PASCOS 2012

Non-Abelian Tensor Multiplet
in Four Dimensions

Subhash Rajpoot?!)

Department of Physics € Astronomy
California State University
1250 Bellflower Boulevard

Long Beach, CA 90840

This work is done in collaboration with Dr. H. Nishino. I will present the work
as follows.

e STATEMENT OF THE PROBLEM

e THE SOLUTION

e SUPERSYMMETRY

e SUPERFIELD LANGUAGE

e DISCUSS RELEVANCE OF THE WORK

a. STANDARD MODEL

b. ON THE QUEST FOR THE UNIFICATION OF FUNDAMENTAL
FORCES

PACS: 11.15.-q, 11.30.Pb, 12.60.Jv

Key Words: Non-Abelian Tensor, N =1 Supersymmetry, Tensor Multiplet, Vector Field
in Non-Trivial Representation, Consistency of Field Equations and Couplings.

1) E-Mail: rajpoot@csulb.edu



Table 1:

18

d-bein ey d(d-3)/2

Gravitino by 2%(d-3)

Vector Ay (d-2)
Spinor X 2®
Scalar ] 1

ANTISYMMETRIC TENSOR GAUGE FIELDS

Agp  (d-4)(d-3)(d-2)/6

AN (d-3)(a-2)/2

Ay (d-2)

A 1
Degrees of freedom in d dimensions. For
Dirac spinors a = df2 1f d is even and «

= (d-1)/2 if 4 is odd. Divide by two for
Majorana spinors, by two for Weyl and by
four for Majorana-Weyl. Similarly divide
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1. The Problem

The basic problem with a non-Abelian tensor, when it has its own kinetic term, is easily
seen as follows. Let 1 be the adjoint index of a non-Abelian group G, and let a non-Abelian
vector field A,” couple minimally to the antisymmetric tensor B,,’. Consider the most

conventional field strength

Gy’ = +3DyByn’ = +300uBua’ + 9f " AL By ™) (1.1)

pvp
where D, is the usual gauge-covariant derivative with the minimal coupling with the
coupling constant ¢ and the structure constant f’/% of the group G. Consider a

tentative action Iy = [d*z L, with the lagrangian?)

EO = —TB(G(O) 1)2 - i(F/u/I)z ) (12)

pvp

with F,,' =20p,A," + gf""%A,” A%, Obviously, the B-field equation is3)

oL
i = +LD, GOl = (1.3)
1%

The problem is that the divergence of this B-field equation does not vanish:

oL
0=D, <(SB°I> = +igfEE,, GO Lo (1.4)
2%

unless F),,' or G/(L[L)p[ vanishes trivially. This inconsistency problem is already at the clas-
sical level before quantization. This is also one of the reasons, why topological formulations
with vanishing field strength F,,/ = 0 such as [1] are easier to formulate for non-Abelian

tensors.

An additional problem is related to the so-called local tensorial gauge transformation of
the B-field:

05 By = +Dpubn’ = Db’ (1.5)
because the field strength G’ is not invariant under Jdg:
605G, = +3g N F, By #0 (1.6)

This further implies the non-invariance of the action: dgly # 0. These two problems are
mutually related, because the non-vanishing of (1.4) is also interpreted as the action non-

invariance dgly # 0.

2) We use the signature (—,+,+,+) for four dimensions (4D) in this paper.
3) The symbol = stands for a field equation, to be distinguished from an algebraic identity. We also

use the symbol Z foran equality under question.
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2. The Solution to Problem

The solution to the problem above is to introduce a non-trivial Chern-Simons (CS) term

into the G-field strength:

Gup' =+3DByy)" = +3(0.Buy" + gf " Ay’ By ™) = 3f175Cp F

- +G,pr 3fIJKC|:,uJFVp]K ) (21)

where €, is a ‘compensator’ vector field, also carrying the adjoint index. The field strength
for C is defined by

HMVI = +D[uCV]I - D[,,C“]I + gB/wI : (2.2)

Now these field strengths G and H are invariant under the Jg-transformation

0sBuw’ = + Dpufny’ — DB’ (2.3a)

3sC." = — 9B, (2.3b)
which is the ‘proper’ gauge transformation for B,,’, and &, -transformations
6B = — fEF, 75 (2.4a)
5,0, =D,y . (2.4b)
is the ‘proper’ gauge transformation for C,.

The role played by the C'A F-term in (2.1) is to cancel the unwanted term in (1.6). The
Cfield itself should have its own ‘gauge’ transformation as the covariant gradient (2.4b).
The contribution of 6,(2Dp,C,1") in (2.2) is cancelled by the contribution of 6,(gB."), so
that &,H,,' =0.

In other words, we have the total invariances
655Gy’ =0, 63H," =0, (2.5a)
6,Gup =0, 0,H," =0 . (2.5b)
Accordingly, we also have the consistency problem (1.4) solved. Consider the kinetic

terms for the B, C' and A-fields:

(F.5)? . (2.6)
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The total action is also invariant dgl; = 0,1y = 0. The new field equations for B and
C'-fields are

oL
BT = 3 DG = S gH =0 (2.7a)
uv
5£1 uv I 1 pIJK Jyppo Ko -
50 T — —DZ,H +§f Fpa G = 0 ) (27b)
I

The divergence of the B-field equation vanishes now:

. 5Ly 4 (L) .
= o) o) =0 &

where the last equality holds because of the C'-field equation. In other words, the unwanted

FG-term in (1.4) is now cancelled by the contribution of the C'-field equation. This has

solved the previous problem (1.4).

Relevantly, the divergence of (2.10) also vanishes, as it should:

? 0Ly 0Ly i
0 = Dy, <W> — +fIJKFuVJ (5BMVK> =90 , (29)

without any inconsistency.

We emphasize repeatedly that these invariances have never been accomplished without
the peculiar CS terms both in (2.1) and (2.2).

Recently, the long-standing problem with non-Abelian tensors [2] has been solved by de
Wit, Samtleben, and Nicolai [3][4]. The original motivation in [3] was to generalize the tensor
and vector field interactions in manifestly Eg(y6)-covariant formulation of five-dimensional
(5D) maximal supergravity by gauging non-Abelian sub-groups. In [4], this work was further
related to M-theory [5] by confirming the representation assignments under the duality group
of the gauge charges. The underlying hierarchies of these tensor and vector gauge fields are

presented with the consistency of general gaugings.

The hierarchy in [3][4] has been further applied to the conformal supergravity in 6D [6].
In ref. [6], the ‘minimal tensor hierarchy’ as a special case of the more general hierarchy in
[3][4] has been discussed. This hierarchy consists of A,” and two-form gauge potentials

B,,', with two labels » and 1. Also introduced is the 3-form gauge potentials C,,,, with

4



the index , isdualto " of A,". The field strengths of vector and two-form gauge potentials
are defined by [6]

Fu' =20,A0" +hi" B, (1.1a)

Moy’ =3DByy’ + 6dps’ AL 0,A0° — 2fog®des AT AP AR + g Chupe . (1.1b)

The prescription for tensor-vector system, which we will be based upon, is described with
eq. (3.22) in [6]. To be more specific, we consider in the present paper the product of two
identical gauge groups G x G [7], whose adjoint indices are respectively r, s, . and +, o, -

Accordingly, we use the coefficients

frst = frst ) frs’t/ = _fs’rt/ = +%frs’t, ) (12&)

d, =d, == KW =6, (1.2b)

2 S

where f,,' is the structure constant of a non-Abelian gauge group. We use the same field

content arising by this prescription.

Since the outstanding paper [6] gives the extensive details of how to get our system
from [3][4][7], there is nothing new to explain, except for our notational preparation. In our

notation, the field strengths of the B and C'-fields are respectively G and H defined by

Gup' = +3D[MBVP]] - 3fUKC[uJFVp]K ) (1.3a)

H,' =+2D,Cy" +gB." . (1.3b)

The gauge transformations for B, C' and A-fields are

6a(Buy170uI,Ap,I) _ <_fIJK05JBIJ,VK7 _fIJKOéJCNK, +DMO[I) 7 (14&)
5B(B,u1/17 C,LLI7 A,LLI) = ( +2D[/Lﬁu]l7 - gﬁulv O) ’ (14b)
57(B,ulll7 Cu17 A,ul) = ( _fIJKFMVJ7K> D,Lﬂ/la O) . (14C>

As (1.3b) or (1.4b) shows, C,’ is a vectorial Stueckelberg field, absorbed into the lon-
gitudinal component of B,,’. Due to the general hierarchy [3][4], all field strengths are

invariant:
(5a<GWpIa H;w[? FWI) = _fUKO‘J<GWpK7 H;WK’ FMVK> ) (1'53)
65(Gup’s Hu's Eu') =0, 0,(Guw,’, Hy', F.,')=0 . (1.5b)
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Since the hierarchy given in [3][4] guarantees the gauge invariance of all field strengths,
the construction of purely bosonic lagrangian is straightforward. Consider the action [} =
[d*x g>Ly ¥ with

L, = _flz(GquI)Q - i(HWI)Q - i(FwI)2 : (1.6)

The gauge invariances of all field strength also guarantee the consistency of the A, B and
Cfield equations, such as the divergence D, (6£1/0B,,") = 0.%) Since we will do similar
confirmation for supersymmetric system later, we skip the details for the purely bosonic

system.

The purpose of our present paper is to supersymmetrize this system. The rest of our paper
is organized as follows. In section 2, we give the component formulation of N =1 tensor
multiplet (TM). In section 3, we give the superspace re-formulation of component result. In
section 4, we give the generalization to non-adjoint representation of G = SO(N) case.
In section 5, we give the supergravity coupling to non-Abelian TM, as supporting evidence
for the consistency of the global case. Section 6 is for concluding remarks. Appendix A is
devoted to purely bosonic systems of non-Abelian tensors with much simpler structures than
has been presented in arbitrary space-time dimensions with arbitrary signature. An example
of tensor-vector duality G = F* in D =2+ 4 dimensions, and its dimensional reduction
(DR) into the self-dual YM F = F* in D =2+ 2 is also presented.

3. Component Formulation of N=1 TM

The supersymmetrization of the purely bosonic system (1.6) is rather straightforward,
except for subtlety to be mentioned later. Our system has three multiplets: (i) A TM
(B!, x!, "), (ii) A compensating vector multiplet (CVM) (C,/, p), and (iii) A Yang-Mills
vector multiplet (YMVM) (4,7, ). Our total action I = [d*zg>’L has the lagrangian

L= — LG, +iX'Px") = L(Due’)? = 1g°(")? — g(X'p")
= HHL 10 P - HEL + LAY
— 71 v
— 3 f NN+ LN A p ) D™ + 12f”K( "1 p7) G

1fIJK<p 'Y/WXJ)F;WK _ ifIJK( 7/u/XJ) #V _ %fIJKFuVIHHVJQOK 7 (21)

4) The reason we need the factor ¢ in the action is due to the mass-dimension assignments of our fields.

5) We use the symbol = for a field equation to be distinguished from an algebraic equation.
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up to quartic-order terms O(¢?).

It is clear that the scalar ¢! has its mass g, while there is a mixture between y! and
p', again with the asme mass g¢. As has been mentioned after (1.4), C,’ plays the role of
Stueckelberg field [8], being absorbed into the longitudinal component of B,,’. Eventually,
the kinetic term of the C'-field becomes the mass term of B,,’. Accordingly, the degrees
of freedom (DOF) for the massive TM fields are B’ (3), x with p’ (4) and ¢’(1), up to

the adjoint index 1.

Our action [ is invariant under global N =1 supersymmetry

5B = + ([@nux’) = 2/ CLy” (00 A ™) (2.22)
dox' = + (") Gy’ — (7€) Dy
+ LI+ eV p") = (7" ) (W 1570™) = (1) (W sp")] . (2.2D)
e’ = + (&) , (2.2¢)
0oCu" = + (Eup") + 7 (@A), (2.2d)
Sop' = + (" Huw' — gep’ = LK (v e)FL 0"

+ LFRT 4 e ) = (9€) (V9 ) + (9 e) (W X ™)

= (17" )V s7x™) = () V15X )] (2.2¢)
SoA S = + (enAl) (2.2f)
0N = + 5 (" ) ' + L 75 (ys€) (075X ™) (2-2g)

up to cubic terms O(¢?) in fields. The fermionic quadratic terms in (2.2b), (2.2e) and
(2.2g) are fixed in superspace formulation, as will be explained later. In the conventional
dimensions with all the bosonic (or fermionic) fields with 1 (or 3/2) mass dimensions,®
these terms lead to non-renormalizability. For example, the Lh.s. of (2.2b) has dimension
3/2, while its r.h.s. for the e(Ayp) term has (—1/2)+ (3/2)+ (3/2) = 5/2. In other words,
there is an implicit coupling constant ¢ with the dimension of length in front of fermionic
quadratic terms. This feature is also related to the existence of Pauli-terms which are non-
renormalizable, already at a globally supersymmetric system. These features are similar to

supergravity [9], even though our system so far has only global supersymmetry.

6) Our bosonic (or fermionic) fields have dimensions 0 (or 1/2), in contrast to the conventional dimensions
1 (or 3/2).
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The usual non-Abelian gauge transformation ¢, and our tensorial gauge transformation
d3, and 0, -transformation are exactly the same as (1.4), while all the fermionic fields are
transforming only under ¢,, as the B and C'-fields do, so that there arises no problem
with the 3 and ¢, -invariances of the field strengths as in (1.5). These immediately lead

to the invariances of our action 6,/ =0, dg/ =0 and 4,1 = 0.

The Bianchi identities (Blds) for our field strengths G, H and F are:

DGy’ = 2 f75 i Hy =0, (2.3a)
1

DyHyp' = 59Guy’ =0, (2.3b)

DyF,,," =0 . (2.3¢)

Relevantly, the non-trivial J¢-transformations of the field strengths are

5QGIWPI =+ 3(€7[WDp]XI) + 3fUK(5QA[uJ>HVp]K - 3fIJK(5QC[uJ)FVp]K ) (2-43)
5QH/WI - = 2<€7[uDu]pI) + Q(EVWXI) + 2fIJKD[/L\ [(5QAIV]J)90K} ) (2‘4b)

5QFW,I = — 2(@7[#Dy])\1) , (2,4(})

reflecting the presence of CS terms.

Note that our YMVM and CVM has on-shell DOF 242, while off-shell DOF 3+4, because
we have not added the D-auxiliary field. On the other hand, our TM is in the off-shell
formulation, because the total off-shell DOF is 4+ 4, because the off-shell DOF of each field
are [(4—1)-(4—-2)]/2=3 for B,,, 4 for x and 1 for ¢.

The field equations for A, x!, p’, A", B, ¢' and C,' are respectively”)

+ DN = Lg NN + LR () D"

LR H S 4 SR Gg 20 (250)
+ DX = gp" + g fTEN QN = L PR (N H B 4 PR () ELR =00, (2.5D)

+ Dp" = gx" + L (M) D™

_ if”K(’y“”p)\J)GWpK + if”K(nyXJ)FWK =0 , (2.5¢)

) These equations are fixed up to O(¢3) -terms, due to the quartic fermion terms in the lagrangian.

8
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+DVFMV]+gfIJK§0JDMSOK+ %gfIJK(XJ'Yu)\K) +fIJKHMVJDVSOK

— LFE G HP7 K 4 LR (D) + LR D) =0, (254)

+ DPGuupI o gH;wI o %f]JKDP(XJ,Y;wppK)

+gfIJKF'uVJ(PK _ %gfIJK(XJ,yMVXK) =0, (258)
+ D" — gfENXT) = gt = LR E T H R =0 (2.51)

+ DVHMVI o %fIJKFpJJG/LpUK o %fIJK(YJDM/\K) . %fIJK(XJDuXK)
+ 39 NI = fRPIDN =0 L (2.5g)

In the derivation of these field equations, we have also used other field equations, in order

to simply their final expressions, as a conventional prescription.

In the above computation, we do not attempt to fix the O(¢?)-terms in field equations, or
equivalently the fermionic O(¢?)-terms in the lagrangian. There are several remarks about
these terms. First, our system is non-renormalizable as supergravity theory [9], as has been
mentioned after eq.(2.2). Accordingly, the (fermion)?-terms in the fermionic transforma-
tions such as (2.2b), (2.2e) and (2.2g) are accompanied by the implicit constant ¢ carrying
the dimension of (legnth). In supergravity theory [9], this is the gravitational coupling k.
In our lagrangian, all the quartic-fermion terms carry ¢2, so that the lagrangian has the
mass dimension +4. Accordingly, a typical Noether-term has the structure ¢W¥2?9®, that
produces the terms of the form ?e U39 ® wia do VU ~ (e P¥? Here U (or ®) is a general
fermionic (or bosonic) fundamental field. These %€ W39 ®-terms are cancelled by the vari-
ation of the fermionic quartic terms (2 ¥* via doW ~ €dP. In other words, the structure
of these cancellations associated with quartic-fermion terms is parallel to supergravity [9],

since ¢ is analogous to k.

However, in our peculiar system, this cancellation mechanism may be not simply parallel
to conventional supergravity [9]. For example, there may be (2U2®JV -type terms in the ac-
tion, while (2e¥2®-type terms in the transformation rules may exist, because both of them
yield (2eU39P-type terms, canceling each other in dg/. At the present time, we do not
know, if such terms arise, because the (?e¥?®-type terms in transformations are at O(¢?),
while (2U2®JV -type terms in the action are at O(¢?). In fact, even in the superspace

re-confirmation in the next section, we have fixed only the O(¢!) and O(¢?)-terms in

9
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the transformation rules for fermions, such as (3.2d), (3.2e) and (3.2f), but not cubic terms
O(4?). Our consistent principle in this paper is to fix only O(¢'), O(¢?) and O(¢?)-terms
in the lagrangian, O(¢') and O(¢?)-terms in all transformation rules, while O(¢') and
O(¢?)-terms in all field equations. However, we try to fix neither O(¢?)-terms in the la-
grangian, nor O(¢?)-term in all transformation rules, nor O(¢?*)-terms in all field equations.

We do not specify each field meant by ¢ is fermionic or bosonic in this paper, either.

Second, as an additional difference from supergravity [9], the fermionic quartic terms
do not contain any gravitino. This implies that we can not use the conventional technique
of ‘supercovariantizing’ fermionic field equations. Due to this feature, as well as the above-
mentioned possible non-purely-fermionnic (2¥?®OW -type terms, the quartic terms O(¢*) at
O(¢?*) will be more involved than conventional supergravity [9] which are tedious. For these

reasons, we do not attempt to fix them in this paper.

Third, according to the past experience in supergravity theory [9], it is understood that
the series in terms of k in a lagrangian will stop at a finite order, such as the quartic-
fermion terms at O(k?) [9]. However, at the present time, we do not know, whether this
is also the case with our globally supersymmetric system. This is because of the above-
mentioned differences of our system from supergravity [9], and therefore the analogy with
supergravity might be not valid in our system. Fourth, since we have already fixed the cubic
terms in the lagrangian, they seem sufficient for non-trivial and consistent couplings as a

supersymmetric system.

4. Superspace Reformulation of N=1 TM

As a reconfirmation of the total consistency of our system, we re-formulate our theory

in terms of superspace language. Our basic superspace Blds for the superfield strengths

Fup!, Gapce! and Hup' are®

+ é VuGpepy' — iT[AB\EGE\CD) - ifIJKF[ABJHCD)K =0, (3.1a)

+ 2 ViuHpey' — 2 Tiap " Hpiey' — 9 Gasc’ =0, (3.1b)

+ 2 ViaFsey' = L TamPFpe)! =0 . (3.1b)

8) Only in this superspace section, we use the indices A = (a,a), B = (b,8), - for superspace coordinates,
where a, b, - =0,1,2,3 (Or «, 8, - = 1,2,3,4) are for bosonic (or fermionic) coordinates. In superspace,

the (anti)symmetrization convention, e.g., X;ap) = Xap — (-1)ABXp, is different from our component
notation.

10
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These Blds are the superspace generalizations of the component Blds (2.3), with the super-

torsion terms added for local Lorentz indices, as usual in superspace.

Our basic superspace constraints at mass dimensions 0 < d <1 are

Tog®= +2(1ap »  Gape' = +2(Ve)as ' (3.2a)

Gave' = — (WX o+ Hat' = =0 )a — F75 (A7)0 0™, (3.2b)

Fa'= = (Ao, Vo' ==xa' (3.2¢)
Vaxs' = — % (Y*)apGede’ — (V)ap Ve

= LR+ Cap(V 0%) = (4579)a8(V 957e0™) = (15)as(V750%)]  (3.2d)
Vaps' = +5(YDapHea’ +9Cap e’ = 575 (YapFea’

= LFR[ 4 CapOV X)) + (1) as Y 7X™) = (D as (W eax™)
— (157)ap (N 157X ) = (15)as (A 3x ") (32¢)
Vars' = + 5(vagFea’ = 5(35)as F175 (075X ") (3.2f)
All other components, such as Gag,’, Tug?, T, Hap' etc. at d <1 are zero. Note that
(fermion)*-terms in (3.2d) through (3.2f) have been determined in superspace by satisfying
Blds at d = 1. Note that these results are valid up to O(¢*)-terms, which we do not

attempt to fix these terms in this paper. However, all the O(¢?)-terms have been included,

as has been also mentioned at the end of last section.

There are also useful relationships obtained from d = +3/2 Blds:

vozCTybcd = - %(V[bcvd] XI)OL - %fIJK(IY[b|>\J)aH|Cd]K + %fIJK(’Y[b\pJ)OcF]cd]K s (33&)
vaHbcI = + (V[bvc]pl)a - g(’ybcxl)a - fIJKV[b [(’7@] )\J)aSOK} ) (33b)
vancI = + (7[bvc:| )\I)a ’ (33C)

up to O(¢*)-terms. Note the existence of the O(¢?)-terms in (3.3a) and (3.3b), reflecting

the corresponding terms in the component results (2.4a) and (2.4b).

As usual, the satisfaction of all the Blds in superspace by the constraints (3.2) and
(3.3) is straightforward to perform, from the dimension d =0 to d = 3/2, as usual. In
particular, the (Fermions)?-terms in (3.2d) through (3.2f) are the results of our superspace

re-formulation.

11
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The fermionic A and p-field equations (2.5a) and (2.5¢) are obtained as usual by comput-
ing {Va,Vs} N and {V,,Vs}p?, while the x-field equation is shown to be consistent
with the component lagrangian. As has been mentioned, since the TM is off-shell multiplet,
we can not get the x-field equation (2.5b) in superspace directly, but we can show that
(2.5b) is consistent in superspace. The bosonic field equations (2.5d) - (2.5g) are obtained

by applying another fermionic derivative on the fermionic field equations (2.5a) - (2.5¢).

5. Generalization to Non-Adjoint Representations of G = SO(N)

We have so far considered the case for the TM and CVM both carrying only the adjoint
representation. We can generalize this result to other more general representations, such as

an arbitrary real representation of a SO(N)-type gauge group.?)

To be more specific, we consider the TM (B,,", x*,¢") and the CVM (C,7, p'), where
the index i is for any real representation of a gauge group G = SO(N). Let (T7)* be
the generator of the group G. Then our action I’ = [d*z £’ has the lagrangian'®)

L= = (G, )+ X' Px) — 2(Due')? = 36%(¢") — 9(P'X")
— {(HW')? + 50 Dp') — (Fu')? + 5 (A PAT)
= Lg(TYR(NN) @b + L(TE (N 0 ) D + (TR ) G
+ L@ (xR Et — NN ) B F = L(TER, H G (4.)
up to quartic terms O(¢*). Our action I’ is invariant under global N = 1 supersymmetry
0B’ = + (Eux’) = 2(T7)*Cr*(5AL) (4.2a)
X' = + ;(1"7€) Gy’ — (V') Dy’

LT[+ eVxF) = (37€) (W 957,x") — (s6) (W sxh)| L (4.2D)

do¢' = + (ex') (4.2¢)
5QC’ui = + (éyupi) - (T‘])ik(ﬁvu)\‘])gok , (4.2d)
Sop' = + (Ve Hy' — gep' + LTy " (v e) Fu, "

= @Y+ e(VXF) = (") (N uxt) + (9 e) (N )

9) We can also consider the complex representation for S U(N)-type gauge groups.

0) Since the metric for the gauge group G = SO(N) is positive definite, we do not distinguish the upper
or lower indices for i, j, -~ =1, 2, ---, dim R, where R is a real representation of G.

12



— (157" ) N y57x") = (1) VX)) (4.2¢)
SA. = + () (4.2f)

S = + 1" F = LT (350) (P 5x") (1.29)

The essential point is that all the cubic-order terms contain one component field A,’ or
A with the index 1, and the remaining two component fields out of either TM or CVM carry
the indices j; and k. So the cancellation structure is parallel to the adjoint-representation
case, e.g., with the structure constant f?/% replaced by the matrix — (77)* in D,x' =
Oux'+ gfl"EAIXE = D' = 9.x" — g(T?)*A,’x*. Accordingly, the Stueckelberg
mechanism [8] works in a parallel fashion, because C,’ is absorbed into the longitudinal

i

w', both in the same representation R.

component of B

6. Coupling to N =1 Supergravity

Once we have established the N =1 global system of non-Abelian TM with non-trivial
and consistent interactions, the next natural step is to make N =1 supersymmetry local,

coupling to N =1 supergravity.

This coupling is rather straightforward, because most of the basic structure is parallel
to the usual matter coupling to supergravity, except for certain couplings to be mentioned

later. Our result for the lagrangian L of our action is I = [d*x L:
'L = = 1RW) = [, Dy(@)t,] — (G’ ) + X' PW)X] - 5 (Dup")?
— (FD?+ I DA = L(H')? + [0 P(w)p') = g(X' ") — 397 (#7)?
_ %gfIJK(XIXJ)(pK _ ifIJK(XI,y;wXJ)HMVK
+ g N o) Gl + L PP ) F
B %fIJKFlWIH;ngOK + %fIJK (XI,YW/)J)D#SOK
+ (WYX Do’ + (0,7 X) G o
— L@, AN ) Foo = 2@, ) Hpo' — g, 7" 0" )" (5.1)
up to O(¢*) terms.

Our action I is now invariant under local N =1 supersymmetry

Soe,™ = — 2ev™,) | (5.22)
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S = + Du(@)e = 1" 7€)Goor 9" (5.2b)
0B = + (Eyuwx’) = 27 Cr? (00 A0 ") — 4@Evn)e’ | (5.2¢)
dox' = + 5(1"°€) G’ — (1'€) Dy’
+ L+ eV ) = (57" ) (N 1570™) = () W sp™)] L (5.24)
dov' = +(&x’) , (5.2¢)
0C." = + (Eyup") + f (@0 )" (5.2f)
Sop' = + 1" e Hu' — gep’ — LR (ye) F ok

+ 1 V) = (M) (V™) + 5 (" ) (V™)

— (357" (W57 ) = (1) (V75X )] (5.2¢)
doA = + (BN (5.2h)
SN = + 5(V ) Fu 4 LR (5e) (075X ) (5:2i)

up to O(¢*) terms. The supercovariant field strengths are defined as usual in supergravity
[9] by

Fu'= +203,A,0" + gf AT AR =20 N) = Fu = 2@, (5.3a)

GWPI =+ 3D[uBVp]I - 3fUKO[uJFVp]K - 3(6[/1%;)] XI) + G(E[m’y\mmp])(pl

= + G;wpI - 3(@[;{%;}] XI) + 6<E[p|'ylu\wlp])90l ) (5'3b)
f—l\uul = + QD[/,LCV]I + gB;wI - Q(J[N/yu]pl) = H;WI - Q(J[Mfyy]pl) ) (53C)
Dy’ = + D' — (0x") . (5.3d)

Certain remarks are in order. First, the last term in (5.1) of the type g(yp)e is related
to the -linear term in dgp in (5.2g). Second, the dgB,, contains the (€y1)p-term. This
is consistent with Gap.’ = +2(7c)as ¢’ in (3.2a) in superspace. Third, for the gipy-terms,
we need non-trivial Fierz rearrangement. To be more specific, there are three contributions
to this sector: (i) g(1yp)e, (ii) ge(Xp), and (iii) (yyp)H -terms. This rearrangement is

highly non-trivial, showing the consistency of our total system.

As the couplings to supergravity in (5.1) show, our original globally supersymmetric
system shares certain feature with supergravity, such as fermionic bilinear terms. Because

such terms are common in supergravity [9], but not in conventional global supersymmetry.
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Our original global system already possessed the feature of local N =1 supersymmetry. As
has been mentioned after (2.2), the conventional dimensional analysis tells that such terms
imply non-renormalizability. In other words, our globally supersymmetric system already
had a hidden gravitational constant & providing negative mass dimension. In a sense,
this feature resembles o-models with non-renormalizable couplings, sharing certain features

with gravity interactions.

7. Possible Application to Standard Model

A possible application to the standard model can be described as follows. The SU(3) x
SU(2) x U(1) gauge-field kinetic terms are

Standard 1 2
L Y cH L

B [
—~
&>

W)= 5 (V) (3.1)

where G, F,' and Y,, are respectively the field strengths of the gauge fields of
SU(3), SU(2) and U(1l). We put the explicit adjoint indices 1, s, . for SU(2) gauge
group. Forgetting about supersymmetrization, the new fields we need are the non-Abelian

tensor B, and the extra compensator vector C,’ with their field strengths already
defined:

GMVPI = 3D[uBVp]I = B(G[MBVP]I + gfIJKA[uJBVp]K) - 3fUKC[uJFVp]K ’ (2.1)

HNVI = QD[MCV]I + gBWI . (2.2)

The kinetic fields for B and C are

ﬁg%c = - L (G,uzzpl)2 - i (]_],uul)2 . (32)

The total action IZ¥¢ is invariant under dz and J,-transformations, because the

G and H -field strengths are invariant under dg and ., -transformations:

655Gy’ =0, 63H," =0, (2.5a)

6,Guwyt =0, 6,H, =0 . (2.5b)

As (2.2) shows, the C'-field is the compensator field absorbed into the longitudinal

1

component of B,,",

making the latter massive. In fact, the KT of C is nothing but
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I hecause

the mass term of B after this absorption. The resulting mass is g for B,,’,

HWI = gEWI, after the field re-definition EWI = BWI + 29*1D[#C’,,]I.

The typical interactions with the non-Abelian groups SU(3) or SU(3) are found
already in the field strength G,,,” in (3.1). Namely, its last term C A F gives already

non-trivial interaction between the new field C' and the field strength F.

8. Unification Quest

Recently, the long-standing problem with non-Abelian tensors [10] has been solved by
de Wit, Samtleben, and Nicolai [11][12]. The original motivation in [11] was to generalize
the tensor and vector field interactions in manifestly Fg.6)-covariant formulation of five-
dimensional (5D) maximal supergravity by gauging non-Abelian sub-groups. In [12], this
work was further related to M-theory [13] by confirming the representation assignments
under the duality group of the gauge charges. The underlying hierarchies of these tensor

and vector gauge fields are presented with the consistency of general gaugings.

The hierarchy in [11][12] has been further applied to the conformal supergravity in 6D
[14]. In ref. [14], the ‘minimal tensor hierarchy’ as a special case of the more general hierarchy
in [11][12] has been discussed. This hierarchy consists of A,” and two-form gauge potentials
BWI , with two labels » and 1. Also introduced is the 3-form gauge potentials C,,,, with

the index , is dual to
are defined by [14]

of A,". The field strengths of vector and two-form gauge potentials

Fuur = 2a[yAu]r + hITB;WI ) (11&)

Hywp' =3DBuy" +6des" AL 0,4,0° — 2fpdrs’ Ay AP AT+ g Crupr . (1.1b)

The prescription for tensor-vector system, which we will be based upon, is described with
eq. (3.22) in [14].
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6. Concluding Remarks

In this paper, we have carried out the N = 1 supersymmetrization in 4D of a non-
Abelian tensor with consistent couplings, as a special case [7] of the minimal tensor hierarchy
discussed in [14], which is further a special case of more general hierarchy in [11][12]. We
have given both the component and superspace formulations of our system, providing the

non-trivial consistency of our system. Our CVM (C,/, p’) plays the role of a Stueckelberg

1

X ¢!), making the latter

[8] compensator multiplet, being absorbed into the TM (B

massive.

We have also generalized the adjoint-representation case to the general real representation
for G = SO(N). The action invariance works in a fashion parallel to the former. We foresee
no obstruction against generalizing these result further to the complex representation of,
e.g., G = SU(N) group. Finally, we have also coupled the global N = 1 system to
N =1 supergravity up to quartic terms. This has provided a non-trivial confirmation for

the total consistency of the non-Abelian TM.

Our formulation has solved problems in supersymmetric gauge field theories, and has
given a new system, based on a very simple field content. First, we have established the
supersymmetric generalization of the non-Abelian tensor B, with consistent couplings
in explicit lagrangians. Second, we have solved the common problem with a vector field
C,! carrying an adjoint index, which is not the gauge field of the gauge group G itself.
The solution turned out to be the introduction of an extra vector C,’ playing a role
of Stueckelberg compensator, eventually absorbed into the longitudinal components of the
non-Abelian tensor B,,’. In other words, the former is collaborating with the latter in a
Stueckelberg mechanism [8], avoiding the common consistency problem of couplings. In fact,
our coupling constant ¢ coincides with the mass of the TM. This implies that the consistent
couplings for the non-Abelian TM and its mass via the Stueckelberg mechanism [8] are
closely related to each other. Third, the adjoint index on the non-gauge vector field C,! is
further generalized to an arbitrary real representation index of G = SO(N). Fourth, most
importantly, we have carried out the supersymmetrization of such a Stueckelberg mechanism
for a non-Abelian tensor. Fifth, even though our algebra with d,, d3 and 9, is indeed a
special case of the hierarchy in [11], we have given explicit lagrangians with the physically

propagating vector field C,’ that has not been presented before.

It has been known that certain problem exists in the quantization of Stueckelberg model

[8] for non-Abelian gauge groups [15]. The common problem is that the longitudinal com-
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ponents of the gauge field do not decouple from the physical Hilbert space, upsetting the
renormalizability and unitarity of the system [15]. For this issue, we clarify our standpoints
as follows: First of all, our theory is not renormalizable from the outset, due to Pauli cou-
plings. Our theory makes stronger sense, when couplings to supergravity are also taken into
account, as we have done in section 5. Moreover, there are certain theories in 4D, such as
non-linear sigma models which are not renormalizable, but are not excluded from the outset.
So we do not go into the renormalizability issue in this paper. Second, thanks to N =1 su-
persymmetry, our system has good chance to have a better quantum behavior, compared

with non-supersymmetric systems.

As will be shown in Appendix A, the purely bosonic part of our system can be generalized
to arbitrary space-time dimensions with arbitrary signatures. The key ingredient is the tensor

By’ and a Stueckelberg-type [8] compensator C,...., "

The potential importance of the result in this paper is N = 1 supersymmetry that
has better quantum behavior compared with non-supersymmetric cases. We have presented
a new supersymmetric physical system with Stueckelberg mechanism that solves both the
problem with non-Abelian tensor, and the problem with extra vector fields in the non-singlet

representation of a non-Abelian gauge group.

This work is supported in part by Department of Energy grant # DE-FG02-10ER41693.

Appendix A: Higher-Dimensional Application of Purely Bosonic System

In this appendix, we generalize the purely bosonic part of our system in 4D into arbitrary
space-time dimensions with arbitrary signatures. We also apply it to the case of tensor-vector
duality in 6D, and perform a DR to 4D. Our field content is (A,’, Bp,—1%, Cpu_oy?). 1V

We generalize the definitions of field strengths (2.1a) and (2.1b) to arbitrary space-time
dimension D as
n(n—1
Gm...#nl = ""nD[mBuzwun]I — % fUKC[m...MWQJFMAM]K , (A.1la)
Hﬂl"'#n—ll = +(n - 1)D[#1CH2"'#n71]I + gBMI”'Mn—II . (A1b>

1) We use the symbols like [n] for totally antisymmetric indices jiuz-u, in order to save space.
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The YM field strength F' is the same as in (1.2). The Blds for these field strengths are

DyF,,n' =0, (A.2a)

D[M1Guz-~~un+1]I =+ g fIJKF[Mluzle\u3"'un+1]K ) (A2b)
— 1

DhuHypopi)' =+ 9Ghop’ - (A.2c)

The «, 8 and ~-transformations for AMI , B[n_l]I and C[n_g]l are the generalizations

of our 4D case:

5(1(14#17 B[n—1]I, C[n—Q]I) _ (Duozf, . gfIJKaJB[n_l]K7 . gfIJKaJC[n_Q]K> . (A.3a)
balF's Gry'y Hpnony') = —gf" ’(FL", Gr™, Hp-n™) (A.3b)
0By’ = +(n — 1)D[H1/Bﬂ2"'ﬂnfl][ oA =0, (A.3¢)
06Cus s’ = =B’ (A.3d)
0(Fin', G-ty Hugg') =0, (A.3e)
6 Crropin s’ =+ = 2)Dp Vg o)’ A =0, (A.3f)
5me---un—1I =+ W o ’Y[#l..,#n73‘Jﬂun72 #nfl]K g (A.3g)
6 (Fuw', Gueny', Hpeng) =0 . (A.3h)

Eq. (A.3d) shows that the C-field is a Stueckelberg field absorbed into the longitudinal
components of the B-field.

A typical action I = [d”x L is given by the lagrangian

1 1 1
E = — m (G[n]I)Z - 2(7171)' (H[n71]1)2 - Z (Fuyj)z ) (A4)
yielding the B and C'-field equations
oL 1 [n—1]1 [n—1]7) -
oL _ 1 (DyHu[n72]I+ %fIJKFpUJG[an]pUK> = 0 . (A5b)

5C[n_2]1 (n—2)!

As in the 4D case, it is straightforward to show the consistency
oL 1 oL
0D, [ —"— — =0 A6
g <5Bu[n—2]l> n-1? <5C[n—211> ’ (A6

2 oL
0=D, ——
! <5Cu[n—3]]>

n—1 rIJK J oL .
+ 12 [T E,, <5B[n_3]paf<> = 0 (QED) (A6b)
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We next apply our result to 60D with the signature (—,—,+,+, 4+, +), and consider the

duality condition

I * 1 A I I * 1 A I
F,uu = + 24 EuupUT GPJTA ) G/wpa =+ 2 EIWPUT FT)\ : (A7)

This duality looks similar to eq. (3.6) in [14], but the existence of the physical scalar field

¢’ in the latter makes the fundamental difference.

We have to first confirm the consistency of (A.7) with the G and H-Blds. First, the

rotation of the 2nd equation in (A.7) gives

0 < + EW’JUT)‘DV (Gpan\] o %epaﬂwawwl) = e (QfUKFVPJHGT/\K> B 24DVFWI

= -2 (DVFMVI . é EMVPUT)\fIJKFVpJHUT)\K) ] (A8)

In the second identity in (A.8), we have used the G-BId (A.2b). The first term in the last
line is the kinetic term of A,’, so that its last term is its source term. Second, in order to

see if eq. (A.8) has consistent solutions, we can confirm the conservation of the source term,
by applying D, on (A.8) based on H-BId (A.2c¢) and (A.7), but we skip the details here.

We next show that the usual self-duality relationship in D = 2 4 2

Ful/[ ; + % e,u,upg FpUI (Ag)
is embedded into (A.7). To this end, we use hat symbols both on fields and indices in
6D, while no hats on 4D quantities from now on. We also use g, o, - =1, 2,3, 4,5 6 and
w, v, - = 1,2 3 4, while o, g, - =5, 6. Our basic ansatze for the DR are
o~ * ~ o~ o~ ~ ~ — * 1 o~ —

Giops' = +Fi'Posy , Puo = 403X — Xy, Hpop' = + 59Fp' Xy o (A10a)
ﬁﬂf, =€ap (for p=a,v=5), ﬁﬂf,l = ﬁwl = FWI (for p=po=0v), (A.10Db)
ehvpstA _ guvpoaB _ cuvpo cof (for [appe+d] = [uvpoaB]) . (A.10c)

Other components, such as f’ufg are all zero. We can confirm that (A.10) are consistent
with the Blds (A.2b) and (A.2c). It is easy to show that the [a8] and [ua]-components
of the first equation in (A.7) are satisfied, while the [u]-component gives directly the 4D
self-duality (A.9). Thus the 4D self-duality F = F is indeed embedded in the 6D duality
(A.7).

We next generalize the 6D result to the D = 2m+2 with the signature (—,—, 4+, -, +).
The duality condition (A.7) is generalized to

o I x 1~ prpom A I 2 I * po o 1
Foo' = + S Gypo s Gpyepo = W (AL

(Qm)! E[W Eﬁl.A.ﬁZm

DO =
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As in the 6D case, we can first confirm the consistency with Blds. We can next confirm the

current conservation, whose details are skipped here.

The previous ansitze for 6D case in (A.10) are generalized to

G’ =+ Pl Pl - PO PR =0 X0 - ,X | (A2a)
ﬁﬂl"'ﬂm*l[ =+ 709F[ﬂ1”2| P\#Sule Pligbmzuzm zljf\lfmmfl] ) (A.12b)
P ;EIZ) =P 2(1513 ks = — P, 2124 %43 = 6&%3 2Ud = 6gl?+4, ok3 = T1
(for = 2k43, o = 2k+4; k = 1, -, m—1) , (A.12¢)
Fupl=F,5 (for p=po=0), (A.12d)
ghtflames _ JWPO L010amoy _ VPO 6([%1%\ ) |(?n2m1)3a2m 2]
(for [ -fomis] = [wpoar-—asm-2]) - (A.12e)

where ¢ is a constant to be fixed later.
As before, we can also confirm the G and H-Blds for (A.11). The constant ¢ in

(A.12a) is fixed by getting the 4D self-duality in the [uw]-component of the first equation in
(A.11):

2m
I *x 1~ prpom A I __ (2) > poaraom—2 O 1
Fo' = + ! S C _+(2m)! Cpv "7 Gpoay oz
+

I S (A.13)

For this to agree with F = F, we get ¢ = [(m —1)!- (2m — 3)!!]°. The remaining compo-

nents [ef] and [ua] are trivially satisfied.

The above mechanism for D = 2m + 2 is further generalized to D = 2m + 1 with the

2m—1
—_—~
signature (—,—,=+, 4+, --,+) with the duality condition
A 1 m— I A I * 1 o o T
Fﬂf’ = + (2m—1)! 6 p1 ” 1Gm Pom—1 Gﬁ1'~~ﬁ2m71 = + 9 6[71"'/32777,71#1/ Fﬂﬁ . (A'14)

The confirmation of G and H-Blds is just parallel to the D = 2m + 2 case. The ansatze
for DR is

2 I * pH(m—3)

Gﬂl“'ﬂ2m 1 F[lt1u2| P,u3u4| o F)|,u2m 5 flam— 4|Q|ﬂ2m73ﬂ2m72ﬂ2m71] ) (A15a>
I3 Ip(1) H(m—3) v

Hﬂl"'ﬂ2m 2 = T m F[“W?' P|H3u4| o -P|/22m75 ﬂ2m74‘Yv‘ﬂ2m—3ﬂ2m—2] ) (A'15b)
5k A vk A A

P/.AEZA/) = aﬂXé ) - 8 XA(L ) Y ,LLI/p - +a Yl/p + a )/;)u + a Y/Jz/ 9 (A15C)
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Sk Sk = (k k k

P,“Eo) = PZ(k:-)',-Z%, 2k+4 = _P2(k3r4, 2%+3 Egk)+3, 2%+d = _Eék)+4, okt = 1 (A.15d)
Qﬂﬁﬁ = Qom-_39m_29m- 1= €am—32m—22m—1 = +1 (for [asp] = [2m—32m-22m-1]) , (A.15e)
Fo' =F,'  (for i=po=0v), (A.15f)
gL famel _ (WP 01 2mos _ PO 6([?)1112\ . El(oﬁig;azmw|€|a2m—5a2m—4a2m—3] _ (A_15g)

The totally antisymmetric constant tensor €*?7 is for the last three coordinates in D =

2m + 1. The satisfaction of the duality (A.14) fixes the constant ¢ = [(m —3)!-(2m —T7)!!]%
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