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Problems with Fermi theory
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Problems with Fermi theory

. O-(Ve e — e Ve) — EZ/(ZT[ V4) < 16]_[/E2 =

tree level unitarity violation for E =z 1 TeV

= Nntermediate vector bosSoONS Yukawa 1935, Schwinger 1957

. but now trouble computing o(e* e~ = W+ W)
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Gauge invariance |

. Bad behavior in oet e~ = W™ W) and
o(Ve &= = W~ WY cancels if the currents

satisfy [J, JT] « JO =

. SU(2) gauge invariance

. Need to add photons

= SU(2).xU(1)y Glashow 1961
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.« | heorem (weinberg 1964): NO 4-vector field Au(x) can e built
from the a and af for m = O and h = +1 particles:

e eu(P,£1) = A e¥(p,£1) + pu Q:(p,A)

o UAN) Au(x) U71(A) = Apv AY(AX) + 9uR(x,A\), where Q
depends on a and a

» Solution: take couplings of Ay as Ay J¥ with dud¥ = 0
 Implications:
» breaking gauge invariance breaks Lorentz invariance

omA:O
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. After fixing ole* e = W+ W) & o(ve e— = W~ WO), now
tree level unitarity violated in o(\W+ W= = \W* W-), unless
the Higgs is introduced with

« Mu? = 1611/5 v2 = (780 GeV)? Lischer, Weisz 1988
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massive scalar massless

also for discrete symmetry Nambu-Goldstone MOdJE

as N Landau-Ginzburg theory (V = 0 exactly)
. fleld gets vacuum expectation value (order parameter)
. but may be (e.g. quark

condensate breaking chiral symmetry of strong interaction,
Or cooper Palrs iINn BCS theory of superconductivity)
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. BCS theory: approximate model; exact properties (like
zero resistance and flux quantization) follow from
symmetry breaking
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. BCS theory: approximate model; exact properties (like
zero resistance and flux quantization) follow from
symmetry breaking

» electroweak theory: need (the Higgs)
(e.g. technicolor); if it must
be scalar so as not to break Lorentz invariance

12



One-loop corrections to gauge boson propagator.

M MWW,

13
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One-loop corrections to gauge boson propagator.

M MWW,

Additional tadpole graph corrections after spontaneous
symmetry breaking.

NV AN

Nambu-Goldstone boson

effective mass term provides longitudinal
(London's penetration depth) degree of freedom

renormalizability! unitarity!

14
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theoretical constraints
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. dMy?/dInp2=1/(81° V2
[ 3 My*+ 3 Mz*+ 6 Mw* — 12 mi* — Mp? (3 MzZ + 6 Mw? — 6 mi?) |
. Str=> () 2S + 1) Nc
. scalar field wave function renormalization (y)
. the masses in the RGE are running masses (e.g. MS-bar)

. vV =[/2 G = 246.22 GeV (slightly modified definition of Gr)
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One-loop RGE

. dMy?/dInp2=1/(8m°v?)
[ 3 Mi*+ 3 Mz + 6 Mw* — 12 m* — M2 (3 Mz2 + 6 Mw2 — 6 mi?) |
. Str=> (- 2S + 1) Nc
. Scalar field wave function renormalization (y)
. the masses in the RGE are running masses (e.g. MS-bar)
. vV =[/2 G = 246.22 GeV (slightly modified definition of Gr)
. Mu>»v=1/Mg2(V) = 1/MAA) =3/(8 12 v2) In A2/ v?

. M2 <812 Vv2/(BInA2/v3) =[147 (144) GeV]?
for A =2.4x10'8 (1.2x10"°) GeV
. Mn <816 GeV for A = My
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. rewrite the RGE
d Mi2/d In p2 = 3/(8 % v3) (M? — Mi?) (M2 — M-2) with M..2 =
Vo MzZ + Mw? — m¢? = [(V2 MzZ + Mw? — m?)? — Mz* = 2 Mw* + 4 my])”

~ (-1 £ J5) m? = M, ~ 200 GeV, M_2 ~ — (300 GeV/)?

= for My =z 200 GeV, Landau pole persists (potential bounded below)
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. rewrite the RGE
d Mi2/d In p2 = 3/(8 % v3) (M? — Mi?) (M2 — M-2) with M..2 =
Vo MzZ + Mw? — m¢? = [(V2 MzZ + Mw? — m?)? — Mz* = 2 Mw* + 4 my])”

~ (-1 +/5) M = M, ~ 200 GeV, M_? ~ — (300 GeV)?
= for My =z 200 GeV, Landau pole persists (potential bounded below)

. Wwe have worked with constant masses, but d m¢/d In p2 =

3me/(16 2 vA) [ (1L + 2r) mi? — (2L + Or) dim SU(2)/Np Mw? —
(1/3)2L + (4/3)%R) (Mz2 — Mw?) — (2L + 2r) dim SU(3)/Nc (1T &s V?) | =

M /(16 T Vv2) [9m® — 10/3 Mw? - 17 /3 Mz — 32 (M as v4) ] < O

17
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summary of bounds
. “triviality”:
M2 /veIn M2 /v2 < 8 12 /3 = My < 816 GeV

. tree-level unitarity of the partial S-wave amplitude of elastic
Goldstone boson scattering:

M2 /V2< 16 11/5 = My < 781 GeV

. absence of Landau pole:

M2 /ve< 4 m?/3 InTkp/v =My < 147 GeV

e VACUUM Stability: My = 130 GeV Casas, Espinosa, Quiros 1995

. vacuum meta-stability: Mn = 115 GeV isidori, Ridolfi, Strumia 2001
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SM3: m;, =173.3 GeV my, = 4.19 GeV «a, =0.1184

Excluded by LEPII
Excluded by LHC
Excluded by Precision Measurements

100
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104
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. Mw =80.387 + 0.016 GeV cpF & po 2012 (+19 MeV cor 2.2 fb)
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. Mw =80.376 = 0.033 GeV Lep2
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= sin?0w™ = 0.23141 + 0.00013 and My = 96%29_»5 GeV
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. Mw =80.387 + 0.016 GeV cpF & po 2012 (+19 MeV cor 2.2 fb)

. Mw=80.376 + 0.033 GeV LEp2
= sin“0Oywenshel = 1 — Mw?/Mz2 = 0.22290 + 0.00028

= sin?0w™ = 0.23141 + 0.00013 and My = 96%29_»5 GeV

. new global electroweak fit: My = 102+24_o0 GeV JE 2012
. Prospects:

. No PDF (10 MeV) & QED (x4 MeV) improvement = +13 MeV cpor 10 fbo
. =7 MeVppr = +11 MeV eprF 10 fb!
. +5 MeVpor & lepton energy scale +6 = +3 MeV = +10 MeV cor 10 fo!

. ILC threshold scan:; +6 MeV

21



direct (10)

indirect (10)

all precision data (90% CL)
allowed by Higgs searches
excluded by 1 experiment
excluded by > 1 experiment
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e Mt=173.4 + 0.9exp = 0.5tn GeV
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. Mi=173.4 + 0.9ex0 + 0.5t GeV

. Question: What is the definition of m?
Correct but useless answer: mi = mi™"2 (“Pythia tuning parameter”)
We assume mi™Ytha = miPoe + Aqcp where
M = my(my) [1 + 4/3 axs(mi) /1T + O(0ks?) + O(0is)]

and Aacp = the O(ais®) term above (see also skands, Wicke 2007)
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. Question: What is the definition of m:?
Correct but useless answer: mi = mi™"2 (“Pythia tuning parameter”)
We assume mi™ythia = miP°e + Aqcp where
Mo = mymy) [1 + 4/3 ots(my) /T + O(xs?) + O(0xs°)]
and Aacp = the O(ais®) term above (see also skands, Wicke 2007)

. Alternative I: SCET + HQET — “jet mass” Fleming, Hoang, Mantry, Stewart 2008
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e Mt=173.4 + 0.9exp = 0.51n GeV
. Question: What is the definition of m:?
Correct but useless answer: mi = mi™"2 (“Pythia tuning parameter”)
We assume mi™ythia = miP°e + Aqcp where
M = my(my) [1 + 4/3 axs(mi) /1T + O(0ks?) + O(0is)]
and Aqcp = the O(axs®) term above (see also skands, Wicke 2007)
. Alternative |: SCET + HQET — “jet mass” Fleming, Hoang, Mantry, Stewart 2008

. Alternative II: get my(my) directly from tt cross-section =
I’ﬁt(rﬁt) = 160.0 + 3.3 GeV Langenfeld, Moch, Uwer 2008

= My = 81704 GeV (miP°e = 169.6 + 3.5 GeV)

23
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I, o
z |

had? Rl, Rq (10)
Z pole asymmetries (10)
- M, (10)
m, (10)
low energy
precision data (90% CL)
allowed by searches

excl. by 1 experiment
B c<xcl. by > 1 experiment
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Constraints from the Higgs hunt

———




How t0 make
a Higgs

vector boson fusion

antiproton. ™

Higgsstrahlung

proton et
g
W+ Y
HO
g 44 2
antiproton 4

gluon fusion

27
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Cumulative Events

Cumulative Events

[y
[
—

Tevatron Run II Preliminary, L. <10 !
T i ‘ T ‘ T i

mH=115 GeV

Background
o Tevatron Data

§ 10 12
Integrated Expected Signal

Tevatron Run II Preliminary, L <10 !

|

m, =125 GeV | .}#’T

Signal+Background
Background
¢ Tevatron Data

1 2 3 4 5 6 7 8 9 10

Integrated Expected Signal

H—yy

H— WW

H—ZZ — 4|

m,, = 119.5 GeV
Combined (68%)

—i— Single channel

CMS, \'s =7 TeV
L=46-481b"

-1

-05 0 05 1 15

2 25 3 35 4
Best fit O/OSM

m, =124 GeV
Combined (68%)

—i— Single channel

CMS, \'s =7 TeV
L=46-481b"

—

-1

-05 0 05 1

15 2 25 3
Best fit O/OSM




synthesis




31




Mu probabllity density

. P(MH) = exp[-X?ew(MH) /2] QLer Qtevatron QLHc MK

factorized form: neglect of correlations
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factorized form: neglect of correlations

e QLEP(MH), QTevatron(MH): ikelihood ratios H/H-I—B
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Mu probabllity density

. P(Mn) = exp[-X?ew(MH)/ 2] QLer QTevatron QLHc M
factorized form: neglect of correlations

« QLer(MH), QTevatron(MR): likelinood ratios H/H+B

» QLrHc(MH) = Qatas(Mu) Qems(Mr) (but not available)
instead: 2 In Q = X?H+8(MH) — X?B(MH) =

(1 — C_)'obs)z/AC_)'Jr2 — C_)'obsz/AC_)'_2
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Mu probabllity density

« P(MH) = exp[-X2ew(MH) /2] QLer QTevatron QLHc MH
factorized form: neglect of correlations

« QLer(MH), QTevatron(MR): likelinood ratios H/H+B

» QLrHc(MH) = Qatas(Mu) Qems(Mr) (but not available)
instead: 2 In Q = X?H8(MH) — X?8(MH) =
(1 — Oobs)?/ AT+2 — Tops® [ AT-2

. Oobs. effective observed X-section combining all channels

. AC-: error pointing in signal (+) and background (-) direction
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Mu probabllity density

« P(MH) = exp[-X%ew(MH)/ 2] QLer Qtevatron QLHc My
factorized form: neglect of correlations
« QLer(MH), QTevatron(MR): likelinood ratios H/H+B
» QLrHc(MH) = Qatas(Mu) Qems(Mr) (but not available)
instead: 2 In Q = x?H+B(MH) — X?8(MH) =
(1 — Oobs)?/ AT+2 — Tops® [ AT-2
. Oobs. effective observed X-section combining all channels
. AC-: error pointing in signal (+) and background (-) direction

. Poisson statistics = Ao. > Ao_ but often also Ao, < Ao
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. 21N Qanas(126 GeV) = 9.8 — 1.1 = —-8.7 (H = vy, ZZ%)

J8.7 = 2.9 while quoted local significance of excess = 3.6 o
N Qaras(244 GeV) = 2 In Qarnas(560 GeV) = -3 (H = Z2)
N Qovs(119.5 GeV) = -5.6 (H = ZZ*, WW*, b b, T* T°)

. 21N Qcms(124 GeV) = —6.6 (mostly H — yy)

. 2
. 2

. 2
o 2

N Qrevatron(130 GeV) = -1.9 (H = 165 dif

‘erent channels)

N Qtevatron 2012(1 20, Ge\/) = -8.0 (mostly H

— b b, not yet included)
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. 21N Qanas(126 GeV) =9.8 -1.1 =-8.7 (H = vy, ZZ9
J/8.7 = 2.9 while quoted local significance of excess = 3.6 o
. 2 In Qatas(244 GeV) = 2 In Qatas(560 GeV) = -3 (H = Z2)
. 21N Qoms(119.5 GeV) = -5.6 (H = ZZ*, WW*, b b, T+ T)
. 21N Qcms(124 GeV) = —6.6 (mostly H — yy)
. 2 1IN Qrevatron(130 GeV) = -1.9 (H — 165 different channels)
. 2 In Qevatron 2012(120 GeV) = —8.0 (mostly H = b b, not yet included)
o 21N Quep(117 GeV) = 1.7 (H = 4 jets ALEPH)
. X°ew(127 GeV) — x%ew(115.5 GeV) = 0.63

33




EXamples

. 21N Qanas(126 GeV) =9.8 -1.1 =-8.7 (H = vy, ZZ9
J8.7 = 2.9 while quoted local significance of excess = 3.6 o
. 2 In Qatas(244 GeV) = 2 In Qatas(560 GeV) = -3 (H = Z2)
. 21N Qoms(119.5 GeV) = -5.6 (H = ZZ*, WW*, b b, T+ T)
. 21N Qcms(124 GeV) = —6.6 (mostly H — yy)
. 2 1IN Qrevatron(130 GeV) = -1.9 (H — 165 different channels)
. 2 In Qevatron 2012(120 GeV) = —8.0 (mostly H = b b, not yet included)
. 2INQLep(117 GeV) = 1.7 (H — 4 jets ALEPH)
. X°ew(127 GeV) — x?ew(115.5 GeV) = 0.63
e 21N Pdirect(125 GeV) = —13.2
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. LHC data require “look elsewhere effect correction”

. Can be avoided when combined with electroweak
precision data Je 2012

all data except electroweak precision all data




all data

% probability per 0.1 GeV bin




all data except LHC all data except CMS

% probability per 1 GeV bin
% probability per 0.1 GeV bin

all data except ATLAS all data

% probability per 0.1 GeV bin
% probability per 0.1 GeV bin
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. Remarkably consistent picture between QFT constraints,
electroweak precision tests and direct search results.

. |t walks, quacks and looks like a duck!

. Highly likely that the discovery (“observation”) of the
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