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Neutrino Oscillations I

Neutrinos are emitted or absorbed in one of three well defined flavour eigenstates. Each flavour

eigenstate is a superposition of three mass eigenstates

|να(o) >=

3
∑

i=1

U
∗
αi|νi > α = e, µ, τ.

After a time t, the neutrino travels a distance L,

|νi(t) >= e
−i(Eit−piL)|νi(o) >, L distance from the source

Ei =
√

p2 + m2
i ≈ p +

m2
i

2p
, p

2
>> m

2
i

The probability of detecting the neutrino emitted as |να > in an eigenstate |ν(β) > of flavour β

is

P (να → νβ) = | < νβ|να(L) > |2

= δαβ − 4
3
∑

i,j=1

Re[U
∗
αi
Uβi

Uαj
U

∗
βj
] sin

2
(1.27∆m

2
(L/E)]

+ 2
3
∑

i,j=1

Im[U
∗
αi
Uβi

Uαj
U

∗
βj
] sin

2
(2.54∆m

2
(L/E)]

Uαi
is the mixing matrix.
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Neutrino Oscillations II

P (να → νβ) = | < νβ|να(L) > |2

= δαβ − 4

3
∑

i,j=1

Re[U
∗
αi
Uβi

Uαj
U

∗
βj
] sin

2
(1.27∆m

2
i,j(L/E)]

+ 2

3
∑

i,j=1

Im[U
∗
αi
Uβi

Uαj
U

∗
βj
] sin

2
(2.54∆m

2
ij(L/E)]

∆m2
ij = m2

i − m2
j , L distance en Km from the source, E energy in Gev.

Table 1: (1 March 2012)

Parameter Best fit

∆m2
21(10

−5 eV 2) 7.65+0.23
−0.20

|∆m2
31|(10−3 eV 2) 2.40.12

−0.11

sin2 θ12 0.304+0.022
−0.016

sin2 θ23 0.50+0.07
−0.06

sin2 θ13 0.092+0.016
−0.016
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Massive neutrinos in the theory

• In the Standard Model of fundamental interactions lepton flavour is conseved and neutrinos are

massless

• To accomodate neutrino masses in the theory, in a systematic and consistent way, we formulated

a Minimal, S3−invariant Extension of the Standard Model (J. Kubo, A. Mondragón, M.

Mondragón and E. Rodŕıguez-Jáuregui, Prog. Theor. Phys. 109, (5) 795-807 (2003) )

• The extended Higgs sector gives mass to all fermions in the theory and makes the theory more

flavour symmetric

• The S3 flavour permutational symmetry allows for a systematic treatment of masses and

mixings of all particles (quarks, leptons and Higgs’) while reducing drastically the number of

free parameters in the theory

• A number of predictions in other sectors of the theory is made (FCNC’s and contributions

of the neutral currents to the magnetic anomaly of the muon) in agreement with

experiment.

4



Flavour permutational symmetry

• Prior to the introduction of the Higgs boson and mass terms, the Langrangian of the Standard

Model is chiral and invariant with respect to any permutation of the left and right quark and

lepton fields. GF ∼ S3L ⊗ S3R

• Charged currents Jµ are invariant under GF if the d and u−type fields are transformed with

the same family group matrix

Jµ = −iūLγµdL + h.c. ⇒ GF ∼ S3 ⊂ S3L ⊗ S3R

• When < 0|ΦH|0 > 6= 0, the Yukawa couplings give mass to quarks and leptons, if we assume

that the S3 permutational symmetry is not broken

Mq = m3q

1

3





1 1 1

1 1 1

1 1 1





mt 6= 0, me = mµ = 0; mb 6= 0,ms = md = 0

mτ 6= 0,mµ = me = 0;mντ = mνµ = mνe = 0

V = 1

There is no mixing nor CP- violation.
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The Group S3

The group S3 of permutations of three objects

Permutations Rotations
3

1

2

V2A

V2s

V1

(

1 2 3

3 1 2

)

⇐⇒ a 120◦− rotation around the

invariant vector V1

(

1 2 3

2 1 3

)

⇐⇒ a 180◦rotation around the

invariant vector V2s

Symmetry adapted basis

|v2A >=
1√
2





1

−1

0



 , |v2s >=
1√
6





1

1

−2



 , |v1 >=
1√
3





1

1

1
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Irreducible representations of S3

The group S3 has two one-dimensional irreps (singlets ) and one two-dimensional irrep (doublet)

• one dimensional: 1A antisymmetric singlet, 1s symmetric singlet

• Two - dimensional: 2 doublet

Direct product of irreps of S3

1s ⊗ 1s = 1s, 1s ⊗ 1A = 1A, 1A ⊗ 1A = 1s, 1s ⊗ 2 = 2, 1A ⊗ 2 = 2

2 ⊗ 2 = 1s ⊕ 1A ⊕ 2

the direct (tensor) product of two doublets

pD =

(

pD1

pD2

)

and qD =

(

qD1

qD2

)

has two singlets, rs and rA, and one doublet rT
D

rs = pD1qD1 + pD2qD2 is invariant, rA = pD1qD2 − pD2qD1 is not invariant

r
T
D =

(

pD1qD2 + pD2qD1

pD1qD1 − pD2qD2

)
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A Minimal S3 invariant extension of the SM

The Higgs sector is modified,

Φ → H = (Φ1,Φ2,Φ3)
T

H is a reducible 1s ⊕ 2 rep. of S3

Hs =
1√
3

(

Φ1 + Φ2 + Φ3

)

HD =







1√
2
(Φ1 − Φ2)

1√
6
(Φ1 + Φ2 − 2Φ3)







Quark, lepton and Higgs fields are

Q
T
= (uL, dL), uR, dR, L

T
= (νL, eL), eR, νR, H

All these fields have three species (flavours) and belong to a reducible 1⊕ 2 rep. of S3
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Leptons’ Yukawa interactions

Leptons

LYE
= −Y

e
1 LIHSeIR − Y

e
3 L3HSe3R − Y

e
2 [ LIκIJH1eJR + LIηIJH2eJR ]

− Y
e
4 L3HIeIR − Y

e
5 LIHIe3R + h.c.,

LYν = −Y
ν
1 LI(iσ2)H

∗
SνIR − Y

ν
3 L3(iσ2)H

∗
Sν3R

− Y
ν
2 [ LIκIJ(iσ2)H

∗
1νJR + LIηIJ(iσ2)H

∗
2νJR ]

− Y
ν
4 L3(iσ2)H

∗
IνIR − Y

ν
5 LI(iσ2)H

∗
Iν3R + h.c.

κ =

(

0 1

1 0

)

; η =

(

1 0

0 −1

)

I, J = 1, 2

Furthermore, the Majorana mass terms for the right handed neutrinos are

LM = −ν
T
IRCMIνIR − M3ν

T
3RCν3R,

C is the charge conjugation matrix.
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Mass matrices

We will assume that

< HD1 > = < HD2 > 6= 0 and < H3 > 6= 0

and

< H3 >
2
+ < HD1 >

2
+ < HD2 >

2 ≈
(246

2
GeV

)2

Then, the Yukawa interactions yield mass matrices of the general form

M =





µ1 + µ2 µ2 µ5

µ2 µ1 − µ2 µ5

µ4 µ4 µ3





The Majorana masses for νL are obtained from the see-saw mechanism

Mν = MνDM̃
−1

(MνD)
T

with M̃ = diag(M1,M2,M3)
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Mixing matrices

The mass matrices are diagonalized by unitary matrices

U
†
d(u,e)L

Md(u,e)Ud(u,e)R = diag
(

md(u,e)ms(c,µ)mb(t,τ)

)

and

U
T
ν MνUν = diag

(

mν1
,mν2

,mν3

)

The masses can be complex, and so, UeL is such that

U
†
eLMeM

†
eUeL = diag

(

|me|2, |mµ|2, |mτ |2
)

, etc.

The quark mixing matrix is

VCKM = U
†
uLUdL

and, the neutrino mixing matrix is

VMNS = U
†
eLUν
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Masses and mixings in the quark sector

The mass matrices for the quark sector take the general form

Mu(d) =







µ
u(d)
1 + µ

u(d)
2 µ

u(d)
2 µ

u(d)
5

µ
u(d)
2 µ

u(d)
1 − µ

u(d)
2 µ

u(d)
5

µ
u(d)
4 µ

u(d)
4 µ

u(d)
3







U
†
u(d)L

Mu(d)M
†
u(d)

Uu(d)L = diag
(

|mu(d)|2, |mc(s)|2, |mt(b)|2
)

,

VCKM = U
†
uLUdL

The set of dimensionless parameters

µ
u
1/µ

u
0 = −0.000293, µu

2/µ
u
0 = −0.00028, µ

u
3/µ

u
0 = 1,

µ
u
4/µ

u
0 = 0.031, µu

5/µ
u
0 = 0.0386,

µ
d
1/µ

d
0 = 0.0004, µd

2/µ
d
0 = 0.00275, µ

d
3/µ

d
0 = 1 + 1.2I,

µ
d
4/µ

d
0 = 0.283, µd

5/µ
d
0 = 0.058,
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The quark mixing matrix

Yields the mass hierarchy and the mixing matrix

mu/mt = 2.5469 × 10
−5

, mc/mt = 3.9918 × 10−3,

md/mb = 1.5261 × 10
−3

, ms/mb = 3.2319 × 10−2,

The computed mixing matrix is

VCKM =





0.968 + 0.117I 0.198 + 0.0974I −0.00253 − 0.00354I

−0.198 + 0.0969I 0.968 − 0.115I −0.0222 − 0.0376I

0.00211 + 0.00648I 0.0179 − 0.0395I 0.999 − 0.00206I





|Vth
CKM | =





0.975 0.221 0.00435

0.221 0.974 0.0437

0.00682 0.0434 0.999





which should be compared with

|V exp
CKM

| =







0.97383 ± 0.00024 0.2272 ± 0.0010 (3.96 ± 0.09) × 10−3

0.2271 ± 0.010 0.97296 ± 0.00024 (42.21 ± 0.45 ± 0.09) × 10−3

(8.14 ± 0.5) × 10−3 (41.61 ± 0.12) × 10−3 0.9991 ± 0.000034







The Jarlskog invariant is

J = Im [(VCKM)11(VCKM)22(V
∗
CKM)12(V

∗
CKM)21] = 2.9 × 10

−5
, Jexp = (3.0 ± 0.3) × 10−5
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The leptonic sector

To achieve a further reduction of the number of parameters, in the leptonic sector, we introduce

an additional discrete Z2 symmetry

− +

HI, ν3R HS, L3, LI, e3R, eIR, νIR

then,

Y
e
1 = Y

e
3 = Y

ν
1 = Y

ν
5 = 0

Hence, the leptonic mass matrices are

Me =





µe
2 µe

2 µe
5

µe
2 −µe

2 µe
5

µe
4 µe

4 0



 and MνD =





µν
2 µν

2 0

µν
2 −µν

2 0

µν
4 µν

4 µν
3
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The Mass Matrix of the charged leptons as function of its eigenvalues

The mass matrix of the charged leptons is

Me ≈ mτ



























1√
2

m̃µ√
1+x2

1√
2

m̃µ√
1+x2

1√
2

√

1+x2−m̃2
µ

1+x2

1√
2

m̃µ√
1+x2

− 1√
2

m̃µ√
1+x2

1√
2

√

1+x2−m̃2
µ

1+x2

m̃e(1+x2)
√

1+x2−m̃2
µ

eiδe
m̃e(1+x2)
√

1+x2−m̃2
µ

eiδe 0



























.

x = me/mµ, m̃µ = mµ/mτ and m̃e = me/mτ

This expression is accurate to order 10−9 in units of the τ mass

There are no free parameters in Me other than the Dirac Phase δ!!
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The Unitary Matrix UeL

The unitary matrix UeL is calculated from

U
†
eLMeM

†
eLUeL = diag

(

m
2
e,m

2
µ,m

2
τ

)

We find

UeL = ΦeLOeL, ΦeL = diag
[

1, 1, e
iδD
]

and

OeL ≈



























1√
2
x

(1+2m̃2
µ+4x2+m̃4

µ+2m̃2
e)

√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4
− 1√

2

(1−2m̃2
µ+m̃4

µ−2m̃2
e)

√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

− 1√
2
x

(1+4x2−m̃4
µ−2m̃2

e)
√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4

1√
2

(1−2m̃2
µ+m̃4

µ)
√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

−
√

1+2x2−m̃2
µ−m̃2

e(1+m̃2
µ+x2−2m̃2

e)
√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4
−x

(1+x2−m̃2
µ−2m̃2

e)
√

1+2x2−m̃2
µ−m̃2

e
√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

√
1+x2m̃em̃µ
√

1+x2−m̃2
µ



























,

x = me/mµ, m̃µ = mµ/mτ and m̃e = me/mτ
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The neutrino mass matrix I

The Majorana masses for νL are obtained from the see-saw mechanism

Mν = MνDM̃
−1
R M

T
νD

with

M̃R = diag
[

M1,M2,M3

]

M1 6= M2 6= M3

and

MνD =





µ2 µ2 0

µ2 −µ2 0

µ4 µ4 µ3





Then

Mν =











2µ22
M̄

λ
2µ22
M̄

2µ2µ4
M̄

λ
2µ22
M̄

2µ22
M̄

λ
2µ2µ4
M̄

2µ2µ4
M̄

λ
2µ2µ4
M̄

2µ24
M̄

+
µ23
M̄











.

1

M̄
=

1

2

( 1

M1

+
1

M2

)

and λ =
M2 − M1

M1 + M1
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The neutrino mass matrix II

When M̄R is real, the phases in Mν may be factorized out as

Mν = PνM̄νPν (1)

where

Pν = e
iφ
diag

[

1, 1, e
iδν
]

(2)

Then, the real symmetric matrix M̄ν may be diagonalized by means of an orthogonal matrix

Oν

Mν = PνOν

[

diag(|m1ν|, |m2ν|, |m3ν|)
]

O
T
Pν (3)

Therefore, the unitary matrix

Uν = PνOν (4)

diagonalizes the neutrino mass matrix Mν.
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The neutrino mass matrix III

The reduced neutrino mass matrix M̄ν is reparametrized in terms of the neutrino masses |mi|
and two free parameters µo and d, as

M̄ν =







µo +
1
2d

1
2d

1√
2
(a + c)

1
2d µo +

1
2d − 1√

2
(a − c)

1√
2
(a + c) − 1√

2
(a − c) b + µo







where

a
2

= −(|m1| − µo)(|m2| − µo)(|m3| − µo)

d
, µo =

2|µ2
2|

M̄
(1 − λ)

b = |m1| + |m2| + |m3| − d − 3µo d = λ
2|µ2|2

M̄

c
2

=
1

d

[

(d − |m1|)(d − |m2|)(d − |m3|)
]
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The Orthogonal Matrix Oν

The real orthogonal matrix that diagonalizes M̄ν and Mν is obtained from the eigenvectors of

M̄ν

Oν =
[

|m1 >, |m2 >, |m3 >
]

|mi > =























[

−σi+1σi+2(σi−d)
d(σi−σi+1)(σi−σi+2)

]1/2

[

σi(σi−d)
(σi−σi+1)(σi−σi+2)

]1/2

[

σi(d−σi+1)(d−σi+2)
d(σi−σi+1)(σi−σi+2)

]1/2























, i = 1, 2, 3, ..mod(3)

where σi = (mi − µo).

The unitary matrix Uν that diagonalizes Mν is

Uν = PνOν
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The neutrino mixing matrix I

V
th
PMNS = U

†
eLUν.

The theoretical mixing matrix V th
PMNS is

V
th
PMNS = O

T
eLPν−eOνK

where Pν−e is a diagonal matix of phases

Pν−e = diag
[

1, 1, e
i(δν−δe)

]

Hence
(

V
th
PMNS

)

ij
=

3
∑

r=1

(

OeL

)

ri

(

Pν−e

)

r

(

Oν

)

rj

From a comparison of V PDG
PMNS with V th

PMS, we obtain the neutrino mixing angles as functions of

the lepton masses.
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The neutrino mixing matrix II

From a comparison of V th
PMNS with V PDG

PMNS, we obtain the neutrino mixing angles as function

of the lepton masses

sin
2
θ
ν
12 =

|(VPMNS)12|2

1 − |(VPMNS)13|2

sin
2
θ
ν
23 =

|(VPMNS)23|2

1 − |(VPMNS)13|2

sin
2
θ
ν
13 = |(VPMNS)13|2
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Neutrino Mixing Angles I

The solar angle θ12 is strongly dependent on the neutrino masses but depends only very weakly

on the charged lepton masses

tan θ
2
12 =

(∆m2
12 + ∆m2

13 + |mν3
|2 cos2 φν)

1/2 − |mν3
|| cosφν|

(∆m2
13 + |mν3

|2 cos2 φν)1/2 + |mν3
|| cosφν|

.

the numerical value of tan2 θ12 fixes the scale of the neutrino masses.

The atmospheric mixing angle θ23 depends mostly on the charged lepton masses

sin θ23 ≈ 1√
2

1 − 2m̃2
µ + m̃4

µ
√

1 − 4m̃2
µ + x2 + 6m̃4

µ

= 0.7071

x = me/mµ = 4.84×−3
, m̃µ = mµ/mτ = 5.95×−2
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Neutrino Mixing Angles II

The reactor mixing angle θ13 is mostly determined by the interplay of the S3 symmetry and the

mass spliting of the right-handed neutrinos in the see saw mechanism plus a very small contribution

from the charged leptons,

sin θ13 ≈
2(λµ)mν3

mν1
− mν2

(

1 −
√

(mν2
− mν3

)

mν3
− mν1

)(

cos η −
√

(

1 −
mν1

mν3

)(mν2

mν3

−
mν1

mν3

)

sin η
)

+
1√
2

me

mµ

(

1 + 4(me
mµ

)2 − (
mµ
mτ

)4
)

√

1 + (
mµ
mτ

)2 + 5(me
mµ

)2 − (
mµ
mτ

)4

where

cos η =

√

mν2
− mν3

mν2
− mν1

, sin η =

√

mν3
− mν1

mν2
− mν1

We get

sin θ
th
13 ≈ 0.151 with (λµ) ≈ 0.02
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Neutrino Mixing Angles: Theory vs Experiment

The most recent experimental values of the neutrino mixing angles θ13 and θ23 (T. Schwetz,

M. Tortola and J.W.F. Valle, New J. Phys. 13, 063004 (2011) and arXiv: 1108.137

v1[hep-ph] 4 Aug 2011; G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno,

arXiv: 1106.6028 v2 [hep-ph] 26 Aug 2011 and Daya Bay Collaboration arXiv: 1203.1669

v1 [hep-ex] 8 Mar 2012 )

θ̄
o exp
13 = 8.7

+1.2
−1.2 → sin

2
2θ̄

o exp
13 = 0.092

+0.016
−0.016; (T2K, MINOS, Daya Bay (8 Mar 2012))

θ̄
o exp
23 = 46

+3
−3 sin

2
θ̄
o exp
23 = 0.50

+0.06
−0.06

Our theoretical values are (Phys. Rev. D 76, 076003 (2007) and this work)

θ
o th
13 = 8.67

+2.0
−2.0 sin

2
θ
o th
13 = 0.022

θ
o th
23 = 44.97

+1.2
−1.2 sin

2
θ
o th
23 = 0.50

in very good agreement with the experimental values !!!
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The neutrino mass spectrum I

In the present model, the experimental restriction

|∆m
2
21| < |∆m

2
23|

implies an inverted neutrino mass spectrum mν3
< mν1

,mν2

From our previous expressions for tan θ12

|mν3
| =

√

∆m2
13

2 cosφν tan θ12

1 − tan4 θ12 + r2

√

1 + tan2 θ12
√

1 + tan2 θ12 + r2
,

where r = ∆m2
21/∆m2

23.

Then, the mass |mν3
| is approximately given by

|mν3
| ≈ 1

2

√

∆m2
13

tan θ12
(1 − tan

2
θ12)
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Neutrino mass spectrum II

• We wrote the neutrino mass differences, mνi
− mνj

, in terms of the differences of the squared

masses ∆2
ij = m2

νi
− m2

νj
and one of the neutrino masses, say mν3

.

• The mass mν2
was taken as a free parameter in the fitting of our formula for tan θ12 to the

experimental value

• with

∆m
2
21 = 7.6 × 10

−5
eV

2
∆m

2
13 = 2.4 × 10

−3
eV

2

and

tan θ12 = 0.696

we get

|mν3
| ≈ 0.019 eV =⇒ |mν2

| ≈ 0.053 eV and |mν1
| ≈ 0.052 eV

• The neutrino mass spectrum has an inverted hierarchy of masses
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FCNC I

In the Standard Model the FCNC at tree level are suppressed by the GIM mechanism.

Models with more than one Higgs SU(2) doublet have tree level FCNC due to the exchange

of scalar fields. The mass matrix written in terms of the Yukawa couplings is

Me
Y = Y

E1
w H

0
1 + Y

E2
w H

0
2 ,

FCNC processes:

τ

φ0

µ

µ

µ
Yτµ

Yµµ

τ(p)

τ(p)

τ(p)µ(p′) µ(p′)

µ(p′)

φ0(k)

li li

φ0(k)

φ0(k)

li

γ

γ

γ

Figure 1: The diagram in the left contributes to the process τ− → 3µ. The three diagrams in the

right contribute to the process τ → µγ.
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The Yukawa matrices

The Yukawa matrices in the weak basis are

Y
E1
w =

mτ

v1

























0 1√
2

m̃µ√
1+x2

1√
2

√

1+x2−m̃2
µ

1+x2

1√
2

m̃µ√
1+x2

0 0

m̃e(1+x2)
√

1+x2−m̃2
µ

eiδe 0 0

























and

Y
E2
w =

mτ

v2

























1√
2

m̃µ√
1+x2

0 0

0 − 1√
2

m̃µ√
1+x2

1√
2

√

1+x2−m̃2
µ

1+x2

0 m̃e(1+x2)
√

1+x2−m̃2
µ

eiδe 0

























.
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Yukawa matrices in the mass representation

The Yukawa matrices in the mass basis defined by

Ỹ EI
m = U†

eLY
EI
w UeR

Ỹ
E1
m ≈ mτ

v1















2m̃e −1
2m̃e

1
2x

−m̃µ
1
2m̃µ −1

2

1
2m̃µx

2 −1
2m̃µ

1
2















m

,

and

Ỹ
E2
m ≈ mτ

v2















−m̃e
1
2m̃e −1

2x

m̃µ
1
2m̃µ

1
2

−1
2m̃µx

2 1
2m̃µ

1
2















m

,

all off diagonal terms give rise to FCNC processes!!
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Branching ratios

We define the partial branching ratio (only leptonic decays)

Br(τ → µe
+
e
−
) =

Γ(τ → µe+e−)

Γ(τ → eνν̄) + Γ(τ → µνν̄)
, Γ(τ → µe

+
e
−
) ≈ m5

τ

3 × 210π3

(Y 1,2
τµ Y 1,2

ee′ )
2

M4
H1,2

thus

Br(τ → µe
+
e
−
) ≈ 9

4

(

memµ

m2
τ

)2
(

mτ

MH1,2

)4

,

Similar computations lead to

Br(τ → eγ) ≈ 3α

8π

(

mµ

MH

)4

,

Br(τ → µγ) ≈ 3α

128π

(

mµ

mτ

)2(mτ

MH

)4

,

Br(τ → 3µ) ≈ 9

64

(

mµ

MH

)4

,

Br(µ → 3e) ≈ 18

(

memµ

m2
τ

)2(mτ

MH

)4

,

Br(µ → eγ) ≈ 27α

64π

(

me

mµ

)4(mτ

MH

)4

.
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Numerical results

Table 2: Leptonic processes via FCNC

FCNC processes Theoretical BR Experimental References

upper bound BR

τ → 3µ 8.43 × 10−14 5.3 × 10−8 B. Aubert et. al. (2007)

τ → µe+e− 3.15 × 10−17 8 × 10−8 B. Aubert et. al. (2007)

τ → µγ 9.24 × 10−15 6.8 × 10−8 B. Aubert et. al.(2005)

τ → eγ 5.22 × 10−16 1.1 × 10−11 B. Aubert et. al. (2006)

µ → 3e 2.53 × 10−16 1 × 10−12 U. Bellgardt et al. (1998)

µ → eγ 2.42 × 10−20 1.2 × 10−11 M. L. Brooks et al. (1999)

Small FCNC processes mediating non-standard quark-neutrino interactions could be important

in the theoretical description of the gravitational core collapse and shock generation in the

explosion stage of a supernova
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Muon Anomalous Magnetic Moment

The anomalous magnetic moment of the muon is related to the gyroscopic ratio by

µ(p′)
H(k)µ(p)

γ(q)

ττ
Yµτ

Yτµ

aµ =
µµ

µB

− 1 =
1

2
(gµ − 2)

In models with more than one Higgs SU(2) doublet, the exchange

of flavour changing neutral scalars also contribute to the anomalous

magnetic moment of the muon

δa
(H)
µ =

YµτYτµ

16π2

mµmτ

M2
H

(

log

(

M2
H

m2
τ

)

− 3

2

)

From our results: YµτYτµ =
mµmτ
4v1v2

δa
(H)
µ =

m2
τ

(246 GeV )2
(2 + tan2 β)

32π2

m2
µ

M2
H

(

log

(

M2
H

m2
τ

)

− 3

2

)

, tan β =
vs

v1

From the experimental upper bound on (µ → 3e), we get tan β ≤ 14, Hence

δaµ = 1.7 × 10
−10
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Contribution to the anomaly of the muon’s magnetic moment

The difference between the experimental value and the Standard Model prediction for the

anomaly is

∆aµ = a
exp
µ − a

SM
µ = (28.7 ± 9.1) × 10

−10

∆aµ ∼ 3σ (three standard deviations) !!

But, the uncertainty in the computation of higher order hadronic effects is large

δaLBL
µ (3, had) ≈ 1.59 × 10−9; δaV P

µ (3, had) ≈ −1.82 × 10−9

δa
(H)
µ

∆aµ
≈ 1.7

28 ≈ 6% and δa(H)
µ < δaµ(3, had)

The contribution of the exchange of flavour changing scalars to the anomaly of the muon’s

magnetic moment, δa(H)
µ , is small but not negligible, and it is compatible with the best, state of

the art, measurements and theoretical predictions.
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Summary

• By introducing three SU(2)L Higgs doublet fields, in the theory, we extended the concept of

flavour and generations to the Higgs sector and formulated a minimal S3−invariant Extension

of the Standard Model

• The neutrino mixing angles θ12, θ23 and θ13, are determined by an interplay of the S3 × Z2

symmetry, the see-saw mechanism and the lepton mass hierarchy

• The fit of sin2 θth
13 to sin2 θexp

13 breaks the mass degeneracy of the right handed neutrinos.

• The solar mixing angle, θ12, fixes the scale and origin of the neutrino mass spectrum which has

an inverted mass hierarchy with values

|mν2
| ≈ 0.053eV, |mν1

| ≈ 0.052eV, |mν3
| ≈ 0.019eV

• The branching ratios of all flavour changing neutral processes in the leptonic sector are strongly

suppressed by the S3 × Z2 symmetry and powers of the small mass ratios me/mτ , mµ/mτ ,

and
(

mτ/MH1,2

)4

, but could be important in astrophysical processes

• The anomalous magnetic moment of the muon gets a small but non-negligible contribution

from the exchange of flavour changing scalar fields
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Conclusions

• The Minimal S3-Invariant Extension of the Standard Model de-

scribes succesfully masses and mixings in the quark and leptonic

sectors with a small number of free parameters.

• It predicted the numerical values of θ13 and θ23 neutrino mixing

angles, as well as, all flavour changing neutral current processes in

the leptonic sector in excellent agreement with experiment.

• The solar mixing angle, θ12, fixes the scale and origen of the

neutrino mass spectrum which has an inverted mass hierarchy with

values

|mν2| ≈ 0.054 eV, |mν1| ≈ 0.053 eV, |mν3| ≈ 0.021 eV

• The exchange of flavour changing scalar fields gives a small but
non-negligible contribution to the anomaly of the magnetic moment
of the muon.
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