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1. The Problem

The basic problem with a non-Abelian tensor, when it has its own kinetic term, is easily

seen as follows. Let I be the adjoint index of a non-Abelian group G, and let a non-Abelian

vector field Aµ
I couple minimally to the antisymmetric tensor Bµν

I . Consider the most

conventional field strength

G(0)
µνρ

I ≡ +3DbdµBνρce
I ≡ +3(∂bdµBνρce

I + gf IJKAbdµ
JBνρce

K) , (1.1)

where Dµ is the usual gauge-covariant derivative with the minimal coupling with the

coupling constant g and the structure constant f IJK of the group G. Consider a

tentative action I0 ≡
∫
d4xL0 with the lagrangian2)

L0 ≡ − 1
12

(G(0)
µνρ

I)2 − 1
4
(Fµν

I)2 , (1.2)

with Fµν
I ≡ 2∂bdµAνce

I + gf IJKAµ
JAν

K . Obviously, the B -field equation is3)

δL0

δBµν
I

= +1
2
DρG

(0)µνρI .= 0 . (1.3)

The problem is that the divergence of this B -field equation does not vanish:

0
?
= Dν

(
δL0

δBµν
I

)
= +1

4
gf IJKFνρ

JG(0)µνρK 6= 0 , (1.4)

unless Fµν
I or G(0)

µνρ
I vanishes trivially. This inconsistency problem is already at the clas-

sical level before quantization. This is also one of the reasons, why topological formulations

with vanishing field strength Fµν
I .= 0 such as [1] are easier to formulate for non-Abelian

tensors.

An additional problem is related to the so-called local tensorial gauge transformation of

the B -field:

δβBµν
I = +Dbdµβνce

I −DbdνβµceI , (1.5)

because the field strength Gµν
I is not invariant under δβ:

δβG
(0)
µνρ

I = +3gf IJKFbdµν
Jβρce

K 6= 0 . (1.6)

This further implies the non-invariance of the action: δβI0 6= 0. These two problems are

mutually related, because the non-vanishing of (1.4) is also interpreted as the action non-

invariance δβI0 6= 0.

2) We use the signature (−,+,+,+) for four dimensions (4D) in this paper.
3) The symbol

.
= stands for a field equation, to be distinguished from an algebraic identity. We also

use the symbol
?
= for an equality under question.
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2. The Solution to Problem

The solution to the problem above is to introduce a non-trivial Chern-Simons (CS) term

into the G -field strength:

Gµνρ
I ≡ +3DbdµBνρce

I ≡ +3(∂bdµBνρce
I + gf IJKAbdµ

JBνρce
K)− 3f IJKCbdµ

JFνρce
K

≡ +G(0)
µνρ

I − 3f IJKCbdµ
JFνρce

K , (2.1)

where Cµ
I is a ‘compensator’ vector field, also carrying the adjoint index. The field strength

for C is defined by

Hµν
I ≡ +DbdµCνce

I −DbdνCµceI + gBµν
I . (2.2)

Now these field strengths G and H are invariant under the δβ -transformation

δβBµν
I = +Dbdµβνce

I −DbdνβµceI (2.3a)

δβCµ
I = − gβµI , (2.3b)

which is the ‘proper’ gauge transformation for Bµν
I , and δγ -transformations

δγBµν
I = − f IJKFµνJγK , (2.4a)

δγCµ
I = Dµγ

I . (2.4b)

is the ‘proper’ gauge transformation for Cµ
I .

The role played by the C ∧F -term in (2.1) is to cancel the unwanted term in (1.6). The

C -field itself should have its own ‘gauge’ transformation as the covariant gradient (2.4b).

The contribution of δγ(2DbdµCνce
I) in (2.2) is cancelled by the contribution of δγ(gBµν

I), so

that δγHµν
I = 0.

In other words, we have the total invariances

δβGµνρ
I = 0 , δβHµν

I = 0 , (2.5a)

δγGµνρ
I = 0 , δγHµν

I = 0 . (2.5b)

Accordingly, we also have the consistency problem (1.4) solved. Consider the kinetic

terms for the B, C and A -fields:

L1 ≡ − 1
12

(Gµνρ
I)2 − 1

4
(Hµν

I)2 − 1
4

(Fµν
I)2 . (2.6)
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The total action is also invariant δβI1 = δγI1 = 0. The new field equations for B and

C -fields are

δL1

δBµν
I

= + 1
2
DρG

µνρ I − 1
2
gHµν I .= 0 , (2.7a)

δL1

δCµI
= −DνH

µν I + 1
2
f IJKFρσ

JGµρσK .= 0 , (2.7b)

The divergence of the B -field equation vanishes now:

0
?
= Dν

(
δL1

δBµν
I

)
= +1

2
g

(
δL1

δCµI

)
.
= 0 , (2.8)

where the last equality holds because of the C -field equation. In other words, the unwanted

FG -term in (1.4) is now cancelled by the contribution of the C -field equation. This has

solved the previous problem (1.4).

Relevantly, the divergence of (2.10) also vanishes, as it should:

0
?
= Dµ

(
δL1

δCµI

)
= +f IJKFµν

J

(
δL1

δBµν
K

)
.
= 0 , (2.9)

without any inconsistency.

We emphasize repeatedly that these invariances have never been accomplished without

the peculiar CS terms both in (2.1) and (2.2).

Recently, the long-standing problem with non-Abelian tensors [2] has been solved by de

Wit, Samtleben, and Nicolai [3][4]. The original motivation in [3] was to generalize the tensor

and vector field interactions in manifestly E6(+6) -covariant formulation of five-dimensional

(5D) maximal supergravity by gauging non-Abelian sub-groups. In [4], this work was further

related to M-theory [5] by confirming the representation assignments under the duality group

of the gauge charges. The underlying hierarchies of these tensor and vector gauge fields are

presented with the consistency of general gaugings.

The hierarchy in [3][4] has been further applied to the conformal supergravity in 6D [6].

In ref. [6], the ‘minimal tensor hierarchy’ as a special case of the more general hierarchy in

[3][4] has been discussed. This hierarchy consists of Aµ
r and two-form gauge potentials

Bµν
I , with two labels r and I. Also introduced is the 3-form gauge potentials Cµνρ r with
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the index r is dual to r of Aµ
r. The field strengths of vector and two-form gauge potentials

are defined by [6]

Fµνr ≡ 2∂bdµAνce
r + hI

rBµν
I , (1.1a)

Hµνρ
I ≡ 3DbdµBνρce

I + 6drs
IAbdµ

r∂νAρce
s − 2fpq

sdrs
IAbdµ

rAν
pAρce

q + gIrCµνρr . (1.1b)

The prescription for tensor-vector system, which we will be based upon, is described with

eq. (3.22) in [6]. To be more specific, we consider in the present paper the product of two

identical gauge groups G×G [7], whose adjoint indices are respectively r, s, ··· and r′, s′, ···.

Accordingly, we use the coefficients

frs
t = frs

t , frs′
t′ = −fs′rt

′
= +1

2
frs′

t′ , (1.2a)

dtrs′ = dts′r = −1
2
frs′

t , hr
′

s = δr
′

s , (1.2b)

where frs
t is the structure constant of a non-Abelian gauge group. We use the same field

content arising by this prescription.

Since the outstanding paper [6] gives the extensive details of how to get our system

from [3][4][7], there is nothing new to explain, except for our notational preparation. In our

notation, the field strengths of the B and C -fields are respectively G and H defined by

Gµνρ
I ≡ +3DbdµBνρce

I − 3f IJKCbdµ
JFνρce

K , (1.3a)

Hµν
I ≡ +2DbdµCνce

I + gBµν
I . (1.3b)

The gauge transformations for B, C and A -fields are

δα(Bµν
I , Cµ

I , Aµ
I) = (−f IJKαJBµν

K , − f IJKαJCµK , +Dµα
I) , (1.4a)

δβ(Bµν
I , Cµ

I , Aµ
I) = ( +2Dbdµβνce

I , − gβµI , 0) , (1.4b)

δγ(Bµν
I , Cµ

I , Aµ
I) = (−f IJKFµνJγK , Dµγ

I , 0) . (1.4c)

As (1.3b) or (1.4b) shows, Cµ
I is a vectorial Stueckelberg field, absorbed into the lon-

gitudinal component of Bµν
I . Due to the general hierarchy [3][4], all field strengths are

invariant:

δα(Gµνρ
I , Hµν

I , Fµν
I) = −f IJKαJ(Gµνρ

K , Hµν
K , Fµν

K) , (1.5a)

δβ(Gµνρ
I , Hµν

I , Fµν
I) = 0 , δγ(Gµνρ

I , Hµν
I , Fµν

I) = 0 . (1.5b)
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Since the hierarchy given in [3][4] guarantees the gauge invariance of all field strengths,

the construction of purely bosonic lagrangian is straightforward. Consider the action I1 ≡∫
d4x g2L1

4) with

L1 ≡ − 1
12

(Gµνρ
I)2 − 1

4
(Hµν

I)2 − 1
4
(Fµν

I)2 . (1.6)

The gauge invariances of all field strength also guarantee the consistency of the A, B and

C -field equations, such as the divergence Dν(δL1/δBµν
I)
.
= 0.5) Since we will do similar

confirmation for supersymmetric system later, we skip the details for the purely bosonic

system.

The purpose of our present paper is to supersymmetrize this system. The rest of our paper

is organized as follows. In section 2, we give the component formulation of N = 1 tensor

multiplet (TM). In section 3, we give the superspace re-formulation of component result. In

section 4, we give the generalization to non-adjoint representation of G = SO(N) case.

In section 5, we give the supergravity coupling to non-Abelian TM, as supporting evidence

for the consistency of the global case. Section 6 is for concluding remarks. Appendix A is

devoted to purely bosonic systems of non-Abelian tensors with much simpler structures than

has been presented in arbitrary space-time dimensions with arbitrary signature. An example

of tensor-vector duality G = F ∗ in D = 2 + 4 dimensions, and its dimensional reduction

(DR) into the self-dual YM F = F ∗ in D = 2 + 2 is also presented.

3. Component Formulation of N=1 TM

The supersymmetrization of the purely bosonic system (1.6) is rather straightforward,

except for subtlety to be mentioned later. Our system has three multiplets: (i) A TM

(Bµν
I , χI , ϕI), (ii) A compensating vector multiplet (CVM) (Cµ

I , ρI), and (iii) A Yang-Mills

vector multiplet (YMVM) (Aµ
I , λI). Our total action I ≡

∫
d4x g2L has the lagrangian

L = − 1
12

(Gµνρ
I)2 + 1

2
(χID/χI)− 1

2
(Dµϕ

I)2 − 1
2
g2(ϕI)2 − g(χIρI)

− 1
4
(Hµν

I)2 + 1
2
(ρID/ρI)− 1

4
(Fµν

I)2 + 1
2
(λID/λI)

− 1
2
gf IJK(λIχJ)ϕK + 1

2
f IJK(λ

I
γµρJ)Dµϕ

K + 1
12
f IJK(λ

I
γµνρρJ)Gµνρ

K

+ 1
4
f IJK(ρIγµνχJ)Fµν

K − 1
4
f IJK(λ

I
γµνχJ)Hµν

K − 1
2
f IJKFµν

IHµν JϕK , (2.1)

4) The reason we need the factor g2 in the action is due to the mass-dimension assignments of our fields.
5) We use the symbol

.
= for a field equation to be distinguished from an algebraic equation.
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up to quartic-order terms O(φ4).

It is clear that the scalar ϕI has its mass g, while there is a mixture between χI and

ρI , again with the asme mass g. As has been mentioned after (1.4), Cµ
I plays the role of

Stueckelberg field [8], being absorbed into the longitudinal component of Bµν
I . Eventually,

the kinetic term of the C -field becomes the mass term of Bµν
I . Accordingly, the degrees

of freedom (DOF) for the massive TM fields are Bµν
I (3), χ with ρI (4) and ϕI(1), up to

the adjoint index I.

Our action I is invariant under global N = 1 supersymmetry

δQBµν
I = + (εγµνχ

I)− 2f IJKCbdµ|
J(δQA|νce

K) , (2.2a)

δQχ
I = + 1

6
(γµνρε)Gµνρ

I − (γµε)Dµϕ
I

+ 1
2
f IJK

[
+ ε(λJρK)− (γ5γ

µε)(λJγ5γµρ
K)− (γ5ε)(λ

Jγ5ρ
K)
]
, (2.2b)

δQϕ
I = + (εχI) , (2.2c)

δQCµ
I = + (εγµρ

I) + f IJK(εγµλ
J)ϕK , (2.2d)

δQρ
I = + 1

2
(γµνε)Hµν

I − gεϕI − 1
2
f IJK(γµνε)Fµν

JϕK

+ 1
4
f IJK

[
+ ε(λJχK)− (γµε)(λJγµχ

K) + 1
2
(γµνε)(λJγµνχ

K)

− (γ5γ
µε)(λJγ5γµχ

K)− (γ5ε)(λ
Jγ5χ

K)
]
, (2.2e)

δQAµ
I = + (εγµλ

I) , (2.2f)

δQλ
I = + 1

2
(γµνε)Fµν

I + 1
2
f IJK(γ5ε)(ρ

Jγ5χ
K) , (2.2g)

up to cubic terms O(φ3) in fields. The fermionic quadratic terms in (2.2b), (2.2e) and

(2.2g) are fixed in superspace formulation, as will be explained later. In the conventional

dimensions with all the bosonic (or fermionic) fields with 1 (or 3/2) mass dimensions,6)

these terms lead to non-renormalizability. For example, the l.h.s. of (2.2b) has dimension

3/2, while its r.h.s. for the ε(λγρ) term has (−1/2) + (3/2) + (3/2) = 5/2. In other words,

there is an implicit coupling constant ` with the dimension of length in front of fermionic

quadratic terms. This feature is also related to the existence of Pauli-terms which are non-

renormalizable, already at a globally supersymmetric system. These features are similar to

supergravity [9], even though our system so far has only global supersymmetry.

6) Our bosonic (or fermionic) fields have dimensions 0 (or 1/2), in contrast to the conventional dimensions
1 (or 3/2).
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The usual non-Abelian gauge transformation δα and our tensorial gauge transformation

δβ, and δγ -transformation are exactly the same as (1.4), while all the fermionic fields are

transforming only under δα, as the B and C -fields do, so that there arises no problem

with the δβ and δγ -invariances of the field strengths as in (1.5). These immediately lead

to the invariances of our action δαI = 0, δβI = 0 and δγI = 0.

The Bianchi identities (BIds) for our field strengths G, H and F are:

DbdµGνρσce
I − 3

2
f IJKFbdµν

JHρσce
K ≡ 0 , (2.3a)

DbdµHνρce
I − 1

3
g Gµνρ

I ≡ 0 , (2.3b)

DbdµFνρce
I ≡ 0 . (2.3c)

Relevantly, the non-trivial δQ -transformations of the field strengths are

δQGµνρ
I = + 3(εγbdµνDρceχ

I) + 3f IJK(δQAbdµ
J)Hνρce

K − 3f IJK(δQCbdµ
J)Fνρce

K , (2.4a)

δQHµν
I = − 2(εγbdµDνceρ

I) + g(εγµνχ
I) + 2f IJKDbdµ|

[
(δQA|νce

J)ϕK
]
, (2.4b)

δQFµν
I = − 2(εγbdµDνceλ

I) , (2.4c)

reflecting the presence of CS terms.

Note that our YMVM and CVM has on-shell DOF 2+2, while off-shell DOF 3+4, because

we have not added the D -auxiliary field. On the other hand, our TM is in the off-shell

formulation, because the total off-shell DOF is 4 + 4, because the off-shell DOF of each field

are [(4− 1) · (4− 2)]/2 = 3 for Bµν , 4 for χ and 1 for ϕ.

The field equations for λI , χI , ρI , Aµ
I , Bµν

I , ϕI and Cµ
I are respectively7)

+D/λI − 1
2
gf IJKχJϕK + 1

2
f IJK(γµρJ)Dµϕ

K

− 1
4
f IJK(γµνχJ)Hµν

K + 1
12
f IJK(γµνρρJ)Gµνρ

K .= 0 , (2.5a)

+D/χI − gρI + 1
2
gf IJKλHϕK − 1

4
f IJK(γµνλJ)Hµν

K + 1
4
f IJK(γµνρJ)Fµν

K .= 0 , (2.5b)

+D/ρI − gχI + 1
2
f IJK(γµλJ)Dµϕ

K

− 1
12
f IJK(γµνρλJ)Gµνρ

K + 1
4
f IJK(γµνχJ)Fµν

K .= 0 , (2.5c)

7) These equations are fixed up to O(φ3) -terms, due to the quartic fermion terms in the lagrangian.
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+DνFµ
ν I + gf IJKϕJDµϕ

K + 1
2
gf IJK(λJγµλ

K) + f IJKHµν
JDνϕK

− 1
2
f IJKGµρσ

JHρσK + 1
2
f IJK(χJDµρ

K) + 1
2
f IJK(ρJDµχ

K)
.
= 0 , (2.5d)

+DρG
µνρ I − gHµν I − 1

2
f IJKDρ(λ

JγµνρρK)

+ gf IJKF µν JϕK − 1
2
gf IJK(λJγµνχK)

.
= 0 , (2.5e)

+D2
µϕ

I − gf IJK(λJχK)− g2ϕI − 1
2
f IJKFµν

JHµν K .= 0 , (2.5f)

+DνH
µν I − 1

2
f IJKFρσ

JGµρσK − 1
2
f IJK(χJDµλK)− 1

2
f IJK(λJDµχK)

+ 1
2
gf IJK(λJγµρK)− f IJKF µν JDνϕ

K .= 0 . (2.5g)

In the derivation of these field equations, we have also used other field equations, in order

to simply their final expressions, as a conventional prescription.

In the above computation, we do not attempt to fix the O(φ3) -terms in field equations, or

equivalently the fermionic O(φ4) -terms in the lagrangian. There are several remarks about

these terms. First, our system is non-renormalizable as supergravity theory [9], as has been

mentioned after eq. (2.2). Accordingly, the (fermion)2 -terms in the fermionic transforma-

tions such as (2.2b), (2.2e) and (2.2g) are accompanied by the implicit constant ` carrying

the dimension of (legnth). In supergravity theory [9], this is the gravitational coupling κ.

In our lagrangian, all the quartic-fermion terms carry `2, so that the lagrangian has the

mass dimension +4. Accordingly, a typical Noether-term has the structure `Ψ2 ∂ Φ, that

produces the terms of the form `2 εΨ3 ∂ Φ via δQ Ψ ≈ ` εΨ2. Here Ψ (or Φ) is a general

fermionic (or bosonic) fundamental field. These `2 εΨ3 ∂ Φ-terms are cancelled by the vari-

ation of the fermionic quartic terms `2 Ψ4, via δQΨ ≈ ε ∂Φ. In other words, the structure

of these cancellations associated with quartic-fermion terms is parallel to supergravity [9],

since ` is analogous to κ.

However, in our peculiar system, this cancellation mechanism may be not simply parallel

to conventional supergravity [9]. For example, there may be `2Ψ2Φ∂Ψ-type terms in the ac-

tion, while `2εΨ2Φ-type terms in the transformation rules may exist, because both of them

yield `2εΨ3∂Φ-type terms, canceling each other in δQI. At the present time, we do not

know, if such terms arise, because the `2εΨ2Φ-type terms in transformations are at O(φ3),

while `2Ψ2Φ∂Ψ-type terms in the action are at O(φ4). In fact, even in the superspace

re-confirmation in the next section, we have fixed only the O(φ1) and O(φ2) -terms in
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the transformation rules for fermions, such as (3.2d), (3.2e) and (3.2f), but not cubic terms

O(φ3). Our consistent principle in this paper is to fix only O(φ1), O(φ2) and O(φ3) -terms

in the lagrangian, O(φ1) and O(φ2) -terms in all transformation rules, while O(φ1) and

O(φ2) -terms in all field equations. However, we try to fix neither O(φ4) -terms in the la-

grangian, nor O(φ3) -term in all transformation rules, nor O(φ3) -terms in all field equations.

We do not specify each field meant by φ is fermionic or bosonic in this paper, either.

Second, as an additional difference from supergravity [9], the fermionic quartic terms

do not contain any gravitino. This implies that we can not use the conventional technique

of ‘supercovariantizing’ fermionic field equations. Due to this feature, as well as the above-

mentioned possible non-purely-fermionnic `2Ψ2Φ∂Ψ-type terms, the quartic terms O(φ4) at

O(`2) will be more involved than conventional supergravity [9] which are tedious. For these

reasons, we do not attempt to fix them in this paper.

Third, according to the past experience in supergravity theory [9], it is understood that

the series in terms of κ in a lagrangian will stop at a finite order, such as the quartic-

fermion terms at O(κ2) [9]. However, at the present time, we do not know, whether this

is also the case with our globally supersymmetric system. This is because of the above-

mentioned differences of our system from supergravity [9], and therefore the analogy with

supergravity might be not valid in our system. Fourth, since we have already fixed the cubic

terms in the lagrangian, they seem sufficient for non-trivial and consistent couplings as a

supersymmetric system.

4. Superspace Reformulation of N=1 TM

As a reconfirmation of the total consistency of our system, we re-formulate our theory

in terms of superspace language. Our basic superspace BIds for the superfield strengths

FAB
I , GABC

I and HAB
I are8)

+ 1
6
∇bdAGBCD)

I − 1
4
TbdAB|

EGE|CD) − 1
4
f IJKFbdAB

JHCD)
K ≡ 0 , (3.1a)

+ 1
2
∇bdAHBC)

I − 1
2
TbdAB|

DHD|C)
I − g GABC

I ≡ 0 , (3.1b)

+ 1
2
∇bdAFBC)

I − 1
2
TbdAB|

DFD|C)
I ≡ 0 . (3.1b)

8) Only in this superspace section, we use the indices A = (a,α), B = (b,β), ··· for superspace coordinates,
where a, b, ··· = 0, 1, 2, 3 (or α, β, ··· = 1, 2, 3, 4) are for bosonic (or fermionic) coordinates. In superspace,
the (anti)symmetrization convention, e.g., XbdAB) ≡ XAB − (−1)ABXBA is different from our component
notation.
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These BIds are the superspace generalizations of the component BIds (2.3), with the super-

torsion terms added for local Lorentz indices, as usual in superspace.

Our basic superspace constraints at mass dimensions 0 ≤ d ≤ 1 are

Tαβ
c = + 2(γc)αβ , Gαβc

I = +2(γc)αβ ϕ
I , (3.2a)

Gαbc
I = − (γbcχ

I)α , Hαb
I = −(γbρ

I)α − f IJK(γbλ
J)α ϕ

K , (3.2b)

Fαb
I = − (γbλ

I)α , ∇αϕ
I = −χαI , (3.2c)

∇αχβ
I = − 1

6
(γcde)αβGcde

I − (γc)αβ∇cϕ
I

− 1
2
f IJK

[
+ Cαβ(λJρK)− (γ5γ

c)αβ(λJγ5γcρ
K)− (γ5)αβ(λJγ5ρ

K)
]
, (3.2d)

∇αρβ
I = + 1

2
(γcd)αβHcd

I + g Cαβ ϕ
I − 1

2
f IJK(γcd)αβFcd

JϕK

− 1
4
f IJK

[
+ Cαβ(λJχK) + (γc)αβ (λJγcχ

K)− 1
2
(γcd)αβ(λJγcdχ

K)

− (γ5γ
c)αβ(λJγ5γcχ

K)− (γ5)αβ(λJγ5χ
K) , (3.2e)

∇αλβ
I = + 1

2
(γcd)αβFcd

I − 1
2
(γ5)αβ f

IJK(ρJγ5χ
K) . (3.2f)

All other components, such as Gαβγ
I , Tαβ

γ, Tab
c, Hαβ

I etc. at d ≤ 1 are zero. Note that

(fermion)2 -terms in (3.2d) through (3.2f) have been determined in superspace by satisfying

BIds at d = 1. Note that these results are valid up to O(φ3) -terms, which we do not

attempt to fix these terms in this paper. However, all the O(φ2) -terms have been included,

as has been also mentioned at the end of last section.

There are also useful relationships obtained from d = +3/2 BIds:

∇αGbcd = − 1
2
(γbdbc∇dceχ

I)α − 1
2
f IJK(γbdb|λ

J)αH|cdce
K + 1

2
f IJK(γbdb|ρ

J)αF|cdce
K , (3.3a)

∇αHbc
I = + (γbdb∇cceρ

I)α − g(γbcχ
I)α − f IJK∇bdb

[
(γcceλ

J)αϕ
K
]
, (3.3b)

∇αFbc
I = + (γbdb∇cceλ

I)α , (3.3c)

up to O(φ3) -terms. Note the existence of the O(φ2) -terms in (3.3a) and (3.3b), reflecting

the corresponding terms in the component results (2.4a) and (2.4b).

As usual, the satisfaction of all the BIds in superspace by the constraints (3.2) and

(3.3) is straightforward to perform, from the dimension d = 0 to d = 3/2, as usual. In

particular, the (Fermions)2 -terms in (3.2d) through (3.2f) are the results of our superspace

re-formulation.
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The fermionic λ and ρ -field equations (2.5a) and (2.5c) are obtained as usual by comput-

ing {∇α,∇β}λβI and {∇α,∇β} ρβI , while the χ -field equation is shown to be consistent

with the component lagrangian. As has been mentioned, since the TM is off-shell multiplet,

we can not get the χ -field equation (2.5b) in superspace directly, but we can show that

(2.5b) is consistent in superspace. The bosonic field equations (2.5d) - (2.5g) are obtained

by applying another fermionic derivative on the fermionic field equations (2.5a) - (2.5c).

5. Generalization to Non-Adjoint Representations of G = SO(N)

We have so far considered the case for the TM and CVM both carrying only the adjoint

representation. We can generalize this result to other more general representations, such as

an arbitrary real representation of a SO(N) -type gauge group.9)

To be more specific, we consider the TM (Bµν
i, χi, ϕi) and the CVM (Cµ

i, ρi), where

the index i is for any real representation of a gauge group G = SO(N). Let (T I)jk be

the generator of the group G. Then our action I ′ ≡
∫
d4xL′ has the lagrangian10)

L′ = − 1
12

(Gµνρ
i)2 + 1

2
(χiD/χi)− 1

2
(Dµϕ

i)2 − 1
2
g2(ϕi)2 − g(ρiχi)

− 1
4
(Hµν

i)2 + 1
2
(ρiD/ρi)− 1

4
(Fµν

I)2 + 1
2
(λID/λI)

− 1
2
g(T I)jk(λIχj)ϕk + 1

2
(T I)jk(λ

I
γµρj)Dµϕ

k + 1
12

(T I)jk(λ
I
γµνρρj)Gµνρ

k

+ 1
4
(T I)jk(ρjγµνχk)Fµν

I − 1
4
(T I)jk(λ

I
γµνχj)Hµν

k − 1
2
(T I)jkFµν

IHµν jϕk , (4.1)

up to quartic terms O(φ4). Our action I ′ is invariant under global N = 1 supersymmetry

δQBµν
i = + (εγµνχ

i)− 2(T J)ikCbdµ|
k(δQA|νce

J) , (4.2a)

δQχ
i = + 1

6
(γµνρε)Gµνρ

i − (γµε)Dµϕ
i

− 1
2
(T J)ik

[
+ ε(λJχk)− (γ5γ

µε)(λJγ5γµχ
k)− (γ5ε)(λ

Jγ5χ
k)
]
, (4.2b)

δQϕ
i = + (εχi) , (4.2c)

δQCµ
i = + (εγµρ

i)− (T J)ik(εγµλ
J)ϕk , (4.2d)

δQρ
i = + 1

2
(γµνε)Hµν

i − gεϕi + 1
2
(T J)ik(γµνε)Fµν

Jϕk

− 1
4
(T J)ik

[
+ ε(λJχk)− (γµε)(λJγµχ

k) + 1
2
(γµνε)(λJγµνχ

k)

9) We can also consider the complex representation for SU(N) -type gauge groups.
10) Since the metric for the gauge group G = SO(N) is positive definite, we do not distinguish the upper

or lower indices for i, j, ··· = 1, 2, ···, dimR, where R is a real representation of G.
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− (γ5γ
µε)(λJγ5γµχ

k)− (γ5ε)(λ
Jγ5χ

k)
]
, (4.2e)

δQAµ
I = + (εγµλ

I) , (4.2f)

δQλ
I = + 1

2
(γµνε)Fµν

I − 1
2
(T I)jk(γ5ε)(ρ

jγ5χ
k) . (4.2g)

The essential point is that all the cubic-order terms contain one component field Aµ
I or

λI with the index I, and the remaining two component fields out of either TM or CVM carry

the indices j and k. So the cancellation structure is parallel to the adjoint-representation

case, e.g., with the structure constant f IJK replaced by the matrix − (T J)ik in Dµχ
I =

∂µχ
I + gf IJKAµ

JχK =⇒ Dµχ
i = ∂µχ

i − g(T J)ikAµ
Jχk. Accordingly, the Stueckelberg

mechanism [8] works in a parallel fashion, because Cµ
i is absorbed into the longitudinal

component of Bµν
i, both in the same representation R.

6. Coupling to N = 1 Supergravity

Once we have established the N = 1 global system of non-Abelian TM with non-trivial

and consistent interactions, the next natural step is to make N = 1 supersymmetry local,

coupling to N = 1 supergravity.

This coupling is rather straightforward, because most of the basic structure is parallel

to the usual matter coupling to supergravity, except for certain couplings to be mentioned

later. Our result for the lagrangian L̃ of our action is Ĩ ≡
∫
d4x L̃ :

e−1L̃ = − 1
4
R(ω)−

[
ψµγ

µνρDν(ω)ψρ
]
− 1

12
(Gµνρ

I)2 + 1
2
[χID/ (ω)χI ]− 1

2
(Dµϕ

I)2

− 1
4
(Fµν

I)2 + 1
2
[λID/λI ]− 1

4
(Hµν

I)2 + 1
2
[ ρID/ (ω)ρI ]− g(χIρI)− 1

2
g2(ϕI)2

− 1
2
gf IJK(λIχJ)ϕK − 1

4
f IJK(λIγµνχJ)Hµν

K

+ 1
12
f IJK(λIγµνρρJ)Gµνρ

K + 1
4
f IJK(ρIγµχJ)Fµν

K

− 1
2
f IJKFµν

IHµν JϕK + 1
2
f IJK(λIγµνρJ)Dµϕ

K

+ (ψµγ
νγµχI)Dνϕ

I + 1
6
(ψµγ

ρστγµχI)Gρστ
I

− 1
2
(ψµγ

ρσγµλI)Fρσ
I − 1

2
(ψµγ

ρσγµρI)Hρσ
I − g(ψµγ

µρI)ϕI , (5.1)

up to O(φ4) terms.

Our action Ĩ is now invariant under local N = 1 supersymmetry

δQeµ
m = − 2(εγmψµ) , (5.2a)
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δQψµ = +Dµ(ω̂)ε− 1
6
(γµ

ρστε)Ĝρστ
IϕI , (5.2b)

δQBµν
I = + (εγµνχ

I)− 2f IJKCbdµ|
J(δQA|νce

K)− 4(εγbdµψνce)ϕ
I , (5.2c)

δQχ
I = + 1

6
(γµνρε)Ĝµνρ

I − (γµε)D̂µϕ
I

+ 1
2
f IJK

[
+ ε(λJρK)− (γ5γ

µε)(λJγ5γµρ
K)− (γ5ε)(λ

Jγ5ρ
K)
]
, (5.2d)

δQϕ
I = + (εχI) , (5.2e)

δQCµ
I = + (εγµρ

I) + f IJK(εγµλ
J)ϕK , (5.2f)

δQρ
I = + 1

2
(γµνε)Ĥµν

I − g ε ϕI − 1
2
f IJK(γµνε)F̂µν

JϕK

+ 1
4
f IJK

[
+ ε(λJχK)− (γµε)(λJγµχ

K) + 1
2
(γµνε)(λJγµνχ

K)

− (γ5γ
µε)(λJγ5γµχ

K)− (γ5ε)(λ
Jγ5χ

K)
]
, (5.2g)

δQAµ
I = + (εγµλ

I) , (5.2h)

δQλ
I = + 1

2
(γµνε)F̂µν

I + 1
2
f IJK(γ5ε)(ρ

Jγ5χ
K) , (5.2i)

up to O(φ3) terms. The supercovariant field strengths are defined as usual in supergravity

[9] by

F̂µν
I ≡ + 2∂bdµAνce

I + gf IJKAµ
JAν

K − 2(ψbdµγνceλ
I) = Fµν

I − 2(ψbdµγνceλ
I) , (5.3a)

Ĝµνρ
I ≡ + 3DbdµBνρce

I − 3f IJKCbdµ
JFνρce

K − 3(ψbdµγνρceχ
I) + 6(ψbdµ|γ|ν|ψ|ρce)ϕ

I

= +Gµνρ
I − 3(ψbdµγνρceχ

I) + 6(ψbdµ|γ|ν|ψ|ρce)ϕ
I , (5.3b)

Ĥµν
I ≡ + 2DbdµCνce

I + gBµν
I − 2(ψbdµγνceρ

I) = Hµν
I − 2(ψbdµγνceρ

I) , (5.3c)

D̂µϕ
I ≡ +Dµϕ

I − (ψµχ
I) . (5.3d)

Certain remarks are in order. First, the last term in (5.1) of the type g(ψγρ)ϕ is related

to the ϕ -linear term in δQρ in (5.2g). Second, the δQBµν contains the (εγψ)ϕ -term. This

is consistent with Gαβc
I = +2(γc)αβ ϕ

I in (3.2a) in superspace. Third, for the gψρχ -terms,

we need non-trivial Fierz rearrangement. To be more specific, there are three contributions

to this sector: (i) g(ψγρ)ϕ, (ii) ge(χρ), and (iii) (ψγγρ)H -terms. This rearrangement is

highly non-trivial, showing the consistency of our total system.

As the couplings to supergravity in (5.1) show, our original globally supersymmetric

system shares certain feature with supergravity, such as fermionic bilinear terms. Because

such terms are common in supergravity [9], but not in conventional global supersymmetry.
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Our original global system already possessed the feature of local N = 1 supersymmetry. As

has been mentioned after (2.2), the conventional dimensional analysis tells that such terms

imply non-renormalizability. In other words, our globally supersymmetric system already

had a hidden gravitational constant κ providing negative mass dimension. In a sense,

this feature resembles σ -models with non-renormalizable couplings, sharing certain features

with gravity interactions.

7. Possible Application to Standard Model

A possible application to the standard model can be described as follows. The SU(3)×
SU(2)× U(1) gauge-field kinetic terms are

LStandard
KT = − 1

4
tr (Gµν)

2 − 1
4

(Fµν
I)2 − 1

4
(Yµν)

2 , (3.1)

where Gµν , Fµν
I and Yµν are respectively the field strengths of the gauge fields of

SU(3), SU(2) and U(1). We put the explicit adjoint indices I, J, ··· for SU(2) gauge

group. Forgetting about supersymmetrization, the new fields we need are the non-Abelian

tensor Bµν
I and the extra compensator vector Cµ

I with their field strengths already

defined:

Gµνρ
I ≡ 3DbdµBνρce

I ≡ 3(∂bdµBνρce
I + gf IJKAbdµ

JBνρce
K)− 3f IJKCbdµ

JFνρce
K , (2.1)

Hµν
I ≡ 2DbdµCνce

I + gBµν
I . (2.2)

The kinetic fields for B and C are

LB&C
KT ≡ − 1

12
(Gµνρ

I)2 − 1
4

(Hµν
I)2 . (3.2)

The total action IB&C
KT is invariant under δβ and δγ -transformations, because the

G and H -field strengths are invariant under δβ and δγ -transformations:

δβGµνρ
I = 0 , δβHµν

I = 0 , (2.5a)

δγGµνρ
I = 0 , δγHµν

I = 0 . (2.5b)

As (2.2) shows, the C -field is the compensator field absorbed into the longitudinal

component of Bµν
I , making the latter massive. In fact, the KT of C is nothing but
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the mass term of B after this absorption. The resulting mass is g for Bµν
I , because

H̃ µν
I = gB̃ µν

I , after the field re-definition B̃ µν
I ≡ Bµν

I + 2g−1DbdµCνce
I .

The typical interactions with the non-Abelian groups SU(3) or SU(3) are found

already in the field strength Gµνρ
I in (3.1). Namely, its last term C ∧ F gives already

non-trivial interaction between the new field C and the field strength F .

8. Unification Quest

Recently, the long-standing problem with non-Abelian tensors [10] has been solved by

de Wit, Samtleben, and Nicolai [11][12]. The original motivation in [11] was to generalize

the tensor and vector field interactions in manifestly E6(+6) -covariant formulation of five-

dimensional (5D) maximal supergravity by gauging non-Abelian sub-groups. In [12], this

work was further related to M-theory [13] by confirming the representation assignments

under the duality group of the gauge charges. The underlying hierarchies of these tensor

and vector gauge fields are presented with the consistency of general gaugings.

The hierarchy in [11][12] has been further applied to the conformal supergravity in 6D

[14]. In ref. [14], the ‘minimal tensor hierarchy’ as a special case of the more general hierarchy

in [11][12] has been discussed. This hierarchy consists of Aµ
r and two-form gauge potentials

Bµν
I , with two labels r and I. Also introduced is the 3-form gauge potentials Cµνρ r with

the index r is dual to r of Aµ
r. The field strengths of vector and two-form gauge potentials

are defined by [14]

Fµνr ≡ 2∂bdµAνce
r + hI

rBµν
I , (1.1a)

Hµνρ
I ≡ 3DbdµBνρce

I + 6drs
IAbdµ

r∂νAρce
s − 2fpq

sdrs
IAbdµ

rAν
pAρce

q + gIrCµνρr . (1.1b)

The prescription for tensor-vector system, which we will be based upon, is described with

eq. (3.22) in [14].
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6. Concluding Remarks

In this paper, we have carried out the N = 1 supersymmetrization in 4D of a non-

Abelian tensor with consistent couplings, as a special case [7] of the minimal tensor hierarchy

discussed in [14], which is further a special case of more general hierarchy in [11][12]. We

have given both the component and superspace formulations of our system, providing the

non-trivial consistency of our system. Our CVM (Cµ
I , ρI) plays the role of a Stueckelberg

[8] compensator multiplet, being absorbed into the TM (Bµν
I , χI , ϕI), making the latter

massive.

We have also generalized the adjoint-representation case to the general real representation

for G = SO(N). The action invariance works in a fashion parallel to the former. We foresee

no obstruction against generalizing these result further to the complex representation of,

e.g., G = SU(N) group. Finally, we have also coupled the global N = 1 system to

N = 1 supergravity up to quartic terms. This has provided a non-trivial confirmation for

the total consistency of the non-Abelian TM.

Our formulation has solved problems in supersymmetric gauge field theories, and has

given a new system, based on a very simple field content. First, we have established the

supersymmetric generalization of the non-Abelian tensor Bµν
I with consistent couplings

in explicit lagrangians. Second, we have solved the common problem with a vector field

Cµ
I carrying an adjoint index, which is not the gauge field of the gauge group G itself.

The solution turned out to be the introduction of an extra vector Cµ
I playing a role

of Stueckelberg compensator, eventually absorbed into the longitudinal components of the

non-Abelian tensor Bµν
I . In other words, the former is collaborating with the latter in a

Stueckelberg mechanism [8], avoiding the common consistency problem of couplings. In fact,

our coupling constant g coincides with the mass of the TM. This implies that the consistent

couplings for the non-Abelian TM and its mass via the Stueckelberg mechanism [8] are

closely related to each other. Third, the adjoint index on the non-gauge vector field Cµ
I is

further generalized to an arbitrary real representation index of G = SO(N). Fourth, most

importantly, we have carried out the supersymmetrization of such a Stueckelberg mechanism

for a non-Abelian tensor. Fifth, even though our algebra with δα, δβ and δγ is indeed a

special case of the hierarchy in [11], we have given explicit lagrangians with the physically

propagating vector field Cµ
I that has not been presented before.

It has been known that certain problem exists in the quantization of Stueckelberg model

[8] for non-Abelian gauge groups [15]. The common problem is that the longitudinal com-
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ponents of the gauge field do not decouple from the physical Hilbert space, upsetting the

renormalizability and unitarity of the system [15]. For this issue, we clarify our standpoints

as follows: First of all, our theory is not renormalizable from the outset, due to Pauli cou-

plings. Our theory makes stronger sense, when couplings to supergravity are also taken into

account, as we have done in section 5. Moreover, there are certain theories in 4D, such as

non-linear sigma models which are not renormalizable, but are not excluded from the outset.

So we do not go into the renormalizability issue in this paper. Second, thanks to N = 1 su-

persymmetry, our system has good chance to have a better quantum behavior, compared

with non-supersymmetric systems.

As will be shown in Appendix A, the purely bosonic part of our system can be generalized

to arbitrary space-time dimensions with arbitrary signatures. The key ingredient is the tensor

Bµ1···µp+1
I and a Stueckelberg-type [8] compensator Cµ1···µp

I .

The potential importance of the result in this paper is N = 1 supersymmetry that

has better quantum behavior compared with non-supersymmetric cases. We have presented

a new supersymmetric physical system with Stueckelberg mechanism that solves both the

problem with non-Abelian tensor, and the problem with extra vector fields in the non-singlet

representation of a non-Abelian gauge group.

This work is supported in part by Department of Energy grant # DE-FG02-10ER41693.

Appendix A: Higher-Dimensional Application of Purely Bosonic System

In this appendix, we generalize the purely bosonic part of our system in 4D into arbitrary

space-time dimensions with arbitrary signatures. We also apply it to the case of tensor-vector

duality in 6D, and perform a DR to 4D. Our field content is (Aµ
I , Bbdn−1ce

I , Cbdn−2ce
I).11)

We generalize the definitions of field strengths (2.1a) and (2.1b) to arbitrary space-time

dimension D as

Gµ1···µn
I ≡ +nDbdµ1Bµ2···µnce

I − n(n−1)

2
f IJKCbdµ1···µn−2

JFµn−1µnce
K , (A.1a)

Hµ1···µn−1

I ≡ +(n− 1)Dbdµ1Cµ2···µn−1ce
I + gBµ1···µn−1

I . (A.1b)

11) We use the symbols like bdnce for totally antisymmetric indices µ1µ2···µn in order to save space.
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The YM field strength F is the same as in (1.2). The BIds for these field strengths are

DbdµFνρce
I ≡ 0 , (A.2a)

Dbdµ1Gµ2···µn+1ce
I ≡ + n

2
f IJKFbdµ1µ2|

JH|µ3···µn+1ce
K , (A.2b)

Dbdµ1Hµ2···µnce
I ≡ + 1

n
g Gµ1···µn

I . (A.2c)

The α, β and γ -transformations for Aµ
I , Bbdn−1ce

I and Cbdn−2ce
I are the generalizations

of our 4D case:

δα(Aµ
I , Bbdn−1ce

I , Cbdn−2ce
I) = (Dµα

I , − gf IJKαJBbdn−1ceK , − gf IJKαJCbdn−2ceK) , (A.3a)

δα(Fµν
I , Gbdnce

I , Hbdn−1ce
I) = −gf IJKαJ(Fµν

K , Gbdnce
K , Hbdn−1ce

K) , (A.3b)

δβBµ1···µn−1

I = +(n− 1)Dbdµ1βµ2···µn−1ce
I , δβAµ

I = 0 , (A.3c)

δβCµ1···µn−2

I = −gβµ1···µn−2

I , (A.3d)

δβ(Fµν
I , Gbdn−1ce

I , Hbdn−2ce
I) = 0 , (A.3e)

δγCµ1···µn−2

I = +(n− 2)Dbdµ1γµ2···µn−2ce
I , δγAµ

I = 0 , (A.3f)

δγBµ1···µn−1

I = +
(n−1)(n−2)

2
f IJK γbdµ1···µn−3|

JF|µn−2 µn−1ce
K , (A.3g)

δγ(Fµν
I , Gbdn−1ce

I , Hbdn−2ce
I) = 0 . (A.3h)

Eq. (A.3d) shows that the C -field is a Stueckelberg field absorbed into the longitudinal

components of the B -field.

A typical action I ≡
∫
dDxL is given by the lagrangian

L = − 1
2(n!)

(Gbdnce
I)2 − 1

2·(n−1)!
(Hbdn−1ce

I)2 − 1
4

(Fµν
I)2 , (A.4)

yielding the B and C -field equations

δL
δBbdn−1]I

= 1
(n−1)!

(
DµG

µbdn−1ce I − gHbdn−1ce I
) .

= 0 , (A.5a)

δL
δCbdn−2ceI

=
1

(n− 2)!

(
DνH

νbdn−2ce I + 1
2
f IJKFρσ

JGbdn−2ceρσK
) .

= 0 . (A.5b)

As in the 4D case, it is straightforward to show the consistency

0
?
= Dµ

(
δL

δBµbdn−2ceI

)
≡ − 1

n−1
g

(
δL

δCbdn−2ceI

)
.
= 0 , (A.6a)

0
?
= Dµ

(
δL

δCµbdn−3ceI

)
≡ + n−1

2
f IJKFρσ

J

(
δL

δBbdn−3ceρσK

)
.
= 0 (Q.E.D.) (A.6b)
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We next apply our result to 6D with the signature (−,−,+,+,+,+), and consider the

duality condition

Fµν
I ∗

= + 1
24
εµν

ρστλGρστλ
I , Gµνρσ

I ∗= + 1
2
εµνρσ

τλ Fτλ
I . (A.7)

This duality looks similar to eq. (3.6) in [14], but the existence of the physical scalar field

φI in the latter makes the fundamental difference.

We have to first confirm the consistency of (A.7) with the G and H -BIds. First, the

rotation of the 2nd equation in (A.7) gives

0
?
= + εµνρστλDν

(
Gρστλ

I − 1
2
ερστλ

ωψFωψ
I
)
≡ +εµνρστλ

(
2f IJKFνρ

JHστλ
K
)
− 24DνF

µν I

= −24
(
DνF

µν I − 1
12
εµνρστλf IJKFνρ

JHστλ
K
)

. (A.8)

In the second identity in (A.8), we have used the G -BId (A.2b). The first term in the last

line is the kinetic term of Aµ
I , so that its last term is its source term. Second, in order to

see if eq. (A.8) has consistent solutions, we can confirm the conservation of the source term,

by applying Dµ on (A.8) based on H -BId (A.2c) and (A.7), but we skip the details here.

We next show that the usual self-duality relationship in D = 2 + 2

Fµν
I ∗= + 1

2
εµν

ρσ Fρσ
I (A.9)

is embedded into (A.7). To this end, we use hat symbols both on fields and indices in

6D, while no hats on 4D quantities from now on. We also use µ̂, ν̂, ··· = 1, 2, 3, 4, 5, 6 and

µ, ν, ··· = 1, 2, 3, 4, while α, β, ··· = 5, 6. Our basic ansätze for the DR are

Ĝµ̂ν̂ρ̂σ̂
I ∗= + F̂bdµ̂ν̂

IP̂ρ̂σ̂ce , P̂µ̂ν̂ ≡ +∂̂µ̂X̂ν̂ − ∂̂ν̂X̂µ̂ , Ĥµ̂ν̂ρ̂
I ∗= + 1

2
gF̂bdµ̂ν̂

IX̂ρ̂ce , (A.10a)

P̂µ̂ν̂ = εαβ (for µ̂ = α, ν̂ = β) , F̂µ̂ν̂
I = F̂µν

I = Fµν
I (for µ̂ = µ, ν̂ = ν) , (A.10b)

ε̂ µ̂ν̂ρ̂σ̂τ̂ λ̂ = ε̂ µνρσαβ = εµνρσεαβ (for bdµ̂ν̂ρ̂σ̂τ̂ λ̂ce = bdµνρσαβce) . (A.10c)

Other components, such as P̂µβ are all zero. We can confirm that (A.10) are consistent

with the BIds (A.2b) and (A.2c). It is easy to show that the bdαβce and bdµαce -components

of the first equation in (A.7) are satisfied, while the bdµνce -component gives directly the 4D

self-duality (A.9). Thus the 4D self-duality F
∗
= F̃ is indeed embedded in the 6D duality

(A.7).

We next generalize the 6D result to the D = 2m+2 with the signature (−,−,
2m︷ ︸︸ ︷

+, · · · ,+).

The duality condition (A.7) is generalized to

F̂µ̂ν̂
I ∗= + 1

(2m)!
ε̂µ̂ν̂

ρ̂1···ρ̂2m Ĝρ̂1···ρ̂2m
I , Ĝρ̂1···ρ̂2m

I ∗= + 1
2
ε̂ρ̂1···ρ̂2m

µ̂ν̂ F̂µ̂ν̂
I . (A.11)
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As in the 6D case, we can first confirm the consistency with BIds. We can next confirm the

current conservation, whose details are skipped here.

The previous ansätze for 6D case in (A.10) are generalized to

Ĝµ̂1···µ̂2m
I ∗= + cF̂bdµ̂1µ̂2|

IP̂
(1)
|µ̂3µ̂4| · · · P̂

(m−1)
|µ̂2m−1 µ̂2mce , P̂

(k)
µ̂ν̂ ≡ ∂̂µ̂X̂

(k)
ν̂ − ∂̂ν̂X̂

(k)
µ̂ , (A.12a)

Ĥµ̂1···µ̂2m−1

I ∗= + 1
m
cgF̂bdµ̂1µ̂2|

IP̂
(1)
|µ̂3µ̂4| · · · P̂

(m−2)
|µ̂2m−3 µ̂2m−2|X̂|µ̂2m−1ce , (A.12b)

P̂
(k)
µ̂ν̂ = P̂

(k)
2k+3, 2k+4 = −P̂ (k)

2k+4, 2k+3 = ε
(k)
2k+3, 2k+4 = −ε(k)2k+4, 2k+3 = +1

(for µ̂ = 2k+3, ν̂ = 2k+4; k = 1, ···, m−1) , (A.12c)

F̂µ̂ν̂
I = Fµν

I (for µ̂ = µ, ν̂ = ν) , (A.12d)

ε̂µ̂1···µ̂2m+2 = εµνρσ εα1···α2m−2 = εµνρσ ε
bdα1α2|
(1) · · · ε|α2m−3α2m−2ce

(m−1)

(for bdµ̂1···µ̂2m+2ce = bdµνρσα1···α2m−2ce) . (A.12e)

where c is a constant to be fixed later.

As before, we can also confirm the G and H -BIds for (A.11). The constant c in

(A.12a) is fixed by getting the 4D self-duality in the bdµνce -component of the first equation in

(A.11):

Fµν
I ∗= + 1

(2m)!
ε̂µν

ρ̂1···ρ̂2m Ĝρ̂1···ρ̂2m
I = +

(2m
2 )

(2m)!
ε̂µν

ρσα1···α2m−2 Ĝρσα1···α2m−2

I

= + 1
2
c
[

1
(m−1)!·(2m−3)!!

]2
εµν

ρσ Fρσ
I . (A.13)

For this to agree with F
∗
= F̃ , we get c = [ (m− 1)! · (2m− 3)!! ]2. The remaining compo-

nents bdαβce and bdµαce are trivially satisfied.

The above mechanism for D = 2m+ 2 is further generalized to D = 2m+ 1 with the

signature (−,−,
2m−1︷ ︸︸ ︷

+,+, · · · ,+) with the duality condition

F̂µ̂ν̂
I ∗= + 1

(2m−1)!
ε̂µ̂ν̂

ρ̂1···ρ̂2m−1 Ĝρ̂1···ρ̂2m−1

I , Ĝρ̂1···ρ̂2m−1

I ∗= + 1
2
ε̂ρ̂1···ρ̂2m−1

µ̂ν̂ F̂µ̂ν̂
I . (A.14)

The confirmation of G and H -BIds is just parallel to the D = 2m+ 2 case. The ansätze

for DR is

Ĝµ̂1···µ̂2m−1

I ∗= + 2c′

3
F̂bdµ̂1µ̂2|

IP̂
(1)
|µ̂3µ̂4| · · · P̂

(m−3)
|µ̂2m−5 µ̂2m−4|Q̂|µ̂2m−3µ̂2m−2µ̂2m−1ce , (A.15a)

Ĥµ̂1···µ̂2m−2

I ∗= +
2c′g

2m−1
F̂bdµ̂1µ̂2|

IP̂
(1)
|µ̂3µ̂4| · · · P̂

(m−3)
|µ̂2m−5 µ̂2m−4|Ŷ|µ̂2m−3µ̂2m−2ce , (A.15b)

P̂
(k)
µ̂ν̂ ≡ ∂̂µ̂X̂

(k)
ν̂ − ∂̂ν̂X̂

(k)
µ̂ , Q̂µ̂ν̂ρ̂ ≡ +∂̂µ̂Ŷν̂ρ̂ + ∂̂ν̂ Ŷρ̂µ̂ + ∂̂ρ̂Ŷµ̂ν̂ , (A.15c)
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P̂
(k)
µ̂ν̂ = P̂

(k)
2k+3, 2k+4 = −P̂ (k)

2k+4, 2k+3 = ε
(k)
2k+3, 2k+4 = −ε(k)2k+4, 2k+3 = +1 , (A.15d)

Q̂µ̂ν̂ρ̂ = Q̂2m−3,2m−2,2m−1 = ε2m−3,2m−2,2m−1 = +1 (for bdµ̂ν̂ρ̂ce = bd2m−3,2m−2,2m−1ce) , (A.15e)

F̂µ̂ν̂
I = Fµν

I (for µ̂ = µ, ν̂ = ν) , (A.15f)

ε̂ µ̂1···µ̂2m+1 = εµνρσ εα1···α2m−3 = εµνρσ ε
bdα1α2|
(1) · · · ε|α2m−7α2m−6|

(m−3) ε|α2m−5α2m−4α2m−3ce . (A.15g)

The totally antisymmetric constant tensor εαβγ is for the last three coordinates in D =

2m+1. The satisfaction of the duality (A.14) fixes the constant c′ = bd(m−3)! · (2m−7)!!ce2.
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