

Kaons @ CERN: Recent Results and Propects

Giuseppina Anzivino University of Perugia and INFN on behalf of the NA62 and NA48/2 Collaborations

PASCOS 2012 Mérida, 3-8 June 2012

Outline

- Kaon physics at CERN >> NA48/n & NA62 brief history
- > This talk \rightarrow two main topics:
- Chiral Perturbation Theory tests
 - ightarrow K[±] $\rightarrow \pi^{\pm}\gamma\gamma$ decay NEW result
- Tests of SM and search for New Physics
 - > The $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay
- Summary and Outlook

The NA62 Collaboration:

Birmingham, Bratislava, Bristol, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, Liverpool, Louvain, Mainz, Merced, Moskow, Napoli, Perugia, Pisa, Protvino, Roma I, Roma II, San Luis Potosi, SLAC, Sofia, Torino

The NA48/2 Collaboration:

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Giuseppina Anzivino@PASCOS 12

NA48/n history

4-6-2012

Giuseppina Anzivino@PASCOS 12

Flavour sector **probing extremely high energy scales**:

precision frontier *complementary* to LHC energy frontier

Study processes suppressed in SM, sensitive to New Physics

Four main reasons

- 1) study explicit Violations of SM, such as LFV
- 2) probe the flavour sector by means of FCNC
- 3) test of fundamental symmetries such as CP and CPT
- 4) study of strong interaction at low energy in exclusive processes

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ - introduction

Experimental status

- BNL E787: 31 candidates, BR=(1.10±0.32)×10⁻⁶ (full kinematic range) New measurement MA48/2 and NA62 [PRL79 (1997) 4079]

4-6-2012

Giuseppina Anzivino@PASCOS 12

ChPT O(p⁶) fit mass spectrum 120 🗕 Data 🗕 Data 25 $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ 100 $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} (\gamma)$ $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} (\gamma)$ K^{\pm} → π^{\pm} γγ K^{\pm} → $π^{\pm}$ γγ 20 80 15 60 10 40 5 20 Ω $8.1 \ 0.15 \ 0.2 \ 0.25 \ 0.3 \ 0.35 \ 0.4 \ 0.45 \ 0.5 \ 0.55$ 0.4 0.45 0.55 0.5 0.6 M(π[±]γγ), GeV/c² $z = (m_{M}/m_{K})^{2z}$ $K_{\pi\gamma\gamma}$ candidates ChPT $O(p^4)$: 147 eliminal $\hat{c} = 1.36 \pm 0.33_{stat} \pm 0.07_{svst} = 1.36 \pm 0.34$ $K_{2\pi(\gamma)}$ background 11.0±0.8 $K_{3\pi}$ background 5.9±0.7 ChPT $O(p^6)$: $\hat{c} = 1.67 {\pm} 0.39_{stat} {\pm} 0.09_{svst} = 1.67 {\pm} 0.40$ $K_{\pi\gamma\gamma}$ signal 130±12

4-6-2012

ChPT O(p⁶) fit mass spectrum **120** 30 Data Data $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ 100 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ (γ) K^{\pm} → $\pi^{\pm}\pi^{0}$ (γ) 25 $\boldsymbol{K}^{\pm} \boldsymbol{\rightarrow} \pi^{\pm} \boldsymbol{\gamma} \boldsymbol{\gamma}$ K^{\pm} → $π^{\pm}$ γγ 80 20 60 15 40 10 20 5 8.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0 0.4 0.45 0.5 0.55 0.6 **Μ(**π[±]γγ**)**, **GeV/c²** $z = (m_{M}/m_{K})^{2}z$ $K_{\pi\gamma\gamma}$ candidates ChPT $O(p^4)$: 175 elimina $K_{2\pi(\gamma)}$ background $\hat{c} = 1.71 \pm 0.29_{stat} \pm 0.06_{syst} = 1.71 \pm 0.30$ 11.1±1.0 $K_{3\pi}$ background 1.3±0.3 ChPT $O(p^6)$: $\hat{c} = 2.21 \pm 0.31_{stat} \pm 0.08_{syst} = 2.21 \pm 0.32$ $K_{\pi\gamma\gamma}$ signal 163±13

NA62 Data set - 2007 (3 months / downscaled trigger)

4-6-2012

Combined 2004 & 2007 - Fit results

From NA48/2.....

✓ Precision measurement of $K^{\pm} \rightarrow \pi^0 I^{\pm} \nu$ (K₁₃) form factors

provide the most accurate and theoretically cleanest way to access |Vus|

- NA48/2 is the first experiment which measured both K_{e3} and $K_{\mu3}$.
- high precision preliminary results, competitive with other measurements
- Results for Ke3 and K μ 3 from NA48/2 in good agreement.
- ✓ First observation of the decay $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$
 - Sensitivity to CPV and NP,
 - 4500 events in the signal region
- ✓ <u>Measurement of the K⁺ → $e^+v\gamma$ (SD+) decay</u>
 - ChPT test to NLO in ChPT [O(p4) and O(p6)]
 - Model-independent form factor extraction allows comparison with theoretical predictons
 - K⁺→e⁺νγ(SD+) candidates ~ 10000

NA62 Measurement of the ultra-rare decay $K^+ \rightarrow \pi^+ v \overline{v}$

Ultra-rare kaon decays & CKM

The Unitarity Triangle describes in the (ρ,η) plane the CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

The "Kaon" Unitarity Triangle

The "Standard" Unitarity Triangle

$K \rightarrow \pi v v$ in the SM . . .

- FCNC process forbidden at tree level room for NP up to 10x5M
- > Short distance contribution dominated by Z penguin and W box diagrams
- Super-clean" theoretically
 - hadronic matrix element can be extracted from measured quantities(Ke3)
- > Very small BR due to the CKM top coupling
 - > $A \sim (m_t/m_W)^2 |V_{ts}*V_{td}| \approx \lambda^5$
- \succ Measurement of $|V_{td}|$ complementary to those from B-B mixing and B $\rightarrow \rho\gamma$
- $\succ \delta BR/BR=10\% \implies \delta |V_{td}|/|V_{td}|=7\%.$

BR × 10 ¹⁰	SM Prediction	Experiments
${\rm K}^{\scriptscriptstyle +}{\rightarrow}\pi^{\scriptscriptstyle +}\nu\overline{\nu}$	0.781 ± 0.075 ± 0.029 [1]	1.73 ^{+ 1.15} _{- 1.05} [2]
$K^0 \rightarrow \pi^0 \ v \ \overline{v}$	0.243 ± 0.039 ± 0.006 [1]	< 260 (@90% CL) [3]

7 events: twice as large as, but still consistent with SM expectation

[1] Brod, Gorbahn, Stamou: PRD83(2011) 034030, arXiv 1009.0947
[2] BNL E787/E949: PRL101 (2008) 191802, arXiv 0808.2459
[3] KEK E391a: PR D81 (2010) 072004, arXiv 0911.4789

... and beyond the SM

Several SM extensions predict sizable deviations for the BR Possibility to distinguish among different models **18** σ 45 σ Possibility to distinguish among different models 1.8 x B 3.0 x B [F. Mescia, C.Smith] 114.8 **36** x B Chargino / H[±] loops (MSSM at low/large tan β), 103.6 Excluded area R-parity violation (non MFV), enhanced EW Penguins, Grossman-Nir bound Excl. 68% CL 92.4 E787-949 b. 10^{11} Little Higgs, extra dimensions, 4th generation, 81.2 28 x B MSSM-A × 5 3 70.0 $\rightarrow \pi^0 \nu \nu$) vs BR(K⁺ $\rightarrow \pi^+ \nu \nu$) E949 1 σ BR(K 20 x B 58.8 , H V שח 4 47.6 13 x B_{SI} F SM4 36.4 9 x B 25.2 3 Grossman-Mir BR(K)5 x B experimental 14.1 SM MEV-MSSI RSc uncertainty 2.9 2 MFV NA62 5.8 8.0 10.2 12.4 14.6 16.8 19.0 21.2 23.4 25.6 27.8 Х expected $B(K^+ \rightarrow \pi^+ vv) \ge 10^{11}$ 10^{10} precision 1 D. Straub Concrete NP models predicting LHT **CKM'10** high deviations from MFV Randall-Sudrum, 2 3 4 Littlest Higgs with T-parity, $10^{10} \times BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ (hep-ph/0906.5454, hep-ph/0812.3803, hep-ph/0604074) SM 4th generation

4-6-2012

NA62 - Experimental principles

★ Goal → 10% precision Branching Ratio measurement
★ O(100) K⁺ → $\pi^+ v \bar{v}$ events in two years of data taking

Experiment layout & sensitivity

Giuseppina Anzivino@PASCOS 12

Background and kinematics

Tracking detectors

<u>Gigatracker</u>

- measurement of time, coordinates and momentum of individual particles
 GTK1
- three Si-pixel station before the decay volume
- > $\sigma(t)$ ~ 150 ps on single track (test beam)

Straw chamber spectrometer

- measurement of coordinates and momentum of charged particles originating from decay
- > 4 chambers + magnet
- > $\sigma(P_{\pi})/P_{\pi} \sim 0.3\% \oplus 0.007\% \times P_{\pi}(GeV/c)$
- > σ(dX/dZ)/(dX/dZ)~ 45-15 μrad

Veto & PID detectors/1

<u>CEDAR - Differential Cherenkov counter</u>

- Filled with Hydrogen gas
- Positive identification of Kaons in a 800 MHz hadron beam
- Excellent time resolution O(100 ps)
- Sustain rate O(MHz/mm²)

Ellipsoidal mirror Openantiation of the second seco

- <u>Photon Veto System</u>
 > several subsystems, among them:
- > Large angle (8.5-50 mrad) Lead glass blocks
- > Inefficiency $<10^{-4}$ for 100 MeV $< E_{\gamma} < 35$ GeV
- Small angle (1-8 mrad) "shashlyk" calorimeters
- > Inefficiency <10⁻³ for E_{γ} > 10 GeV

Veto & PID detectors/2

Summary and outlook

Precision physics complementary to high-energy approach for NP search

- New measurement of the $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ from NA48/2 and NA62
 - new precise experimental data on ChPT parameters
 - ChPT O(p⁴) vs O(p⁶) models cannot be discriminated within the current experimental sensitivity
- ♦ The K⁺→ $\pi^+ \sqrt{\nu}$ decay very challenging experiment
 - → collect 0(100) events & provide a 10% BR measurement
 - → key points: excellent resolutions, hermetic coverage, PID
 - → construction well advanced, first technical run in October 2012
 - \rightarrow 2013 complete detector and installation
 - → 2014 (?) data taking with full detector (CERN accelerator schedule)
 - The high performances of the detectors can also be the building blocks for a further physics program
- Many other results at the frontier of precision physics

A very rich program in the near future

NA62 Penguins at work

