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σ(νe e− → e− νe) → E2∕(2π v4) ≤ 16π∕E2 ⇒                              

tree level unitarity violation for E ≳ 1 TeV

242 The Standard Model and Beyond

which diverges quadratically for k → ∞ (we have neglected the e− mass
and the external momenta, which is valid for large enough k). Although
νee− → e−νe has only been measured at low energies, there is clearly a
theoretical inconsistency; the Fermi theory cannot be the full story.

In the intermediate vector boson theory (IVB) the four-fermion interac-
tion was eliminated (Yukawa, 1935, the same paper as the meson theory)
and (Schwinger, 1957). Instead, it was assumed that the process was me-
diated by a spin-1 particle, analogous to the photon in QED. However, the
intermediate bosons W± were assumed to be very massive (compared to the
energies of the experiments) and electrically charged, as indicated in Figure
6.2. The coupling to fermions is given by

L = gW+
µ Jµ† + gW−

µ Jµ, (6.8)

where g is the coupling strength. For M2
W # Q2 ≡ −q2, where q is the
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FIGURE 6.2
Top: intermediate vector bosons mediating β decay and νee− → e−νe. Bot-
tom left: diagram for e+e− → W+W− in the IVB theory. Bottom right:
additional diagram in the SU(2) theory.

momentum transfer, the denominator q2 −M2
W of the W propagator can be

replaced by −M2
W , and one has effectively a four-fermion interaction. We will 5

GF

Problems with Fermi theory
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σ(νe e− → e− νe) → E2∕(2π v4) ≤ 16π∕E2 ⇒                              

tree level unitarity violation for E ≳ 1 TeV

➡  intermediate vector bosons Yukawa 1935, Schwinger 1957 
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Bad behavior in σ(e+ e− → W+ W−) and 

σ(νe̅ e− → W− W0) cancels if the currents 

satisfy [J, J†] ∝ J0 ⇒ 
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which diverges quadratically for k → ∞ (we have neglected the e− mass
and the external momenta, which is valid for large enough k). Although
νee− → e−νe has only been measured at low energies, there is clearly a
theoretical inconsistency; the Fermi theory cannot be the full story.

In the intermediate vector boson theory (IVB) the four-fermion interac-
tion was eliminated (Yukawa, 1935, the same paper as the meson theory)
and (Schwinger, 1957). Instead, it was assumed that the process was me-
diated by a spin-1 particle, analogous to the photon in QED. However, the
intermediate bosons W± were assumed to be very massive (compared to the
energies of the experiments) and electrically charged, as indicated in Figure
6.2. The coupling to fermions is given by

L = gW+
µ Jµ† + gW−

µ Jµ, (6.8)

where g is the coupling strength. For M2
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Need for Higgs particles

The Standard Electroweak Theory 367

bound

MH ≤
(

4π
√

2
3GF

)1/2

∼ 700 GeV, (7.206)

which is comparable to the lattice version of the triviality bound.
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FIGURE 7.33
Tree-level diagrams for W+W− →W+W−. The zigzag lines can represent a
Z, γ or H.

Of course, (7.206) is based on the tree-level amplitude, and unitarity only
applies rigorously to the full amplitude. One should therefore interpret (7.206)
as the condition for a weakly coupled (perturbative) Higgs and gauge self-
interaction sector, for which higher-order corrections to the amplitude are not
expected to be important. Conversely, a violation of (7.206), or the nonobser-
vation of a Higgs below this scale, would suggest that spontaneous symmetry
breaking is associated with a strongly coupled Higgs sector or some strong
coupling alternative to the elementary Higgs mechanism. This would presum-
ably be manifested by enhanced WW cross sections at high energy (Chanowitz
and Gaillard, 1985) and effects such as WW (bound state) resonances.

In Section 7.2.1 we applied the Kibble transformation to the Higgs doublet
following SSB to go to the unitary gauge, in which it is manifest that the
Goldstone bosons are eaten to become the longitudinal degrees of freedom
of the W± and Z. We also saw above that amplitudes involving the W
and Z at high energy are dominated by their longitudinal components. It is
therefore not surprising that such high energy amplitudes can be calculated
more easily in terms of the original Goldstone degrees of freedom using the
equivalence theorem (Lee et al., 1977). (More rigorous discussions in more
general gauges and including higher-order effects are given in (Chanowitz and
Gaillard, 1985; Chanowitz et al., 1987).) We will illustrate this with a simple
example, using the expressions in (7.85) and (7.88) for the Higgs doublet φ
and Higgs potential V (φ) in an Rξ gauge, in which H is the physical Higgs
field, and w± and z are the Goldstone degrees of freedom that disappear in
the unitary gauge. (The gauge and Yukawa interactions for φ are also given
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spectrum develops a gap, that is a mass, i.e. limk→0 ω(k) is finite. This is a precursor
of what happens in general when long range forces are present.

I now explain why it is natural that gauge fields are also massless. Take once more the
simple case of spins. Global symmetry is the invariance of the energy when all spins
are rotated “en masse”. Local symmetry is realized when different portions can be
rotated differently (in group space) at no cost of energy. This is possible only if there
is a “messenger” which transmits from portion to portion the information that such
local rotations indeed do not cost any energy and have no physical effect. In technical
terms, this messenger is called a connection or a gauge field. It transforms under local
rotations exactly in a way to compensate for the energy that would otherwise follow
from relative rotations of neighboring spins. It is this beautiful idea which governs all
the presently known interactions of nature.

From the above one understands that it is natural that the gauge field has zero mass.
Indeed under global transformations a gauge field is not required to ensure invariance.
So it should not manifest itself. But a global transformation corresponds to one whose
wave vector kµ vanishes: it should cost no energy (k0 = 0) to make a gauge field
excitation which is everywhere the same (k = 0). In relativity the condition kµ = 0

becomes the invariant statement kµk
µ = 0 (or k2

0
− k

2
= 0) which is the statement of

masslessness.

It is to be expected that a dramatic situation arises when these two kinds of zero mass
excitations are put together in the context of a local symmetry. What happens is
that they combine into one massy vector field. The gauge field, of itself, due to rela-
tivistic constraints has two degrees of freedom. These are encoded in the polarization
transverse to the direction of propagation. Massive vector fields have a longitudinal
polarization as well and this is induced by the coupling to the NG field. To see how
this mechanism works it is convenient to express things in terms of Feynman graphs.

In the case of no SBS, gauge fields propagate in vacuum by taking into account the
dielectric constant of the vacuum. This is represented by loop insertion in the gauge
field propagator. For matter represented by a scalar field, a single loop insertion is
drawn as follows

These loops insertions in the YM propagator, represented by wavy lines, conserve the
transverse character of the gauge field and keep it massless. Their effect is to change
the value of the coupling constant of the gauge field to matter.

6

One-loop corrections to gauge boson propagator.
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Additional tadpole graph corrections after spontaneous 
symmetry breaking.

effective mass term
(London's penetration depth)

renormalizability!

Nambu-Goldstone boson
provides longitudinal 
degree of freedom

unitarity!

In the case of SBS, the finite expectation value of the scalar field causes additional
graphs to arise which are found by cutting the loop, generating the so-called tadpole
graphs. One must then addend to the above the graphs

In these graphs the wavy lines still represent the gauge field and the solid line tadpoles
are the expectation values of the scalar fields which play the role of order parameters.
The dashed line is the propagator of a NG excitation. These arise in directions or-
thogonal in group space to the order parameters. The latter graphs show how the NG
field gets absorbed into the gauge field, the net effect being to give to the latter a mass
proportional to the order parameter and to increase the number of degrees of freedom
of the gauge field from two to three. Although this “order parameter” is here gauge
dependent, there are Ward identities ensuring the gauge invariance of the mass aris-
ing from these graphs. These two elements are of utmost importance since the gauge
invariance ensures that the divergences of the graphs remain under control, indicating
that the theory could be renormalizable, and the new longitudinal degree of freedom
renders the perturbation series unitary. It is the combination of these two elements
that Veltman and ’t Hooft used in their masterful works to prove that the theory is
indeed renormalizable, thereby really setting the standard model on a sound basis.

As just mentioned, the appearance of the massless NG bosons is guaranteed by the
Ward identities, and as such does not rely on perturbation theory. They therefore
also appear if SBS is realized dynamically through a fermion condensate, as in the
BCS theory of superconductivity or in the Nambu Jona-Lasinio theory of broken global
chiral symmetry. In presence of a local symmetry, they would then still generate a mass
for the gauge vector mesons. In that case, the scalar fields would be phenomenological
rather than fundamental objects but the mechanism would remain essentially the same.
Whether fundamental or not, the scalar fields describing the order parameters, have
massive quanta. These massive scalars are not a specific feature of the mechanism: they
arise already in global SBS, and even in discrete ones such as our original discrete spin
system. The free energy of such a system presents as a function of the magnetization,
below the Curie point, the double dip shape typical of the Landau-Ginsburg potential
V represented in the figure below. This potential is the same as the one driving global
SBS in the Goldstone scalar field model. The distance of the dip to the origin and the
curvature at this point are respectively the expectation value and the mass squared
of the Goldstone massive scalar boson. The latter, or more precisely its inverse mass
squared, measures the longitudinal susceptibility. This is the response of a field parallel
to the order parameter and appears in any second order phase transition.
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One-loop RGE
d MH2∕d ln μ2 = 1∕(8 π2 v2)

            [ 3 MH4 + 3 MZ4 + 6 MW4 − 12 mt4 − MH2 (3 MZ2 + 6 MW2  − 6 mt2) ]

Str = ∑ (−)2S (2S + 1) NC

scalar field wave function renormalization (γ)

the masses in the RGE are running masses (e.g. MS-bar)

v = [√2 GF]−½ = 246.22 GeV (slightly modified definition of GF)
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scalar field wave function renormalization (γ)

the masses in the RGE are running masses (e.g. MS-bar)

v = [√2 GF]−½ = 246.22 GeV (slightly modified definition of GF)

MH ≫ v ⇒ 1∕MH2(v) − 1∕MH2(Λ) = 3∕(8 π2 v2) ln Λ2∕v2

MH2 < 8 π2 v2∕(3 ln Λ2∕v2) = [147 (144) GeV]2 

for Λ = 2.4×1018  (1.2×1019) GeV

MH < 816 GeV for Λ = MH
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Lower bound
rewrite the RGE

d MH2∕d ln μ2 = 3∕(8 π2 v2) (MH2 − M+2) (MH2 − M−2) with M±2 = 

½ MZ2 + MW2 − mt2 ± [(½ MZ2 + MW2 − mt2)2 − MZ4 − 2 MW4 + 4 mt4]½ 

≈ (−1 ± √5) mt2 ⇒ M+ ~ 200 GeV, M−2 ~ − (300 GeV)2

⇒ for MH ≳ 200 GeV, Landau pole persists (potential bounded below)
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½ MZ2 + MW2 − mt2 ± [(½ MZ2 + MW2 − mt2)2 − MZ4 − 2 MW4 + 4 mt4]½ 

≈ (−1 ± √5) mt2 ⇒ M+ ~ 200 GeV, M−2 ~ − (300 GeV)2

⇒ for MH ≳ 200 GeV, Landau pole persists (potential bounded below)

we have worked with constant masses, but d mt2∕d ln μ2 = 

3 mt2∕(16 π2 v2) [ (1L + 2R) mt2 − (2L + 0R) dim SU(2)∕ND MW2 − 
((1/3)2L + (4/3)2R) (MZ2 − MW2) − (2L + 2R) dim SU(3)∕NC (π αs v2)  ] = 

mt2∕(16 π2 v2) [ 9 mt2 − 10∕3 MW2 − 17∕3 MZ2 − 32 (π αs v2) ] < 0
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tree-level unitarity of the partial S-wave amplitude of elastic 
Goldstone boson scattering: 
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absence of Landau pole:

MH2∕v2 < 4 π2∕3 ln-1 κP∕v ⇒ MH < 147 GeV

vacuum stability: MH ≳ 130 GeV Casas, Espinosa, Quiros 1995

vacuum meta-stability: MH ≳ 115 GeV Isidori, Ridolfi, Strumia 2001
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19

proceed exactly as before, except that now we record the set of points (µ0,mH) where
µ0 is the smallest value for which λ(µ0) < 0.

4. Results

4.1. The Standard Model

We will first discuss the case of the Standard Model with three chiral generations of
fermions before generalizing our results to the SM4. In Fig. 1 we show the stability
and triviality bounds that we obtained following the procedure described in Section
3. Varying the top mass mt = 173.3 ± 1.1 GeV [34] and the strong coupling constant
αs = 0.1184± 0.0007 [13] within their 1σ interval only has a small effect of ≤ 2.6 GeV
and ≤ 0.5 GeV on the stability and triviality bound, respectively, and the corresponding
error bands have therefore not been indicated in the plot. The theoretical uncertainty,
however, is larger. As discussed before, λ(µ) ∼ λFP/2 is expected to be already very close
to the non-perturbative regime, and applying the more conservative criterion λ(µ) <
λFP/4 leads to stricter bounds that we have indicated by the blue shaded area below the
curve corresponding to the triviality bound. We will comment on the uncertainty of the
stability curve at the end of this subsection.
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SM3: mt = 173.3 GeV mb = 4.19 GeV αs =0.1184
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Figure 1: The stability and triviality bounds for the Standard Model. The horizontal bars indicate the
Higgs exclusion limits from LEP [3], LHC [8, 22], and electroweak precision measurements [4]. The
shaded area below the triviality bound indicates the uncertainty introduced by the choice of λ < λFP/2
or λ < λFP/4 as the criterion for perturbativity.

The Standard Model is most likely only an effective theory that is valid below a scale
Λc where new physics is expected to enter. From Fig. 1 we can read off that for Λc =
1 TeV, the Higgs mass must in the interval 76 ≤ mH ≤ 696 GeV, and analogously
97 ≤ mH ≤ 454 GeV for Λc = 10 TeV, 109 ≤ mH ≤ 359 GeV for Λc = 100 TeV, and
finally 133 ≤ mH ≤ 187 GeV for Λc = 1015 GeV. Note, though, that we have obtained
these limits under very specific assumptions like perturbative validity of the SM up to
Λc, absolute stability of the vacuum, and the presence of only one Higgs doublet in the
theory. If one or more of these assumptions are relaxed, the bounds will be much weaker.
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⇒ sin2θWon-shell ≡ 1 − MW2∕MZ2 = 0.22290 ± 0.00028

⇒ sin2θWeff = 0.23141 ± 0.00013 and MH = 96+29−25 GeV

new global electroweak fit: MH = 102+24−20 GeV JE 2012

prospects: 

no PDF (±10 MeV) & QED (±4 MeV) improvement ⇒ ±13 MeV CDF 10 fb−1

±7 MeVPDF ⇒ ±11 MeV CDF 10 fb−1

±5 MeVPDF & lepton energy scale ±6 → ±3 MeV ⇒ ±10 MeV CDF 10 fb−1

ILC threshold scan: ±6 MeV
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mt = 173.4 ± 0.9exp ± 0.5th GeV 

Question: What is the definition of mt?

Correct but useless answer: mt ≡ mtPythia (“Pythia tuning parameter”)

We assume mtPythia = mtpole ± ΛQCD where 

mtpole ≡ m̅t(m̅t) [1 + 4∕3 αs(m̅t)∕π + O(αs2) + O(αs3)]

and ΛQCD ≡ the O(αs3) term above (see also Skands, Wicke 2007)
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We assume mtPythia = mtpole ± ΛQCD where 

mtpole ≡ m̅t(m̅t) [1 + 4∕3 αs(m̅t)∕π + O(αs2) + O(αs3)]

and ΛQCD ≡ the O(αs3) term above (see also Skands, Wicke 2007)

Alternative I: SCET + HQET → “jet mass” Fleming, Hoang, Mantry, Stewart 2008

Alternative II: get m̅t(m̅t) directly from t t ̅ cross-section ⇒                         

m̅t(m̅t) = 160.0 ± 3.3 GeV Langenfeld, Moch, Uwer 2008

⇒ MH = 81+32−24 GeV (mtpole = 169.6 ± 3.5 GeV)
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Higgsstrahlung

vector boson fusion gluon fusion

Higgs Production @ Hadron Colliders

III. Vector Boson Fusion Barbara Jäger @ KEK, October 2006/ p. 10
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MH probability density
p(MH) ≡ exp[−χ2EW(MH)∕2] QLEP QTevatron QLHC MH-1

factorized form: neglect of correlations

QLEP(MH), QTevatron(MH): likelihood ratios H∕H+B

QLHC(MH) = QATLAS(MH) QCMS(MH) (but not available)

instead: 2 ln Q ≡ χ2H+B(MH) − χ2B(MH) ≡ 

(1 − σo̅bs)2∕Δσ̅+2 − σo̅bs2∕Δσ−̅2

σo̅bs: effective observed X-section combining all channels

Δσ±̅: error pointing in signal (+) and background (−) direction

Poisson statistics ⇒ Δσ+̅ > Δσ−̅ but often also Δσ+̅ < Δσ−̅
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LHC data require “look elsewhere effect correction”
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