}{m_{\mathrm{jet}}^2}$

Top. Decay:
$$z = \frac{\operatorname{Min}(E_{W}, E_{b})}{E_{W} + E_{b}} \to \text{finite}$$

Jet mass: $m_{\rm jet} \simeq m_{\rm top}$

Building a'michoseope to took inside jets.

• The jet clustering history is approximately the inverse of the parton shower.

Tuesday, July 28, 2009

Top jets vs QCD jets

• Combined cuts on jet mass and z can enhance further the signal with respect to the background.

More jet shape variables.

- Top decay is more like 3-body. Span a "plane" perpendicular to the jet axis.
 - Transverse sphericity, or planar flow

Thaler and LTW, arXiv:0806.0023. 49Almeida, Lee, Perez, Sterman, Sung, Virzi, arXiv:0807.0234

Grooming gives better jet shape

- Can be used to further improve top tagging. An additional factor of several possible.
- Interesting to compare with improved QCD calculation, using modern technologies such as SCET.

Various top taggers

Boost 2010 proceeding, 1012.5421

• Similar result reproduced by ATLAS 3.7σ with 14 TeV and 30 fb^{-1}

ATL-PHYS-PUB-2009-088

New developments: N-jettiness

Stewart, Tackmann, Waalewijn, 1004.2489

- Using event shape instead of clustered jets.
- Allowing better QCD (SCET) treatments.
- Example: application in jet veto in Higgs searches.

Gallicchio, Schwartz, 1001.5027

- Using more global information.
- Applications to other channels as well.

e.g., ttbar at Dzero, Haas Boston Jet Workshop

Unbury the Higgs.

 $h \rightarrow aa \rightarrow gggg$, "buried"!

For example: B. Bellazzini, C. Csaki, A. Falkowski, A. Weiler, arXiv:0910.3210, arXiv:0906.3026

Soft gluon jets, considered impossible.

$$h \to aa \to c\bar{c}c\bar{c},$$
 "charmful"?
 $h \to aa \to 4\tau, 4b, \bar{b}b\bar{\tau}\tau$ 55

For example: P. Graham, A. Pierce, J. Wacker, hep-ph/0605162 M. Carena, T. Han, G. Huang, C. Wagner, arXiv:0712.2466

56

 $h \to aa \to 4\tau, \ 4b, \ \overline{b}b\overline{\tau}\tau$

P. Graham, A. Pierce, J. Wacker, hep-ph/0605162 M. Carena, T. Han, G. Huang, C. Wagner, arXiv:0712.2466

Encouraging results.

 $> 5\sigma$ at 100 fb⁻¹

W/Z+h

ttbar+h

Chen, Nojiri, Sreethawong, 1006.1151 Falkowski, Krohn, Shelton, Thalapillil, and LTW, 1006.1650

Substructure can also be useful for

- From top/W/Z/Higgs from NP decay, early LHC prospects.
 - Resonance ttbar.
 - SUSY.

Kribs, Martin, Roy, Spannowsky, 0912.4731, 1006.1656

- Top partner to Higgs. Kribs, Martin
- **–** Z' to WW, Zh...

Kribs, Martin, and Roy, 1012.2886

Cui, Han, Schwartz, 1012.2077 Katz, Son, Tweedie, 1010.5253

- Boosted NP particles.
 - Neutralino + RPV
 Butterworth, Ellis, Raklev, Salam, 0906.0728
 - Boosted gluino from squark. Fan, Krohn, Mosteiro, Thalapillil, 1102.0302