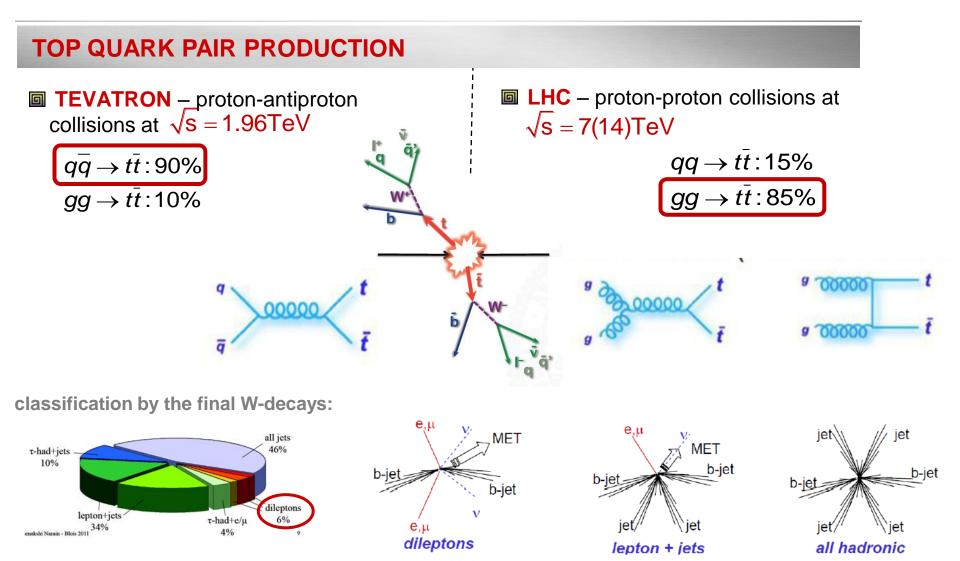
DISCERNING NEW PHYSICS IN tt-PRODUCTION FROM THE TOP SPIN OBSERVABLES

BLAŽENKA MELIĆ

Rudjer Bošković Institute Zagreb, Croatia

PASCOS 2012, Merida, June 3-8, 2012



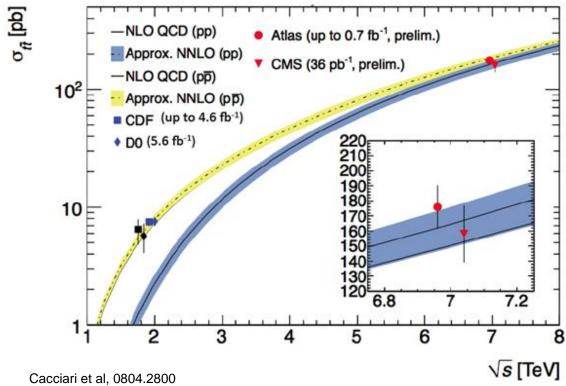
in coll. with J. Kamenik & S. Fajfer arXiv:1205.0264

WHY IS TOP SO INTERESTING?

- the heaviest of the quarks it does not hadronize
- the coupling to the Higgs O(1) special role in the EW symmetry breaking?

 $\mathbf{O}_{t\bar{t}}$ measurements vs SM theory

TEVATRON (average)


 $\sigma_{\text{TEV}}^{\text{tot}}$ = (7.5±0.48) pb

 $\sigma_{\text{TEV,NNLO+NNLL}}^{\text{tot-SM}}$ = (7.07 ± 0.26) pb

 $\mathbf{m}_{t\bar{t}} \in 700,800 \text{ GeV}$

 $\sigma_{\text{TEV}}^{\text{had}}$ = (80±37) fb $\sigma_{\text{TEV}}^{\text{had-SM}}$ = (80±08) fb

Imit LHC at 7 TeV (average) $\sigma_{LHC}^{tot} = (172 \pm 10) \text{ pb}$ $\sigma_{LHC}^{tot-SM} = (163^{+11}_{-10}) \text{ pb}$

Kidonakis & Vogt, 0805.3844 Moch & Uwer, 0807.2794 Ahrens et al, 1105.6824

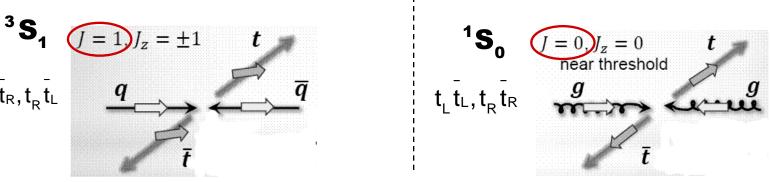
GOOD AGREEMENT WITH THE SM

SPIN CORRELATIONS I

depending on the production mechanism top quarks are produced in the different spin ٥ configuration

top decays before hadronizing \implies decay products contain information about the top spin 0 **SPIN CORRELATIONS** – in the angular distributions of the decays products: o

$$\frac{d\sigma}{d\cos\theta_t \, d\cos\theta_{\bar{t}}} = \frac{\sigma}{4} \left(\begin{array}{c} 1 + \kappa_t B_t \cos\theta_t + \kappa_{\bar{t}} B_{\bar{t}} \cos\theta_{\bar{t}} - \kappa_t \kappa_{\bar{t}} C \cos\theta_t \cos\theta_t \\ \text{top-quark polarization} \end{array} \right)$$


top spin analysing power factors of the top decaying products K_t

i
$$(l^+), \bar{d}, \bar{s}$$
 ν_l, u, c b W⁺ $j_<$
 κ 1 -0.31 -0.41 0.41 0.51

SPIN CORRELATIONS II

SPIN OBSERVABLES:

-quantization axis

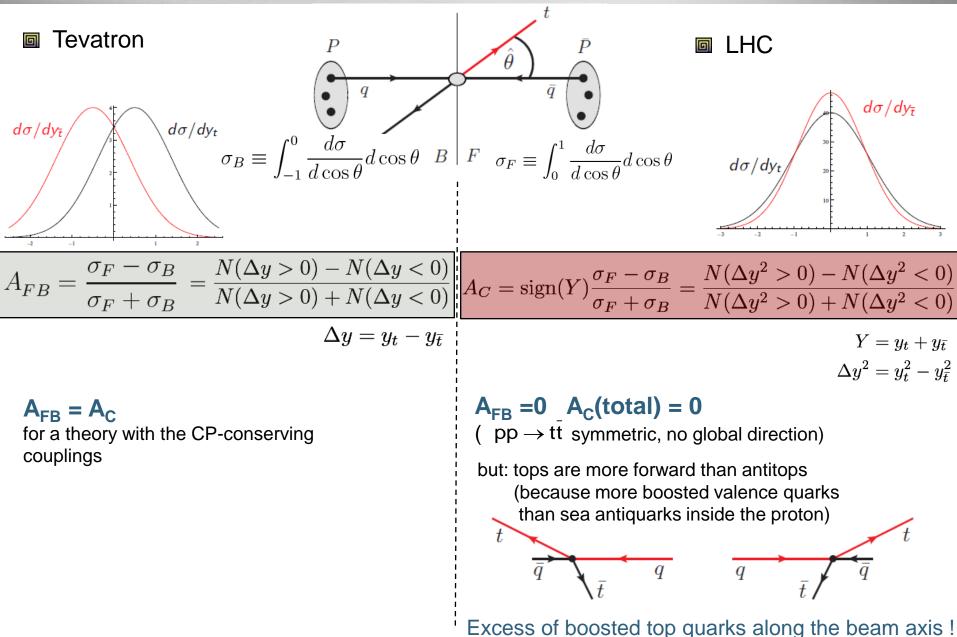
$$\begin{array}{c} \mathcal{O}_{1} = S_{t} \cdot S_{\overline{t}} \\ \mathcal{O}_{2} = S_{t} \cdot \hat{a} , \mathcal{O}_{\overline{2}} = S_{\overline{t}} \cdot \hat{b} \\ \mathcal{O}_{3} = 4(S_{t} \cdot \hat{a})(S_{\overline{t}} \cdot \hat{b}) \end{array}$$

$$\begin{array}{c} \hat{a} = \hat{b} = \hat{\beta} \\ \hat{a} = \hat{b} = \hat{\beta} \\ \hat{a} = \hat{b} = \hat{\beta} \\ \hat{a} = \hat{b} = \hat{d} \\ \hat{a} = \hat{d} \\ \hat{a} = \hat{b} = \hat{d} \\ \hat{a} = \hat{d} \\ \hat{d} = \hat{d} \\ \hat{a} = \hat{d} \\ \hat{a} = \hat{d} \\ \hat{$$

C measurements vs SM theory

.

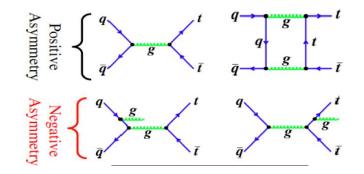
$$\frac{d\sigma}{d\cos\theta_t \,d\cos\theta_{\bar{t}}} = \frac{\sigma}{4} (1 + \kappa_t B_t \cos\theta_t + \kappa_{\bar{t}} B_{\bar{t}} \cos\theta_{\bar{t}} - \kappa_t \kappa_{\bar{t}} C \cos\theta_t \cos\theta_{\bar{t}})$$


	EXP	SM [Bernreuther et al., hep-ph/0403035]
D0	$C_{\text{beam}}^{\text{TEV}} = 0.66 \pm 0.23$	$C_{\text{beam,SM}}^{\text{TEV}} = 0.78_{-0.04}^{+0.03}$
	C_{hel}^{TEV} = -0.60 ± 0.52	$C_{\text{hel},\text{SM}}^{\text{TEV}}\simeq 0.35$
CDF	$C_{off}^{TEV} = 0.32_{-0.78}^{+0.55}$	$C_{\text{off,SM}}^{\text{TEV}} = 0.32_{-0.78}^{+0.55}$

ATLAS
$$C_{hel}^{LHC} = 0.40_{-0.08}^{+0.09}$$
 $C_{hel,SM}^{LHC} \simeq 0.31$

GOOD AGREEMENT WITH THE SM

ASYMMETRIES



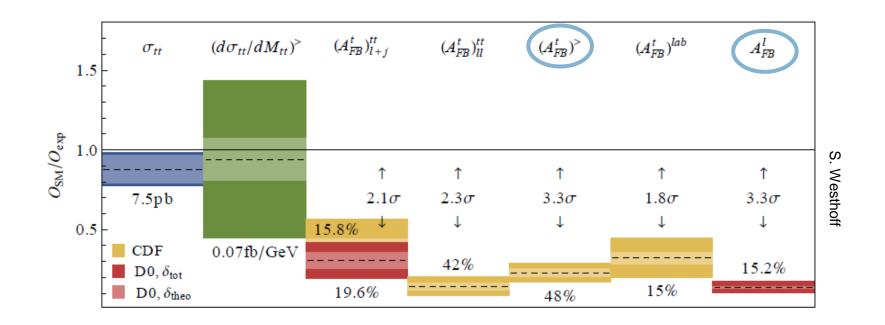
ASYMMETRIES II

In SM asymmetry arises at NLO [Kuhn, Rodrigo 1998]

- robust under higher-order QCD corrections [Ahrens et al. 1106.6051 ; Melnikov & Schulze]
- EW corrections about + 20% [Hollik & Pagani, 1107.2606]

A_c measurements:

 $A_{c} = 0.001 \pm 0.014$ (average) $A_{c}^{high} = -0.008 \pm 0.047$ (ATLAS)


$$A_{\rm C}^{\rm SM} = 0.006(1)$$

Kidonakis, 1009.4935 1105.3481 Beneke et al, 1109.1536 Ahrens et el, 1003.5827 Bernreuther & Si, 1205.6580

CONSISTENT WITH THE SM

TENSIONS between SM & TEVATRON data on asymmetries:

 $A_{FB}^{exp} = 0.187 \pm 0.037$

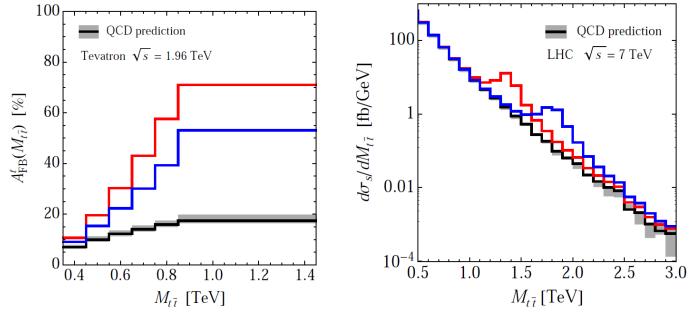
 $A_{SM}^{Tev} = 0.05 \pm 0.015$ (Antuñano, Kühn, Rodrigo), $= 0.066 \pm 0.015$ (Almeida, Sterman, Vogelsang)

NEW PHYSICS ?!

NEW PHYSICS MODELS TO EXPLAIN A_{FB}?

■ NP models must explain large A_{FB} without significantly changing the cross section

MODEL DISTINCTION


from the shape of A_{FB}(M_{tt})

[Aguilar-Saavedra & Perez-Victoria, arXiv: 1107.2120]

from resonances in σ(M_{tt})

[Hewett et al, arXiv: 1103.4618]

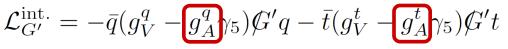
-an example: axigluon (s-channel) [Haisch & Westhoff, arXiv: 1106.0529]

• from **SPIN CORRELATIONS** [this work]

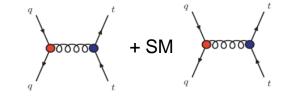
NEW PHYSICS MODELS TO EXPLAIN A_{FB}?

MODEL SELECTION: Vectors Scalars Colour: Label Rep. Label Rep. $\mathbf{3}\otimes \mathbf{\bar{3}}=\mathbf{8}\oplus \mathbf{1}$ $(1, 1)_0$ $(1, 2)_{-}$ \mathcal{B}_{μ} Z ϕ isodublet $\mathbf{3}\otimes\mathbf{3}=\mathbf{6}\oplus\bar{\mathbf{3}}$ $(1, 3)_0$ \mathcal{W}_{μ} Φ $(8,2)_{-\frac{1}{2}}$ W' \mathcal{B}^1_μ ω^1 $(1,1)_1$ $(3,1)_{-\frac{1}{2}}$ Isospin: axigluon \mathcal{G}_{μ} Ω^1 $(8,1)_0$ $(\bar{6}, 1)$ $2 \otimes 2 = 3 \oplus 1$ ω^4 $(8,3)_{0}$ $(3,1)_{4}$ colour triplet \mathcal{H}_{μ} $2\otimes 1=2$ $\mathcal{G}^{\rm 1}_{\mu}$ $(8,1)_1$ Ω^4 $(\bar{6},1)_{-\frac{4}{2}}$ colour sextet $1 \otimes 1 = 1$ $\begin{array}{c} \mathcal{Q}^{1}_{\mu} \\ \mathcal{Q}^{5}_{\mu} \\ \mathcal{Y}^{1}_{\mu} \\ \mathcal{Y}^{5}_{\mu} \end{array}$ $(3,2)_{\frac{1}{6}}$ $(3,3)_{-\frac{1}{2}}$ σ $(3,2)_{-\frac{5}{6}}$ Σ $(\bar{6},3)_{-\frac{1}{2}}$ Hypercharge: $(\bar{6},2)_{\frac{1}{6}}$ $\sum Y = 0$ $(\bar{6}, 2)_{-\frac{5}{6}}$ Aguilar-Saavedra, Perez-Victoria

MODEL FIT TO THE AVAILABLE DATA:


we consider NP model as acceptable if it improves upon χ^2_{SM} $\chi^2_{SM}(A) = 2.3 / d.o.f.$ $\chi^2_{SM}(B) = 1.8 / d.o.f.$

NEW PHYSICS MODELS – MODEL SELECTION I



MODELS s-channel exchange :

axigluon G'

parameters: $\mathbf{g}_{A}^{u}\mathbf{g}_{A}^{t}$, \mathbf{m}_{G} , Γ_{G} / \mathbf{m}_{G} ~ 0.2

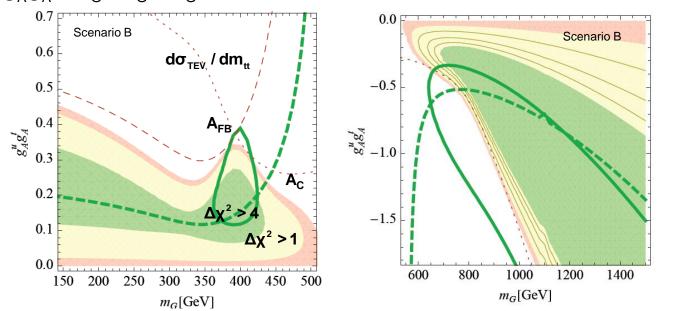
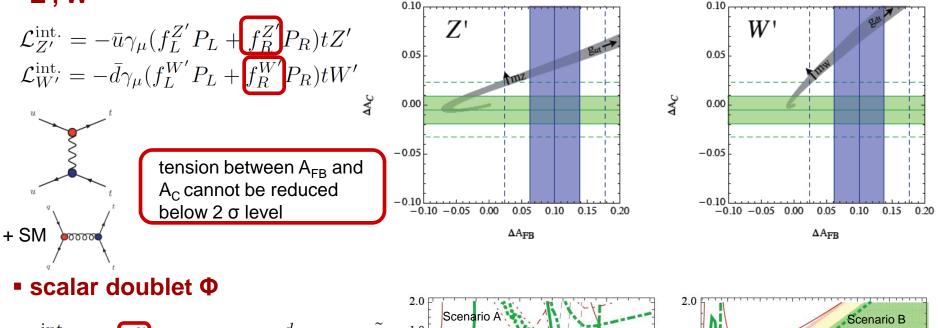
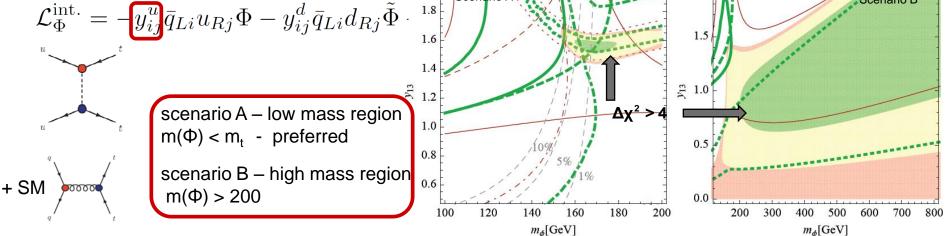


Figure 1: $t\bar{t}$ production constraints on the axigluon model: binned FBA at 1σ in thick full green line, inclusive CA at 1σ (2σ) in thick dashed green line (thin dashed red line), $m_{t\bar{t}}$ spectrum at 2σ in thin red dotted line. Parameter regions where the model can improve the SM χ^2 by $-\Delta\chi^2 > 0, 1, 4$ are shaded in red, yellow and green respectively.

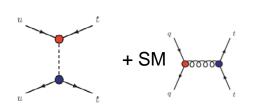
low mass region: m_G < 450 GeV Model fit : $g^u_A g^t_A \sim 0.2$

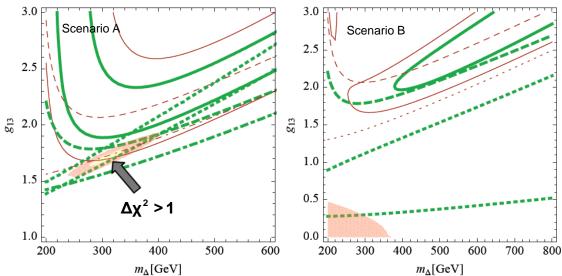

high mass region: $m_G > 700 \text{ GeV}$ $g^u_A g^t_A \sim -0.5$


NEW PHYSICS MODELS – MODEL SELECTION II

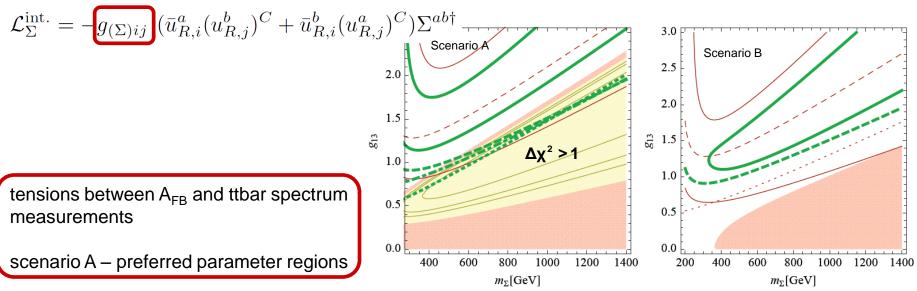
MODELS t-channel exchange:

• Z', W'


NEW PHYSICS MODELS – MODEL SELECTION III



MODELS u-channel exchange:


scalar colour triplet Δ

scalar colour sextet Σ

NEW PHYSICS MODELS – TOP SPIN OBERVABLES

TEVATRON predictions ($\Delta O = O - O_{SM}$)

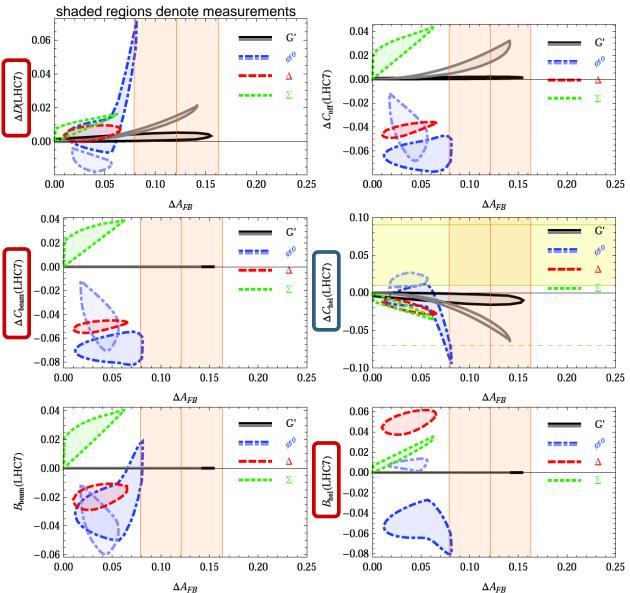
 ΔA_{FB}

shaded regions denote measurements 0.05 0.1 0.0 $\Delta C_{off}(Tevatron)$ 0.00 ΔD (Tevatron) -0.1-0.2 -0.05 -0.3-0.10-0.4 0.20 0.20 0.25 0.00 0.05 0.10 0.15 0.25 0.00 0.05 0.10 0.15 ΔA_{FB} ΔA_{FB} 0.2 0.1 0.1 $\Delta C_{\text{beam}}(\text{Tevatron})$ 0.0 $\Delta C_{\text{hel}}(\text{Tevatron})$ -0.1 0.0 -0.2 -0.3 -0.1-0.4-0.2 ⊾ 0.00 -0.50.00 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25 ΔA_{FB} ΔA_{FB} 0.2 0.1 0.1 Bheam (Tevatron) 0.0 B_{hel}(Tevatron) -0.1 0.0 -0.2 -0.1 -0.3 -0.2 -0.4-0.30.20 0.10 0.20 0.05 0.10 0.15 0.25 0.05 0.15 0.25 0.00 0.00

 ΔA_{FB}

off-diagonal axis \approx beamlike axis

Beamline axis – potential for discrimination between Σ and Φ , Δ using correlations ΔC


Helicity axis – potential for discrimination between Φ and Δ at O(20%) level using top spin B_{hel}

G' – needs O(2%) precision measurements

NEW PHYSICS MODELS – TOP SPIN OBERVABLES

LHC (7 TeV) predictions ($\Delta O = O - O_{SM}$)

D, C_{beam} , B_{hel} at O(5%) could discern among scalars

Helicity axis $-\Delta C_{hel}^{ex}$ – already nontrivial constraint for Φ and G' models

```
G' – very difficult to probe
(especially light G')
```

CONCLUSIONS

we have performed a comprehensive analysis of tt-production at Tevatron and LHC within the NP resonance models addressing the A_{FB} puzzle

- tension between the large positive A_{FB} measurement at the Tevatron and precise A_C at the LHC exclude Z' and W' models as explanation for the AFB anomaly
- Image and a model only axigluon state (of mass m_G ≈ 400 GeV or m_G ≥ 1 TeV) can reproduce A_{FB} and A_{FB} ^{high}
- $\square \Phi^{\text{light}}$ (m_{ϕ} < m_t) is severely constrained by measurements
- Δ , Σ are constrained by σ and dσ/dm_{tt} at Tevatron however given the caveats with the properly reconstructed dm_{tt} spectra, this issue has to be settled by future measurements

we have derived predictions of top spin polarization and tt-correlations at the Tevatron and the LHC

- Image at the TEVATRON B_{hel} for the scalar models can deviate more than 20% from B_{hel}^{SM} discrimination between Φ and Δ is possible
- **a** at the LHC B_{hel} and ΔC_{hel} at 5-10% can yield competitive constraints (as exemplified by the recent ATLAS measurements)
- axigluon models will be difficult to constrain using top spin observables

