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Outline of the talk

• General properties of anomalies

• Difference between massive and massless theories and the two
point anomaly

• Higher point amplitudes

• Summing the thermal anomaly

• Thermal anomaly and the index

• “Adler-Bardeen” like theorem
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General properties of anomalies

• When a classical conservation law, say, of the form

∂µJ
µ = ∆,

is violated by quantum mechanical corrections, we say that
there is an anomaly in the theory (the conservation law
becomes anomalous).

• At zero temperature, we understand anomalies as arising
because of the incompatibility of the ultraviolet regularization
with some of the symmetries of the theory. (Example: Gauge
invariance and chiral invariance)

• At finite temperature, however, there is no ultraviolet diver-
gence and, consequently, it follows that there is no tempera-
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ture dependent correction to the anomaly (in particular, the
chiral anomaly).

• However, the infrared behavior becomes much more prominent
at finite temperature and can even be divergent.

• We find that this can lead to temperature dependent correc-
tions to the chiral anomaly (in massless theories) for back-
ground fields that do not vanish asymptotically. (Motivation:
constant electric field backgrounds etc.)

• We call this the infrared chiral anomaly.

• We show this explicitly at one loop in the 1 + 1 dimensional
Schwinger model although it is likely to arise in infrared
divergent graphs in higher dimensions.
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Difference between massive and massless

theories

• Since this is an infrared phenomenon, it arises in massless
theories and not in massive theories. In the massive Schwinger
model, for example, the temperature dependent corrections to
the anomaly come from diagrams
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∫
d2k

[
(k2 −m2)εµν(k + p)µ − ((k + p)2 −m2)εµνkµ

]
δ(k2 −m2)

× nF(|k0|)
(

i

(k + p)2 −m2 + iε
− πnF(|k0 + p0|)δ((k + p)2 −m2)

)
Aν

= 0,

independent of the asymptotic behavior of the background
field Aν(p).

• This is seen from the fact that the terms linear in delta func-
tions vanish by delta function constraint or by anti-symmetry
(both for massive and massless cases). We only have to
analyze the terms which are quadratic in delta functions.
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• We note that

δ(k2 −m2)δ((k + p)2 −m2)

=
θ(ω+(p0))

2ω+(p0)
δ(k0 − ω+(p0))

×
[

1

|J+,+(p0)|δ(k1 −X+(p0)) +
1

|J+,−(p0)|δ(k1 +X+(p0))

]
+
θ(ω−(p0))

2ω−(p0)
δ(k0 − ω−(p0))

×
[

1

|J−,+(p0)|δ(k1 −X−(p0)) +
1

|J−,−(p0)|δ(k1 +X−(p0))

]
+ (k0, p0 → −k0,−p0).

It constrains the two variables of integration. The numerators
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of the integrand, with these constraints, make the integral
vanish in this case.

• Here we have identified

ω±(p0) =
1

2

−p0 ± |p1|
√

1− 4m2

p2

 ,

X±(p0) =
√
ω2
±(p0)−m2,

J+,±(p0) =
∓X+(p0)p2 − 2m2p1

ω2
+(p0)

,

J−,±(p0) =
∓X−(p0)p2 − 2m2p1

ω2
−(p0)

.
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• In a massless theory, on the other hand, we can factorize

δ(k2)δ((k + p)2)

=
1

|k−||p+|
δ(k+)δ(k− + p−) +

1

|k+||p−|
δ(k−)δ(k+ + p+)

+
1

|k−||k− + p−|
δ(k+)δ(p+) +

1

|k+||k+ + p+|
δ(k−)δ(p−).

• The first two terms constrain the two variables of integration
and, therefore, lead to a vanishing value.

• On the other hand, the last two terms constrain the variables
of integration only partially and lead to an anomaly

(p+δ(p+)A−(p) + p−δ(p−)A+(p)) I
(β)
2 ,

where I
(β)
2 is a temperature dependent quantity.
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• This would vanish for backgrounds that are well behaved and
vanish asymptotically. However, note that if

A−(p) ∼ 1

p+
, or, A+(p) ∼ 1

p−
,

this would lead to a finite contribution. This is the infrared
origin of the correction alluded to earlier.

• In the high temperature limit, we can evaluate I
(β)
2 which

takes the form

I
(β)
2 = (ie)2T,

where T is the temperature.

• In fact, in the high temperature limit, the two point anomaly
can be Fourier transformed to the coordinate space where it
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has the closed form (for arbitrary backgrounds)

∂µJ
µ(β)
5,(2)(x) = −(ie)2T

π

[∫
dy+ sgn(x+ − y+)

(
E(y+,∞)− E(y+,−∞)

)
+

∫
dy− sgn(x− − y−)

(
E(∞, y−)− E(−∞, y−)

)]
.

• For electric fields that are even functions of x+, x−, namely,

E(x+, x−) = E(−x+, x−) = E(x+,−x−),

these contributions vanish. A constant background electric
field, therefore, would not lead to such a correction. However,
an electric field that is asymptotically odd, for example,

E(x+, x−) = E1sgn(x+)δ(x−), or, E(x+, x−) = E2sgn(x−)δ(x+),
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would lead to a nonvanishing contribution.

• For the first field configuration, for example, the temperature
dependent infrared anomaly at the two point level is given by

∂µJ
µ(β)
5,(2)(x) = −2E1(ie)2T

π
sgn(x−).

• This is the infrared anomaly that we are talking about since it
has its origin in the large distance behavior of the electric field
(in a massless theory) and is independent of the ultraviolet
divergence structure of the amplitude.

• Since at zero temperature, we do not have products of (two)
delta functions, such a contribution will not arise at zero
temperature. It is genuinely a finite temperature phenomenon.

Ashok Das 12



Higher point amplitudes

• The conventional zero temperature anomaly (in the Schwinger
model) involves only the two point function because this is
the only diagram in the theory with a UV divergence and
the conventional anomaly is associated with the ultraviolet
divergence of the diagram.

...

p1

p2

p2n−1

A
(β)
2n−1(P ) =

p3
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• In contrast, the infrared anomaly is not associated with the
ultraviolet divergence of the amplitude and, therefore, can be
present at any (even) order.

• The complete temperature dependent (one loop) effective
action for the Schwinger model has already been calculated

and has contribution at every even order Γ
(β)
eff =

∑
n=0

Γ
(β)
eff,(2n).

• As a result, the axial current and the anomaly at every even
order can be derived from the effective action,

A
(β)
(2n−1)(x) = ∂µJ

µ(β)
5,(2n)(x) = εµν ∂µ

δΓ
(β)
eff,(2n)

δAν(x)
.

• At each even order the effective action as well as the axial-
current/anomaly contains a temperature dependent factor
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I
(β)
2n which simplifies at high temperature to the form

I
(β)
2n = π2(n−1)(2n− 1)!(ie)2nC2nT, C2n =

n∑
m=1

1

2m− 1
,

and the anomaly in the momentum space has the form (ūµ =
εµνpν/p1 in the rest frame)

A
(β)
2n−1(P ) = −(2ie)2nC2n

2(2π)2

[ ∫
d2p2n−1

2(n−1)∏
j=1

(
d2pj(ū ·A(pj))δ(pj,+)

)
× p2n−1,+δ(p2n−1,+)(ū ·A(p2n−1))δ2(P −

2n−1∑
i=1

pi)

+ pj,+ → pj,− + permutations

]
T,

Ashok Das 15



• In the coordinate space, this leads to

A
(β)
(2n−1)(x) = −(ie)2nπ2n−3(2n− 1)C2nT

×
[
(I(x+))2(n−1)J(x−) + (I(x−))2(n−1)J(x+)

]
,

where we have identified

I(x±) =

∫
d2y sgn(x± − y±)E(y),

J(x+) =

∫
dy+ sgn(x+ − y+)(E(y+,∞)− E(y+,−∞)),

J(x−) =

∫
dy− sgn(x− − y−)(E(∞, y−)− E(−∞, y−)).
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Summing the thermal anomaly

• The perturbative anomaly seems to have a divergent structure.
For the field configuration of the first kind, for example, it has
the form

A
(β)
2n−1(x) = −(2E1)2n−1(ie)2nπ2n−3(2n−1)C2n |x+|2(n−1) sgn(x−)T.

This is only an artifact of perturbation theory.

• Let us note that we can write (B2n’s are Bernoulli’s numbers,
C ' 0.577 is the Euler constant)

C2n =

n∑
m=1

1

2m− 1
=

1

2
(C+ lnn) + ln 2 +

B2

8n2
+

7B4

64n4
+ · · · .

For n = 1, the first three terms give the exact result up to 2%
accuracy, for n = 2 the result is accurate to 0.4% and so on.
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• Furthermore, the polylogarithms are defined as

Lis(z) =

∞∑
n=1

zn

ns
=

z∫
0

dt
Lis−1(t)

t
, Li1(z) = − ln(1− z),

which have at best only one singularity at z = 1 (branch cut
or pole).

• In terms of these functions, the anomaly functional can be
summed and has the form

A(β)(x) = −(ie)2T

π

(
S+J(x−) + S−J(x+)

)
,

where (S− is obtained with z+ → z− = −(eπI(x−))2)

S+ =
1

2

[
(C + 2 ln 2)

1 + z+

(1− z+)2
+

1

z+

(
dLis(z+)

ds

∣∣∣
s=0
− 2

dLis(z+)

ds

∣∣∣
s=−1

)
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+
B2

4z+
(2Li1(z+)− Li2(z+)) + · · ·

]
, z+ = −(eπI(x+))2.

• This shows that the complete anomaly functional is well
behaved, the only singularities at z± = 1 lie outside the

physical region. It is well behaved even at infinity since Lis(z)
z

is. The apparent divergence structure noted earlier is only an
artifact of perturbation theory.

• The points |z±| = 1 can be thought of as the boundary points
between strong and weak coupling.
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Thermal anomaly and the index

• The complete anomaly has a finite nontrivial value for classes
of electric fields of the separable form

E(x+, x−) = f(x+)g(x−),

with f(x+) even (odd) and g(x−) odd (even). The particular
models described earlier belong to this class.

• Because of the anomaly, the axial charge is no longer conserved
and satisfies

Q
(β)
5 (∞)−Q(β)

5 (−∞) = 2

∫
dx+dx−

(
A(β) +

1

2
(∂+ − ∂−)J

(β)
0

)
.

• The surface term cannot be neglected for fields that are
nonvanishing asymptotically.
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• The left hand side is normally identified with the index of the
Dirac operator and conventionally can be identified with the
integrated anomaly. (Here the right hand side has an extra
contribution.)

• In the present case, rotation to Euclidean space as well as
defining the theory on a compact manifold is not possible. So,
it is not clear if the left hand side can still be identified with
the index of the Dirac operator (or whether the index of the
Dirac operator can even be defined meaningfully).

• If it can be identified, the right hand side will, in general, be
a continuous function of the temperature, consistent with the
expectation that fermion (number) distributions are continu-
ous functions of temperature. Therefore, it will no longer be
an integer. (Such a behavior already shows up in the case of
the Witten index.)
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• However, the left hand side will vanish for the special class
of currents and electric fields that are CPT odd. (Note that
classical currents are CPT odd.) The particular background
fields discussed earlier belong to this class.
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“Adler-Bardeen” like theorem

• The thermal anomaly has its contribution only at one loop
(Adler-Bardeen like behavior). This is seen by noting that the
photon propagator (in an arbitrary covariant gauge) at finite
temperature has the form

Dµν(p) = −
(

i

p2 −m2 + iε
+ 2πnB(|p0|)δ(p2 −m2)

)(
ηµν −

ξpµpν
p2

)
.

where ξ is the gauge fixing parameter.

• Higher loop corrections to the anomaly can arise from dia-
grams of the forms
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...

• Contracting any two photon lines leads to

ūµ(−p)Dµν(p)ū
ν(p)δ(p±) ∼ p2

(p1)2
δ(p±) = 0.

so that such diagrams cannot contribute to the anomaly.

• Physically, this can be understood from the fact that the
photon field becomes massive beyond one loop and, therefore,
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falls off asymptotically. As a result, it cannot lead to an
infrared anomaly beyond one loop.
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