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Neutrino Oscillations |

Neutrinos are emitted or absorbed in one of three well defined flavour eigenstates. Each flavour
eigenstate is a superposition of three mass eigenstates

3
Vo (0) >:ZU;“’/Z'> a=-e,Nu,T.
i=1

After a time t, the neutrino travels a distance L,

lvi(t) >= e_i(E’it_piL)h/i(o) >, L distance from the source
/ 2 mZQ 2 2
p

The probability of detecting the neutrino emitted as |v, > in an eigenstate |v(8) > of flavour 3
IS

P(va —vg) = | <wvglva(L) > |?
3

L * * . 2 2
= a5 —4 .Zl Re[U,,,Up,Ua, U ] sin’(1.27Am*(L/ E))
1,)]—
3
* * .2 2
+ 2> Im[U,, U U, Uj | sin”(2.54Am*(L/ E)]

1,7=1

Uq, I1s the mixing matrix.



Neutrino Oscillations Il

P(vy — vg)

2
| < wplva(l) > |
3

= Sap—4 > Re[U, U, U Uj | sin®(1.27Am; ;(L/E))

i,j=1

3
+ 2> Im[U; Up,Ua,;Uj | sin®(2.54Am;;(L/E)]

i,J=1

Am?j = m? — m?, L distance en Km from the source, E energy in Gev.

Table 1: (1 March 2012)

Parameter Best fit

Am3,(107° eV?) 7.65" 050
|Am§1](10_3 €V2) 2-4(:%.211
Sil’l2 912 O304t88§2
sin” O3 0.50" 7 o6
Sil’l2 913 0092t88}g




Massive neutrinos in the theory

In the Standard Model of fundamental interactions lepton flavour is conseved and neutrinos are
massless

To accomodate neutrino masses in the theory, in a systematic and consistent way, we formulated
a Minimal, Ss—invariant Extension of the Standard Model (J. Kubo, A. Mondragén, M.
Mondragén and E. Rodriguez-Jauregui, Prog. Theor. Phys. 109, (5) 795-807 (2003) )

The extended Higgs sector gives mass to all fermions in the theory and makes the theory more
flavour symmetric

The S5 flavour permutational symmetry allows for a systematic treatment of masses and
mixings of all particles (quarks, leptons and Higgs') while reducing drastically the number of
free parameters in the theory

A number of predictions in other sectors of the theory is made (FCNC’s and contributions
of the neutral currents to the magnetic anomaly of the muon) in agreement with
experiment.



Flavour permutational symmetry

e Prior to the introduction of the Higgs boson and mass terms, the Langrangian of the Standard
Model is chiral and invariant with respect to any permutation of the left and right quark and
lepton fields. Gr ~ S31, ® S3gr

e Charged currents J, are invariant under G'r if the d and u—type fields are transformed with
the same family group matrix

JM = —’L"aL"deL + h.c. = Gp~ S3C S31; ® S3pr

e When < 0|®g|0 >z# 0, the Yukawa couplings give mass to quarks and leptons, if we assume
that the S3 permutational symmetry is not broken

L1 11
My =mg_ (111
1 1 1

my # 0, me¢ =m, =0; mp #0,mg =mg =20
mT;éO,mu:me:O;mVT:mw:mye:O

V=1

There is no mixing nor CP- violation.



The Group S5

The group S3 of permutations of three objects

Permutations

3
N 1 2 3
3 1 2
< 1 2 3
> 2 1 3
\
Vs
Symmetry adapted basis
1 1 1
|’U2A >= —1 ) |’U23 >= — 1 ) |’U1

[\D
O

V6 \ o

Rotations

a 120° — rotation around the

invariant vector V4

a 180°rotation around the

Invariant vector Vo,



Irreducible representations of S5

The group S3 has two one-dimensional irreps (singlets ) and one two-dimensional irrep (doublet)

e one dimensional: 14 antisymmetric singlet, 1, symmetric singlet
e Two - dimensional: 2 doublet

Direct product of irreps of S3

1S®]—8:187 1s®]—A:1A7 1A®1A:187 1s®2:27 1A®2:2

2R2=1,P1,1P 2

the direct (tensor) product of two doublets

PD1 dD1
= and D =
Pb (Pm) d <QD2)
has two singlets, s and 74, and one doublet rg

rs = Pp19D1 + Pp29p2 IS invariant, TA = Pp1gDp2 — Pp29p1 1S not invariant

T (pD1CID2 + pD2QD1)

rp =
Pbpi19p1 — PD29D2



A Minimal S5 invariant extension of the SM
The Higgs sector is modified,

b — H

((I)la (I)27 (I)3)T

H is a reducible 14 @ 2 rep. of S3

HD pr—

L (D1 + By — 2By)

Quark, lepton and Higgs fields are

QT — (U’La dL)7 UR, dRa LT — (VLa 6L)7 €Rr, VR, H

All these fields have three species (flavours) and belong to a reducible 16 2 rep. of Ss



Leptons’ Yukawa interactions

Leptons

Ly, = =Y‘LiHgep— YsLsHsesr — Y, | LikijHiejr + LimrsHze g ]
— YZZgH[G[R — Y;f[H[egR —+ h.C.,

L"Yy — _Ylyfj(iO'Q)H;VIR — }/E))Vfg(iO-Q)H;V:gR
— Y[ Likrs(ioa)H vyr + Limry(ios) Hyvr |
— YZZg(’I;O'Q)H}kI/[R — Y5VZI('I:O'2)H;<V3R —|— h.c.

0 1 1 0
f<;—<1 O)’ 77_(0 _1) I,J=1,2

Furthermore, the Majorana mass terms for the right handed neutrinos are
L = — v .CMvir — Msv.i,C
M = IR IVIR 3V3rU V3R,

C is the charge conjugation matrix.



Mass matrices

We will assume that

< Hp1 > = < Hpy > #0 and <H3>¢O

and

246 2
< Hs >4+ < Hpy >> + < Hpy >2 =~ <7Gev>

Then, the Yukawa interactions yield mass matrices of the general form

Bl 2 2 5
M = 2 H1— K2 U5
M4 4 M3

The Majorana masses for vy, are obtained from the see-saw mechanism

~

M, = M,pM (M, )T with M = diag(M:, Ma, Ms3)
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Mixing matrices

The mass matrices are diagonalized by unitary matrices

T L .
Ud(u’e)LMd(u,e)Ud(u,e)R — dlag (md(u,e)ms(c,u)mb(t,T))

and
UVTMVU,/ = diag(myl,my2,myg)

The masses can be complex, and so, U,y is such that

UGTLMeM;LUeL — diag(|m€|27 ‘mu|27 |m7|2>7

The quark mixing matrix is

|
2
&~
-
~

Vexm

and, the neutrino mixing matrix is

Vuns = ULU,

etc.

11



Masses and mixings in the quark sector

The mass matrices for the quark sector take the general form

u(d u(d u(d u(d
lul( | —|Ed¢2( | (C#Q( ) (d) ME)Ed;
My (4) = Hy | Hy (d/)éb ?(d)
4 Hy M3
. 9 2 2
Ul(d)LMu(d)MZ(d)Uu(d)L — dlag(|mu(d)\ s [mes)|s My >,
Vekm = UQ:LUdL

The set of dimensionless parameters

py/pg = —0.000293,  p3/pg = —0.00028,  pug/py =1,
py/po = 0.031,  uz/ug = 0.0386,
pd/ud =0.0004, pd/pd=0.00275, @ ul/pl=1+1.21,
pl/ud =0.283,  pl/ud=0.058,

12



The quark mixing matrix
Yields the mass hierarchy and the mixing matrix
my/m; = 2.5469 x 107°,  m./m; = 3.9918 x 1073,
ma/my = 1.5261 x 107°,  my/my = 3.2319 x 1072,

The computed mixing matrix is

0.968 + 0.1171 0.198 +0.09741 —0.00253 — 0.003541
Veory = —0.198 + 0.09691 0.968 — 0.1151 —0.0222 — 0.03761
0.00211 4 0.006481 0.0179 — 0.03951 0.999 — 0.002061

0.975  0.221  0.00435
vl =1 0221 0974 0.0437
0.00682 0.0434  0.999

which should be compared with

0.97383 4 0.00024 0.2272 + 0.0010 (3.96 4+ 0.09) x 1073
Vil = 0.2271 4 0.010 0.97296 + 0.00024  (42.21 4 0.45 + 0.09) x 1072
(8.1440.5) x 1072 (41.61 4+ 0.12) x 1073 0.9991 £ 0.000034

The Jarlskog invariant is

J = Im [(Vorm) 11 (Vorm)22 (Véra) 12(Véga)21] = 2.9 x 1077, J™P = (3.0 £0.3) x 1077
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The leptonic sector

To achieve a further reduction of the number of parameters, in the leptonic sector, we introduce
an additional discrete Z5 symmetry

- T
HI7 V3R HS) L37 LI) €3RrRy, €IR, VIR

then,

pws o ps e ps  py 0
Me= | p5 —p5 B and  Myp={p; —p; O
py  py O g By

14



The Mass Matrix of the charged leptons as function of its eigenvalues

The mass matrix of the charged leptons is

~ ~ ~ 2
( 1My Y 1 [ —my
V2 /1422 V2 /1422 V2 142
~ ~ ~ 2
Me =~ mr 1 mp 1 mu 1 [1te?omg
\/5\/14_1;2 \/5‘/14—:82 \/§ 1—|—£C2
me(l4+x7) ide me(l4+x%) ide 0
K 1—|—x2—m/% 1—i—x2—m/% )

This expression is accurate to order 107 in units of the T mass

There are no free parameters in M, other than the Dirac Phase §!!

15



The Unitary Matrix U,y

The unitary matrix U,y is calculated from

U;[LMGM;LUGL = dz’ag(mg, m” mi)

,u7
We find
. i
UeL = (IDQLOQL, (I)eL = dzag[l, 1, (& D]
and
( . (1+2m2 +4a i +-2m2) . (-2 41, —2m2) . \
T _ L
V2T S1tm2 4 5a2 i, —mG + w2+ 1224 V2 [1-am2 4224 6m —4mb —5im2 V2
1 (1+4a? —m}, —2m2) ) (1—2m2 +mi,) )
O.r & — 5 75
el V2T S1tm 2+ 5a2 i, —mG w2+ 1224 V2 1-am? 42246 —4ml —5m2 V2
\/1+2x2—mz—mg(1+m3+x2—2m§) (1+x2—mﬁ—2m§)\/1+2x2—mz—mg 122y
_ —x
\ V1 4532 — i~ +mg+1224 V1= 42 a2 +6m — 4l —5m3 \1+a2—m? )

r = me/my, m, = m,/m, and m. = me/m-

16



The neutrino mass matrix |

The Majorana masses for vy, are obtained from the see-saw mechanism

M, = M,pM, M, ,

with
Mp = diag[Mi, Ma, M;] M, # My # M3
and
M2 2 0
M,p = pu2  —p2 0O
|2 2
Then
23 2 219144
M, M
M, =] )\*2 22 )\ 2H2k4
M M S M,
2p9p4 21214 Fg 4 M3
A R Vel a7
1 1,1 1 My — M,
— = —( + and =
2 "My Mo My + My

17



The neutrino mass matrix 1l

When M, is real, the phases in M, may be factorized out as

M, = P,M,P, (1)

where ' -
P, = e"diag 1,1, ew’/] (2)

Then, the real symmetric matrix M, may be diagonalized by means of an orthogonal matrix
O,

M, = P,O, [dz’ag(|’m1,/|, |m21/|7 |m3l/|)] OTPV (3)

Therefore, the unitary matrix
U, = P,O, (4)

diagonalizes the neutrino mass matrix M,,.

18



The neutrino mass matrix |1l

The reduced neutrino mass matrix M, is reparametrized in terms of the neutrino masses |m;|
and two free parameters u, and d, as

to + 5d 1d Z(a+¢)
M, = +d po + 2d —%(a —c)

where
- o - o _ o 2 2
R (S S T N 7 R
d
_ 2| po?
b = |mq|+ |me| + |ms| —d— 3u, d= A\
M
2

[(d = [ma])(d — [ma|)(d — |ms])]

S

19



The Orthogonal Matrix O,

The real orthogonal matrix that diagonalizes M, and M,, is obtained from the eigenvectors of
M,
O, = [|m1 >, |ma >, |ms >]

/{ —0i4+10i4+2(0;—d) }1/2\

d(o;—0i11)(0;—0i12)

, 1=1,2,3,..mod(3)

1/2
| _ oi(o;—d)
m; > |:(0i—0i+1)(0i_0i+2)]

\{0¢(d—0i+1)(d—0i+2)

d(o;—0;41)(0;—0;42)

}1/2)

where o; = (m; — o).
The unitary matrix U,, that diagonalizes M, is

U, = PO,

20



The neutrino mixing matrix |

Vli}]L\/_INS — U;LLUV'
The theoretical mixing matrix VIE}]’MNS IS
Vzil;wvs — OeTLPV—eOVK
where P, _. is a diagonal matix of phases

P, . = diag[1,1, e %]

Hence

(Vlf’}]L\/[NS>ij — 23: (OGL)M(PV—G)T (OV)rj

r=1

From a comparison of V;ﬁﬁs with V2% o, we obtain the neutrino mixing angles as functions of

the lepton masses.

21



From a comparison of
of the lepton masses

The neutrino mixing matrix Il

th
VPMN

g with V;ﬁﬁs, we obtain the neutrino mixing angles as function

. 2 AU
sin 012—

. 2 AU
sin 023—

. 2 AUV
sin 913

|(VPMNS)12|2
1 — |(Vpuns)is|?

|(Veuns)2s|?
1 — |[(VPpuns)is|?

= |(VPMNS)13|2

22



Neutrino Mixing Angles |

The solar angle 612 is strongly dependent on the neutrino masses but depends only very weakly
on the charged lepton masses

B (Am7, + Am7, + |m,/3|2 cos? ¢, )% — |m,|| cos ¢,

tan 02, =
12 Am2., + |my.|? cos? ¢, )2 + |m,.|| cos ¢,
13 3 3

the numerical value of tan® 01, fixes the scale of the neutrino masses.

The atmospheric mixing angle 053 depends mostly on the charged lepton masses

1 1 —2m. +m,,
= 0.7071
\/5\/1 — 42 + a? + 6l

sin 923 ~

3

T =m./m, =4.84x", m, =m,/m; =595x "

23



Neutrino Mixing Angles Il

The reactor mixing angle 013 is mostly determined by the interplay of the S3 symmetry and the
mass spliting of the right-handed neutrinos in the see saw mechanism plus a very small contribution

from the charged leptons,

my

1

{

mV - my my

sin 013 =~ A (1 B \/<m”2 s ) (COS" - \/(1 ~ myl) (m,,2 —

1 2 1 3

Lm, (L4 - (G2
V2 U4 (G2 5(00)? — ()

ml/ - m]/ . my - m]/
cosmn = 2 5 sinn = 5 1

_|_

where

We get

sin 0% &~ 0.151  with  (Ap) = 0.02

my

3

) sin 77)

24



Neutrino Mixing Angles: Theory vs Experiment

The most recent experimental values of the neutrino mixing angles 615 and 023 (T. Schwetz,
M. Tortola and J.W.F. Valle, New J. Phys. 13, 063004 (2011) and arXiv: 1108.137
vl[hep-ph] 4 Aug 2011; G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno,
arXiv: 1106.6028 v2 [hep-ph] 26 Aug 2011 and Daya Bay Collaboration arXiv: 1203.1669
vl [hep-ex] 8 Mar 2012 )

9.5 = 87712 4 §in?26°%.°F = 0.09270015: (T2K, MINOS, Daya Bay (8 Mar 2012))
o = 46F° sin® 02,°°7 = 0.5010:%¢

Our theoretical values are (Phys. Rev. D 76, 076003 (2007) and this work)
0%, = 8.67727 sin® 09, = 0.022

05, = 449712 sin” 03, = 0.50

in very good agreement with the experimental values !!!

25



The neutrino mass spectrum |

In the present model, the experimental restriction
2 2
|Ama, | < [Ama,]

implies an inverted neutrino mass spectrum m,, < My, My,

From our previous expressions for tan 615

\/ Am%f& 1 — tan4 912 -+ ’1“2

0S qby tan 912 \/]_ —+ ta,n2 812 \/1 -+ tan2 912 + ’7“2,

|m,,3| - 2cC

_ 2 2
where r = Ams,/Am;,.

Then, the mass |m,,| is approximately given by

(1 — tan2 912)

26



Neutrino mass spectrum Il

e \We wrote the neutrino mass differences, My, — My, in terms of the differences of the squared
2 — m? and one of the neutrino masses, say Mys.
i j

e The mass m,, was taken as a free parameter in the fitting of our formula for tan 61> to the
experimental value

masses A?j =m

e with
Ami, =T7.6 x 10 eV’ Am’, = 2.4 x 10 eV’
and
tan 612 = 0.696
we get

Mmy,| ~ 0.019 eV — |m,,| =~ 0.053 eV and m,,| =~ 0.052 eV
3 2 1

e The neutrino mass spectrum has an inverted hierarchy of masses

27



FCNC |

In the Standard Model the FCNC at tree level are suppressed by the GIM mechanism.

Models with more than one Higgs SU (2) doublet have tree level FCNC due to the exchange
of scalar fields. The mass matrix written in terms of the Yukawa couplings is

e E1l +40 E2 +40
MY — Yw Hl +Yw H2’

FCNC processes:

»o

»

Figure 1: The diagram in the left contributes to the process 7= — 3u. The three diagrams in the
right contribute to the process 7 — u~y.

28



The Yukawa matrices

The Yukawa matrices in the weak basis are

[ )

\/_\/1? f 1+a2
E1l mey 1 my
Y = —— 0 0
w V1 V2 1422
me(1+$2) ide 0 0
2_ .52
\ 14+x my, )
and i
L Ty 0 0 \
( \/5 1+:U2
YE2 . ™"+ 0 1 ﬁl,’u 1 1+$2_~,L2L
w Vs V2 .\ /1122 V2 1+x2
~ 2 .
m€(1+37 ) 6166 O

\ 0 14+z2—

S
=
\



Yukawa matrices in the mass representation

The Yukawa matrices in the mass basis defined by

~

VE = Ul YEIUR

m

~ 1.~ 1
( 2Mm, —5Me 5T \
> E1 My ~ 1 1
V1
1~ .2 1.~ 1
\ ST Sy 5 ) .
and
~ 1.~ 1
/ _me Eme _§x \
= E2 | Mr ~ 1 1
Y T — my, LT 5 ,
V2

1.~ 2 1.~

N[ —
\
3

all off diagonal terms give rise to FCNC processes!!



Branching ratios

We define the partial branching ratio (only leptonic decays)

I(1 — pete)
O(t — evp) +T'(7t — pvo)’

4
_ 9 /fm.m 2 m
Br(t — pete )~ = & :
4 m? M, ,

Similar computations lead to

Br(t — pete ) = I'(r — pete) =

thus

B — 3U) & ,
(T ) 1 (MH

2 4
Br(u — 3e) (m;;%> E;) ;

4 4
27 [ M m,
Brin = ev) ~ o (m ) (MH> |
o

5 1,2v-1,2\2
m,r T 66/ )
3 x 21073  pfé
Hy o
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Numerical results

Table 2: Leptonic processes via FCNC

FCNC processes | Theoretical BR | Experimental References
upper bound BR

T — 3 8.43 x 10~* | 5.3 x 10~° B. Aubert et. al. (2007)
T — pe’e” 3.15 x 107" | 8 x 107° B. Aubert et. al. (2007)
T —> Wy 9.24 x 10~° | 6.8 x 10~° B. Aubert et. al.(2005)

T — ey 5.22 x 107'° | 1.1 x 107" B. Aubert et. al. (2006)
uw — e 253 x 107°° | 1 x 10 ** U. Bellgardt et al. (1998)
L — ey 2.42 x 107" | 1.2 x 107 M. L. Brooks et al. (1999)

Small FCNC processes mediating non-standard quark-neutrino interactions could be important
in the theoretical description of the gravitational core collapse and shock generation in the
explosion stage of a supernova
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Muon Anomalous Magnetic Moment

The anomalous magnetic moment of the muon is related to the gyroscopic ratio by

M 1
a,=——1=—(g, —2)
1B 2
In models with more than one Higgs SU (2) doublet, the exchange
of flavour changing neutral scalars also contribute to the anomalous

magnetic moment of the muon

i YocYmane (- (3 3
H 1672 MJ%I m?2 2

From our results: Y, Y;, = 4511,27
5 2 2 2
m 2 + tan m M 3 Ys
Sa! = 5 2( . 2 2 o Y| —5 ) tanf= 0
1
(246 GeV)?2 3272 M2 mz) 2 v

From the experimental upper bound on (1 — 3e), we get tan 8 < 14, Hence

Sa, =1.7x 107"
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Contribution to the anomaly of the muon’s magnetic moment

The difference between the experimental value and the Standard Model prediction for the
anomaly is

Aa, =ai” —a)™ = (28.7£9.1) x 107"

Aa, ~ 3o (three standard deviations) !!

But, the uncertainty in the computation of higher order hadronic effects is large

sa;"" (3, had) = 1.59 x 107" da, "(3, had) ~ —1.82 x 107*

5a(H) 1.7 (H)
R~ 5y~ 6% and  Sall) < 6au(3, had)

The contribution of the exchange of flavour changing scalars to the anomaly of the muon's
magnetic moment, 5a£H), is small but not negligible, and it is compatible with the best, state of
the art, measurements and theoretical predictions.
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Summary

By introducing three SU (2) 1 Higgs doublet fields, in the theory, we extended the concept of
flavour and generations to the Higgs sector and formulated a minimal S3—invariant Extension
of the Standard Model

The neutrino mixing angles 615, 023 and 6,3, are determined by an interplay of the S3 X Z5
symmetry, the see-saw mechanism and the lepton mass hierarchy

The fit of sin® 62 to sin? 615" breaks the mass degeneracy of the right handed neutrinos.

The solar mixing angle, 612, fixes the scale and origin of the neutrino mass spectrum which has
an inverted mass hierarchy with values

|m.,| = 0.053eV, |m,, | = 0.052¢€V, (M., | = 0.019eV

The branching ratios of all flavour changing neutral processes in the leptonic sector are strongly
suppressed by the S3 X Z3 symmetry and powers of the small mass ratios m./m,, m,/m-,

4
and (fmT/MH1 2) , but could be important in astrophysical processes

The anomalous magnetic moment of the muon gets a small but non-negligible contribution
from the exchange of flavour changing scalar fields
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Conclusions

e The Minimal Ss-Invariant Extension of the Standard Model de-
scribes succesfully masses and mixings in the quark and leptonic
sectors with a small number of free parameters.

e |t predicted the numerical values of 613 and 653 neutrino mixing
angles, as well as, all flavour changing neutral current processes in
the leptonic sector in excellent agreement with experiment.

e The solar mixing angle, 615, fixes the scale and origen of the

neutrino mass spectrum which has an inverted mass hierarchy with
values

imy,| = 0.054 eV, |m,,| =~ 0.053 eV, |m,,| ~ 0.021 eV’
e The exchange of flavour changing scalar fields gives a small but
non-negligible contribution to the anomaly of the magnetic moment
of the muon.
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