Intro to collider physics Lian-Tao Wang University of Chicago

XV Mexican School on Particles and Fields
Puebla, Mexico. September, 2012

New physics searches at the LHC

Two possible scenarios for new physics searches at the LHC

- A new layer of TeV new physics, excesses in many different channels.
- Good discovery potential.
- Complicated signal, challenging to interpret.
- New physics is difficult to discover.
- In particular, hadronic final states.

Before we start

- This is a huge subject.
- Focus more on intuitive understanding, generic feature, less on specifics.
- Only a (small) subset.
- Focus on methodology, rather than specific models.

Hopefully, this serves as the starting point of your further study.

Many good references, such as
Tao Han, TASI lecture, hep-ph/0508097

proton

20080 gluon

\bigcircquark

Partons:
gluon
valence: u, d
"sea": qbar, s sbar, c, cbar, b, bbar
binding energy $\sim \mathrm{GeV}$

Most of the time

low energy fragments: $\mathrm{E} \sim \mathrm{GeV}$

High energy collision rare

Kinematics

Rapidity

Define rapidity
$y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}$
$p^{\mu}=\left(E_{T} \cosh y, p_{T} \sin \phi, p_{T} \cos \phi, E_{T} \sinh y\right), \quad E_{T}=\sqrt{p_{T}^{2}+m^{2}}$

Under boost along z-direction

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2} \ln \frac{E^{\prime}+p_{z}^{\prime}}{E^{\prime}-p_{z}^{\prime}}=\frac{1}{2} \ln \frac{\left(1-\beta_{0}\right)\left(E+p_{z}\right)}{\left(1+\beta_{0}\right)\left(E-p_{z}\right)}=y-y_{0} \\
& \rightarrow \frac{d}{d y}=\frac{d}{d y^{\prime}}
\end{aligned}
$$

In the massless limit: pseudo-rapidity

$$
y \rightarrow \frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=\ln \cot \frac{\theta}{2} \equiv \eta
$$

Coordinate System

$$
\eta=-\ln \left[\cot \left(\frac{\theta}{2}\right)\right]
$$

Parton Distribution Function (PDF)

Partons can be gluon, or different flavors of quarks, labelled by a, b...
parton distribution function $f_{a}(x)$:
probability of finding parton a with momentum fraction x

- $f_{a}(x)$ can not be computed.
- However, we can measure them using certain processes.
- They are universal! Can be used everywhere!

Prediction for hadron collisions

$$
\begin{aligned}
& a+b \longrightarrow \ldots \\
& \sigma=\sum_{a, b} \int d x_{1} d x_{2} \underbrace{}_{\substack{f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right)}} \begin{array}{l}
\text { "Hard scattering" } \\
\text { PDF, long distance }
\end{array} \\
& \begin{array}{l}
\text { Short distance } \\
\text { Universal }
\end{array} \\
& \text { Calculable cross section }
\end{aligned}
$$

Factorization!

Intuitively, make sense:
short distance physics should not "know" about long distance physics.
In practice, very difficult to prove.
However, it is used anyway (otherwise we cannot calculate anything). And, it works very well.

A useful representation

$P_{1}=(E, 0,0, E), \quad P_{2}=(E, 0,0,-E) \quad p_{1}=x_{1} P_{1}, \quad p_{2}=x_{2} P_{2}$
Define Parton center of mass rapidity: $Y \quad e^{Y}=\sqrt{\frac{x_{1}}{x_{2}}}$
We can verify $\quad \cosh Y=\frac{\left(x_{1}+x_{2}\right) E}{\sqrt{\hat{s}}} \quad \Rightarrow$ boost of parton c.o.m frame
Starting with $\quad \frac{d^{2} \sigma(a, b \rightarrow \cdots)}{d x_{1} d x_{2}}=\sum_{a, b} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}(a, b \rightarrow \cdots)$
Using Jacobian: $\frac{\partial|\hat{s}, \quad Y|}{\partial\left|x_{1}, x_{2}\right|}=\frac{\hat{s}}{x_{1} x_{2}}$

We obtain:

$$
\frac{d^{2} \sigma(a, b \rightarrow \cdots)}{d \hat{s} d Y}=\frac{1}{\hat{s}} \sum_{a, b} \underline{x_{1} f_{a}\left(x_{1}\right)} \underline{x_{2} f_{b}\left(x_{2}\right)} \hat{\sigma}(a, b \rightarrow \cdots)
$$

Parton Distribution Function

Parton Distribution Function

Parton Distribution Function

Production.

- Schematics of production at hadron colliders.
- Dominated by parton densities and thresholds (mass and cut).

$$
\begin{aligned}
& a+b \rightarrow \ldots \\
& \frac{d^{2} \sigma(a, b \rightarrow \cdots)}{d \hat{s} d Y}=\frac{1}{\hat{s}} \sum_{a, b} x_{1} f_{a}\left(x_{1}\right) x_{2} f_{b}\left(x_{2}\right) \hat{\sigma}(a, b \rightarrow \cdots)
\end{aligned}
$$

Another parameterization, parton luminosity

- The cross section can be written as

$$
\begin{aligned}
& \sigma=\sum_{a, b} \int d \tau \frac{d L_{a b}}{d \tau} \hat{\sigma} \quad \begin{array}{c}
\text { parton luminosity } \\
\tau=\frac{\hat{s}}{S}=x_{1} x_{2}
\end{array} \\
& L_{a b}(\tau)=\frac{1}{1+\delta_{a b}} \int_{\tau}^{1} \frac{d x}{x}\left[f_{a}(x) f_{b}\left(\frac{\tau}{x}\right)+f_{a}\left(\frac{\tau}{x}\right) f_{b}(x)\right]
\end{aligned}
$$

14 TeV

7 TeV vs 14 TeV

Why is it hard to discover TeV-scale new physics at the LHC

- P p collider,"prefers" to produce lighter states.
- Production rates scale roughly as $\sigma_{p p \rightarrow M} \sim \frac{1}{M^{6}}$
- TeV new physics $M_{\mathrm{NP}} \sim 5-10 \times M_{\mathrm{SM}(\mathrm{W}, \mathrm{Z}, \mathrm{t}, \ldots)}$
- $\sigma_{\mathrm{SM}} \geq 10^{6} \times \sigma_{\mathrm{NP}}$
- Dominated by QCD: A messy environment.
- Need:
- Precise knowledge of the SM processes.
- Anticipation of potential new physics states and their properties.

Phase space

- General phase space factor:

$$
d \Pi_{n}=\Pi_{f}\left(\int \frac{d^{3} p_{f}}{(2 \pi)^{3}} \frac{1}{2 E_{f}}\right)(2 \pi)^{4} \delta^{(4)}\left(p_{a}+p_{b}-\sum p_{f}\right)
$$

- One additional final state particle

$$
\sim \text { an additional factor of } \frac{1}{16 \pi^{2}}
$$

- For example
\ldots variables $\subset\{0,1\}$

$$
\begin{aligned}
& d \Pi_{2}=\frac{1}{4 \pi} \frac{1}{2} \lambda^{1 / 2}\left(1, m_{1}^{2} / \hat{s}, m_{2}^{2} / \hat{s}\right) d \ldots \\
& d \Pi_{3}=\frac{1}{(4 \pi)^{3}} \lambda^{1 / 2}\left(1, m_{1}^{2} / m_{23}^{2}, m_{2}^{2} / m_{23}^{2}\right) 2\left|\vec{p}_{1}\right| d E_{1} d \ldots
\end{aligned}
$$

Rate also depends on

- Coupling constants
- More final state particles, higher power of coupling constants.
- QCD process dominates over weak processes.
- Singularities (enhancements) of matrix elements
- Resonances.
- Collinear and soft regime...

Understanding the rates

New physics

Example: considering ttbar vs $\mathrm{W}^{+} \mathrm{W}^{-}$,
The relevant factors are:
top is twice as heavy as W (2 times higher threshold)
$\alpha_{s}{ }^{2}$ vs $\alpha_{w}{ }^{2}$
ttbar is gg dominated, WW is qqbar.

Being produced does not mean we can see them!

Final state Objects

- Colored particles: cluster of hardonic energy, jet
- Leptons: electron, muon
- Photon
- Heavy flavor: bottom (charm)
- Missing energy (MET)

Modern detector (cartoon)

Identifying particles

From SM processes

- QCD: quark, gluon \longrightarrow jets
- QCD heavy flavor: b, c.
- Z: $\quad Z \rightarrow\left(q \bar{q}, \ell^{+} \ell^{-}, \nu \bar{\nu}\right) \rightarrow$ jets, lepton pair, \mathbb{E}_{T}
- W: $\quad W^{ \pm} \rightarrow\left(q \bar{q}^{\prime}, \ell^{ \pm} \nu\right) \rightarrow$ jets, lepton $+E_{T}$
- Top: $\quad t \rightarrow b+\left(W \rightarrow q \bar{q}^{\prime}\right.$ or $\left.\bar{\ell} \nu\right)$
- Tau lepton: narrow jet(s), lepton.

SM Rates at 7 TeV :

- QCD di-jet: $\quad p_{T}^{j}>100 \mathrm{GeV}, 300 \mathrm{nb}$
- Heavy flavor: $\quad b \bar{b}, p_{T}^{b}>100 \mathrm{GeV}, 1 \mathrm{nb}$
- $W+\ldots$...

$$
W^{ \pm} \rightarrow \ell \nu, 14 \mathrm{nb}
$$

$$
W^{ \pm}(\rightarrow \ell \nu)+1 \text { jet, } p_{T}^{j}>100 \mathrm{GeV}, 70 \mathrm{pb}
$$

one lepton + jets + MET

$$
\begin{aligned}
& W^{ \pm}(\rightarrow \ell \nu)+2 \text { jet, } p_{T}^{j}>100 \mathrm{GeV}, 2 \mathrm{pb} \\
& W^{ \pm}(\rightarrow \ell \nu)+1 \text { jet, } p_{T}^{j}>200 \mathrm{GeV}, 5 \mathrm{pb}
\end{aligned}
$$

- Z + ...: $\quad Z\left(\rightarrow \ell^{+} \ell^{-}\right), 1.4 \mathrm{nb}$
di-lepton + jets

$$
Z\left(\rightarrow \ell^{+} \ell^{-}\right)+1 \text { jet, } p_{T}^{j}>100 \mathrm{GeV}, 10 \mathrm{pb}
$$

New Physics: ~ pb

SM rates at 7 TeV

- di-boson:

$$
\begin{gathered}
W^{+} W^{-}: 30 \mathrm{pb} \quad \text { di-lepton + MET, } \sim 1.2 \mathrm{pb} \\
W^{+} W^{-}+1 \text { jet, } p_{T}^{j}>100 \mathrm{GeV}, 2 \mathrm{pb} \\
\quad \begin{array}{c}
\text { di-lepton+jet+MET } \sim 0.1 \mathrm{pb}
\end{array} \\
W^{+} Z: 7 \mathrm{pb}, W^{-} Z: 3.7 \mathrm{pb} \\
\text { tri-lepton }+\mathrm{MET} \sim 0.1 \mathrm{pb}
\end{gathered}
$$

- top pair: 160 pb ! Always has 6 objects.

$$
t \bar{t} \rightarrow b b W^{+} W^{-} \rightarrow b b j j \ell \nu, b b \ell \nu \ell \nu, b b j j j j
$$

- (MET+lepton+Jet 40%, Heavy flavor...)
- Looks like new physics, pair production of a massive particle followed by a decay cascade.

Two possible ways of discovery:

final state	rate estimate
begin with ≥ 2 hard jets	$10^{5} \mathrm{~Hz}$
in addition	
hard jet	$10^{2} \mathrm{~Hz}$
or $E_{T} \gtrsim 10^{2} \mathrm{GeV}$	$\sim 10^{2} \mathrm{~Hz}$
or 1 lepton	$10^{2} \mathrm{~Hz}$
or 2 lepton	1 Hz
or $2 \ell=e^{ \pm}+\mu^{ \pm}$	$10^{-4} \mathrm{~Hz}$

- Rate: final states with more energetic (hard) objects, for example:
(≥ 3 jets) $+E_{T}$
$(\geq 2$ jets $)+(\geq 1 \ell)+E_{T}$
- Special kinematical features, resonances, edges, ...

Resonance

$\frac{d \hat{\sigma}}{d m_{e e}^{2} d p_{e T}^{2}} \propto \frac{\Gamma_{Z} M_{Z}}{\left(m_{e e}^{2}-M_{Z}^{2}\right)^{2}+\Gamma_{Z}^{2} M_{Z}^{2}}$
\nearrow
From matrix element: Breit-Wigner

$$
p p \rightarrow Z^{0} \rightarrow e^{+} e^{-}
$$

$$
\hat{s}=m_{e e}^{2}=\left(p_{e_{1}}+p_{e_{2}}\right)^{2}
$$

Invariant mass (Lorentz inv.)

New resonance, Z', search

Almost a resonance:

- What if we don't observe all the final state particles. For example, consider $p p \rightarrow W \rightarrow \ell \nu$
- Cannot form an interesting Lorentz invariant variable.
- At least can look for something invariant under boost along z-direction, e.g., transverse component of $\mathrm{k}_{\text {। }}$

$$
\begin{aligned}
& k_{1 T}^{2}=\frac{1}{4} \hat{s} \sin ^{2} \hat{\theta} \\
& \quad \hat{\theta} \text { in parton c.o.m frame }
\end{aligned}
$$

$$
\frac{d}{d k_{1 T}^{2}}=\frac{d}{d \cos \hat{\theta}} \frac{d \cos \hat{\theta}}{d k_{1 T}^{2}}
$$

$$
\frac{d \cos \hat{\theta}}{d k_{1 T}^{2}}=-\frac{2}{\hat{s}}\left[1-\frac{4 k_{1 T}^{2}}{\hat{s}}\right]^{-1 / 2}
$$

recall $\hat{s}=m_{W}^{2} \quad k_{1 T}$ distribution singular at $\frac{m_{W}}{2}$!
Jacobian peak

Transverse mass.

Define
$m_{T}^{2}=\left(E_{1 T}+E_{2 T}\right)^{2}-\left(\vec{k}_{1 T}+\vec{k}_{2 T}\right)^{2}<m_{12}^{2}, \quad E_{i T}^{2}=\vec{k}_{i T}^{2}+m_{i}^{2}$
Without additional radiation
$\left|k_{1 T}\right|=\left|k_{2 T}\right|=E_{1 T}=E_{2 T}=\frac{m_{T}}{2}$
We have
$\frac{d^{2} \hat{\sigma}}{d m_{12}^{2} d m_{T}^{2}} \propto \frac{\Gamma_{W} m_{W}}{\left(m_{12}^{2}-m_{W}^{2}\right)^{2}+\Gamma_{W}^{2} m_{W}^{2}} \frac{1}{m_{W}^{2}} \frac{1}{\sqrt{m_{W}^{2}-m_{T}^{2}}}$

Due to the missing neutrino, m_{12} is not observable, must integrate over it. However, transverse mass distribution has a singularity at mw !

In reality, there is always some additional radiation, and W will have some transverse momentum. This, together with the W width, tends to smear out and correct the shape of the distribution a little bit.

Measuring the W mass

Mass of the W Boson

W' search

Complicated New physics signals

Partners:
New physics states with similar interactions to those of the Standard Model particles, such as the superpartners in Supersymmetry.

TeV Supersymmetry (SUSY)

- Supersymmetry. $\quad \mid$ boson $\rangle \Leftrightarrow \mid$ fermion \rangle
- An extension of spacetime symmetry.
- New states: "Partners"

	spin	spin
gluon, g	1	gluino: $\tilde{g} \quad 1 / 2$
$W^{ \pm}, Z$	1	gaugino: $\tilde{W}^{ \pm}, \tilde{Z} \quad 1 / 2$
quark: q	1/2	squark: $\tilde{q} 0$
...		\ldots
SM		(super)partner

- Couplings relate to SM interactions via supersymmetry. - ~ same strength.
- Mass of superpartners $\sim \mathrm{TeV}$.

Review: S. Martin "A Supersemmtr338 Primer", hep-ph/9709356

Interactions.

More details: for example, S. Martin "Supersymmmetry Primer"

- Superpartners have the same gauge quantum numbers as their SM counter parts.
- Similar gauge interactions. G_{μ}, W, Z, γ

Interactions.

- SUSY \Rightarrow additional couplings

B strength fixed by corresponding gauge couplings.

SU(3) color
SU(2)

Interactions.

- SM fermions (such as the top quark) receive masses by coupling to the Higgs boson.
b Yukawa couplings \Rightarrow SUSY counter parts.

F-terms:

Examples of production: colored

- Squark and gluino production.

Examples of production

- Squark pair

Production.

SUSY production rates at 7 TeV

Dominated by the production of colored states.
Similar pattern for other scenarios. Overall rates scaled by spin factors.

SUSY at colliders

- long decay chain.
- jets, leptons, missing E_{\top}....
- Nice signal, good discovery potential.

Decay of squark and gluino

- Gluino always decays into squark (on or off-shell).
- Glunino -> squark + Jets
- Squark decay.

- Jet +
- To gluino, then go through off-shell squark.
- To chargino or neutralino.

Next steps

- To W or Z (maybe Higgs.)

- Lepton (suppressed by W/Z-> lepton BR.)
- 1 or 2 leptons.
- Jets (softer, constrained by W and Z mass).

Simple rules.

- Typically, there are many channels through which a superpartner can decay.
- 2 body mode (almost) always dominate over 3-body mode.
$>$ A factor $1 / 100$ suppression from phase space.
- Charge channel often bigger than the neutral channels.
- Higgsino prefers $3^{\text {rd }}$ generation.
- Wino prefers left-handed.
- Typically, only one or two modes dominates.
- Signature easier to understand.

Exercise:
Choose a SUSY spectrum, such as one of the so called SNOWMASS Points and Slopes (SPS) benchmarks, http://arxiv.org/abs/hep-ph/0202233
Use a spectrum and coupling calculator such as SUSPECT, SoftSUSY, or just PYTHIA... Understand the output.

Long decay chains

- Putting the pieces together.
- Many channels, many final states.

2-lepton chain

1-lepton chain

$$
\begin{aligned}
& \tilde{g} \rightarrow q_{1}[\tilde{q}] \rightarrow q_{1} q_{2} \tilde{N}_{0} \\
& \tilde{g} \rightarrow q_{1}[\tilde{q}] \rightarrow q_{1} q_{2}\left[\tilde{N}_{i}\right] \rightarrow q_{1} q_{2}[Z] \tilde{N}_{0} \rightarrow q_{1} q_{2} q_{3} q_{4} \tilde{N}_{0} \\
& \tilde{g} \rightarrow q_{1}[\tilde{q}] \rightarrow q_{1} q_{2}\left[\tilde{C}_{i}\right] \rightarrow q_{1} q_{2}[W] \tilde{N}_{0} \rightarrow q_{1} q_{2} q_{3} q_{4} \tilde{N}_{0} \\
& \tilde{g} \rightarrow q_{1}[\tilde{q}] \rightarrow q_{1} q_{2}\left[\tilde{N}_{i}\right] \rightarrow q_{1} q_{2}[Z] \tilde{N}_{0} \rightarrow q_{1} q_{2} \ell^{+} \ell^{-} \tilde{N}_{0} \\
& \tilde{g} \rightarrow q_{1}[\tilde{q}] \rightarrow q_{1} q_{2}\left[\tilde{N}_{i}\right] \rightarrow q_{1} q_{2} q_{3} q_{4}\left(\ell^{+} \ell^{-}\right) \tilde{N}_{0}
\end{aligned}
$$

Exercise: draw diagrams for tri-lepton, same sign di-lepton

Typical variables I: counts.

- Inclusive counts. Useful for signal >> backrgound.
$n_{j} \times$ jet $+$
$n_{\ell} \times$ lepton
$+$
$n_{\gamma} \times \gamma$

b-jet
non-b-jet

ℓ all flavor and charge combo: e.g. $2 \ell \rightarrow 21$ comb.

Kinematical features: transverse variables.

- Multiple hard objects.
- No resonance.
- Transverse variables made of several energetic objects. $M_{\text {eff }} H_{\top}$

$$
M_{e f f}=\not \mathscr{H}_{T}+p_{T, 1}+p_{T, 2}+p_{T, 3}+p_{T, 4}
$$

Be careful.

Gianotti and Mangano, 2005

Another example: α_{\top}

momenta labelled so that $p_{1 T} \geq p_{2 T}$

Define: $\quad \alpha_{T}=\frac{p_{2 T}}{m_{T}} \quad m_{T}=\sqrt{\left(p_{1 T}+p_{2 T}\right)^{2}-\left(\vec{p}_{1 T}+\vec{p}_{2 T}\right)^{2}}$

Define Рт fractions $\quad x_{i}=\frac{p_{i T}}{\sum_{i=1,3} p_{i T}}, \quad x_{i} \leq 1$ and $\sum_{i=1,3} x_{i}=2$
We obtain $\quad \alpha_{T}=\frac{1}{2} \frac{x_{2}}{\sqrt{1-x_{3}}}$
α_{T} can be either <l/2 (more often), or $>\mathrm{I} / 2$
For a nice review, see Michael Peskin, "Razor and Scissors"

Another example: α_{T}

- In comparison, consider QCD di-jet, with one of the jet (say P2t) energy miss measured.

$$
\vec{p}_{2 T}=-\lambda \vec{p}_{1 T}, \quad \lambda \leq 1 \quad \alpha_{T}^{\mathrm{di}-\mathrm{jet}}=\frac{1}{2} \sqrt{\lambda} \leq \frac{1}{2}
$$

Many additional transverse variables: MT2 , Razor,

Kinematical variables: invariant masses

- Most useful: di-lepton edges and endpoints. (Mentioned earlier in neutralino decay).
- Clean.
- Invariant mass distribution also carry spin information. Probably needs high statistics.

For a review: See LW and I. Yavin, 2008

- More complicated invariant masses in longer decay chains possibly useful, but feature is less sharp. May need high statistics as well.

For example, see Miller and Osland. A set of papers.

Special case: off-shell Z

- 3-body. End-point in di-lepton invariant mass.
- Same flavor di-lepton.
- Combinatorials can be suppressed with flavor subtraction.

More leptons if we are lucky

- A lot of leptons. No branching ratio suppression.
- On shell slepton, very distinctive feature.
- Edge in di-lepton invariant mass.

$$
\begin{aligned}
m_{\tilde{\ell}}<M_{\tilde{N}_{2}} & \longrightarrow \tilde{N}_{2} \rightarrow \tilde{N}_{1}+[\tilde{\ell}] \rightarrow \tilde{N}_{1}+\ell^{+}+\ell^{-} \\
M_{\ell \ell}^{\max } & =M_{\tilde{N}_{2}} \sqrt{1-\frac{m_{\tilde{\ell}}^{2}}{M_{\tilde{N}_{2}}^{2}}} \sqrt{1-\frac{M_{\tilde{N}_{1}}^{2}}{m_{\tilde{\ell}}^{2}}}
\end{aligned}
$$

- More complicated edges useful, but need high statistics.

See several papers by: Miller, Osland.

Topology: model independent approach

partners:
Same gauge interactions as the $\tilde{g}, \tilde{q}, \tilde{W}, \tilde{Z}, \tilde{\ell} \ldots$
SM particles
$g^{\mathrm{KK}}, q^{\mathrm{KK}}, W^{\mathrm{KK}}, Z^{\mathrm{KK}}, \ell^{\mathrm{KK}} \ldots$
Similar signatures.
$\underline{\text { http://indico.cern.ch/conferenceOtherViews.py?view=standard\&confId=94910 }}$
http://www.lhenewphysics.org/web/Overview.html

Signals can be challenging to understand.

- After the discovery, we can derive some basic properties, such as whether the new particles are colored or not, whether they decay to leptons, and so on.
- Many possible interpretations.

Degeneracies! Quantum number, mass, spin...
For example: in supersymmetry, bino vs wino, squark vs gluino...
Arkani-Hamed, Kane, Thaler, and Wang, JHEP 0608:070,2006.
Hard work, but we will be able to figure it out.

Possible degeneracies in:

- The identity of new physics particles. For example:

Two different SUSY spectra.

Identity swap, hard to distinguish

Arkani-Hamed, Kane, Thaler, and Wang, JHEP 0608:070,2006

- Spin.
- SUSY: I/2 spin difference from the SM particle.
- Extra-dimension: same spin.

For a review: Wang and Yavin, Int.J. Mod. Phys.A 23, 4647 (2008)

A promising, and complicated, scenario.

$$
>\mathrm{TeV}=\tilde{u}, \tilde{t}, \tilde{d}, \ldots
$$

~ 100 s GeV

$$
\ldots \quad \tilde{N}
$$

The Dominant channel

$$
p p \rightarrow \tilde{g} \tilde{g} \rightarrow t \bar{t} t \bar{t}(\text { or } t \bar{t} b \bar{b}, t \bar{t} t \bar{b} \ldots \text {) }
$$

$$
\tilde{g} \rightarrow t \bar{t}(b \bar{b})+\tilde{N}, \text { or } t \bar{b}+\tilde{C}^{-} \quad t \rightarrow b \ell^{+} \nu
$$

- Multiple b, multiple lepton final state.
- Good early discovery potential.
- Challenging to interpret: top reconstruction difficult.

A new method of fitting branching ratio to various final states Acharya, Grajek, Kane, Kuflik, Suruliz, Wang, arXiv:0901. 3367

An example of a challenging measurement: spin
 or distinguishing SUSY with others.

Spin of new resonances

$$
\begin{gathered}
\psi_{1} \rightarrow \psi_{2}+\phi \\
y_{L} \phi \bar{\psi}_{2} P_{L} \psi_{1}+y_{R} \phi \bar{\psi}_{2} P_{R} \psi_{1}
\end{gathered}
$$

- Eample spin of fermion.
- In the rest frame of the fermion.
- Define angle θ of the decay product w.r.t. the polarization axis of Ψ_{1}.
- Coupling could be chiral if $y \mathrm{~L} \neq \mathrm{y}_{\mathrm{R}}$

Fermion spin

- Go to the rest frame.
- Coupling chiral.
- Ψ_{1} polarized.

Spin-1

$$
\begin{gathered}
A_{\text {transverse }}^{\prime} \rightarrow \psi_{1}+\psi_{2} \\
A_{\text {longitudinal }}^{\prime} \rightarrow \psi_{1}+\psi_{2}
\end{gathered}
$$

$A_{\text {transverse }}^{\prime} \rightarrow \phi_{1}+\phi_{2}$
$A_{\text {longitudinal }}^{\prime} \rightarrow \phi_{1}+\phi_{2}$

$$
|\mathcal{M}|^{2} \propto \cos \theta^{2}
$$

In general: $|\mathcal{M}|^{2} \propto \cdots+\cos \theta^{2 J_{\text {mother }}}$

Example of spin measurement

1 and 2 are observable particles, $q, \ell, W^{ \pm} \ldots$
We are interested in the spin of \mathbf{X} (on-shell).
We choose to use

$$
t_{12}=\left(p_{1}+p_{2}\right)^{2}
$$

In general, can not reconstruct the rest frame of X

Consider the rest frame of X

$t_{12} \propto(1-\cos \theta)^{2}$
Direction of Y and 1 can be chosen to define the polarization of X For X with spin J_{X}

$$
\frac{d \Gamma}{d t_{12}}=a t_{12}^{2 J_{X}}+b t_{12}^{2 J_{X}-1}+\cdots
$$

In principle, fitting the degree of this polynomial tells the the spin of X.
In practice, whether the coefficient $\mathrm{a}, \mathrm{b}, \ldots$ are non-zero depends on the chirality of the coupling between X and $\mathrm{I}, 2, \mathrm{Z}, \mathrm{Y}$, and the mass differences between them.

Interpreting the results correctly depending on our understanding the spectrum and couplings.

Example: SUSY vs spin-1 partner

Decay through charged partners $\tilde{\chi}^{ \pm}, W^{\prime \pm} \ldots$

$$
\begin{aligned}
& \propto t_{q \ell}+\ldots \\
& \tilde{q}-q-\tilde{C} \text { chiral } \\
& q \text { boosted } \\
& \tilde{C}-\tilde{\nu}-\ell \text { chiral }
\end{aligned}
$$

$$
\begin{gathered}
\propto t_{q \ell}^{2}+\ldots \\
m_{q^{\prime}} \gg m_{W^{\prime}} \\
W^{\prime} \text { boosted }
\end{gathered}
$$

Usually there are more leptons in the decay chain.

Near/far lepton has to be separated.

Spin measurements. Supersymmetry?

- No universally applicable method. Different strategies will be used in different scenarios.

A review: LTW and Yavin, arXiv:0802.2726

- More information of the signal, masses and underlying processes, is crucial.

