

The Search for Leptoquark Pair Production With the CMS Detector at the LHC

Darin C. Baumgartel

For the CMS Collaboration

June 4, 2012

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00	

The Experimental Apparatus An Overview of the LHC The CMS Detector

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling

Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values Results LQ1/2 IIjj and Ivjj Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values Results LQ1/2 *IIjj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector

Leptoquarks

Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values Results LQ1/2 *IIjj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
•	00	000	0	0	00 0	

An Overview of the LHC

The Large Hadron Collider

- Is located 175 meters beneath Switzerland and France in 27km of tunnel.
- Is built and operated by a collaboration of over 10,000 scientists and engineers, and hundreds of universities.
- Contains 1232 dipole superconducting magnets for beam circulation and 392 quadrupoles for beam focusing.
- Operates at 1.9° Kelvin using almost 100 tonnes of liquid He.

- Beam intersects at 4 detectors for proton or heavy ion collisions.
- Is designed for 14TeV pp collisions with bunches colliding at 40MHz.

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
•	00	000	0	0	00	

The CMS Detector

The Compact Muon Solenoid (CMS) Detector

- It is 15 meters tall, weight over 12 tons, and is designed to take data with 1000 particle tracks streaming through it every 25 ns.
- Inner silicon tracker to determines the tracks and vertices.
- PbWO₄ ECAL and brass-scintillator HCAL to measure the energies of photons, electrons, and hadrons.

▶ Muon subsystem with DTs, RPCs, and CSCs to measure muons with p_T up to 1 TeV in p_T with resolution of 1-5%.

0 00 000 0 00	The Experimental Apparatus	Modeling Uncertainties Results Conclusions/Lo	Searching Strategy Same	Conclusions/Looking Forward
	0	0 00 0 0	000 0 000 0	

The Experimental Apparatus

An Overview of the LHC The CMS Detector

Leptoquarks

Intro To Leptoquarks

Searching Strategy

Channels for the Searches Discriminating Against Background

Samples & Modeling

Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values Results LQ1/2 *IIjj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus O O	Leptoquarks ●O	Searching Strategy 000 000	Samples & Modeling O O	Uncertainties O	Results 00 0 0	Conclusions/Looking Forward
Intro To Leptoquarks						

Leptoquark Basics

- LQ's are hypothetical particles carrying both baryon and lepton number.
- Predicted by GUTs, Superstring-inspired E₆ models, Technicolor Schemes, Composite Models, R-Parity violating SUSY
- According to the minimal Buchmüller-Rückl-Wyler (mBRW) general effective Lagrangian, LQs couple to a single generation

Model Parameters							
Model parameters							
M							
M_{LQ}	LQ mass						
β	BR(LQ \rightarrow l ^{+/-} + q)						
$\lambda_{l\text{-}q\text{-}LQ} \qquad l\text{-}q\text{-}LQ \text{ coupling}$							
LQs can be scalar* or vector							
	(*) In this study						

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	0.	000	0	0	00 0 0	

Intro To Leptoquarks

More LQ Theory

- Bosons with both lepton and baryon number and dimensionless coupling to SM fermions.
- Have fractional electric charge.
- Typically considered to couple to single generation to avoid flavor-changing neutral current.
- \blacktriangleright Direct limits from collider experiments on Mass and β
- Indirect limits at low-energy experiments from LQ-induced four-fermion interactions.
- $\sigma_{\text{LO}}\left[q\overline{q} \lor gg \to \text{LQ} + \overline{\text{LQ}}\right] = f(\alpha_s, M, \hat{s})$
 - Coupling strength λ has no first-order contribution.

The Search for Leptoquark Pair Production, With the CMS Detector at the LHC

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values Results LQ1/2 IIjj and Ivjj Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	• 00 000	0	0	00	

Channels for the Searches

DiLepton DiJet Channel

Backgrounds

- Z + 2 or more Jets
- tt + jets
 - Both Ws decay leptonically
- Diboson (WW/WZ/ZZ)
- W + Jets
- With a jet faking a lepton
- Multijet Processes
 - With a jet faking lepton

CMS EXO-11-027 and CMS EXO-11-028

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

Channels for the Searches

Lepton $+\not\!\!\!\!/ _T$ + DiJet Channel

Backgrounds

- ► W + 2 or more Jets
- ▶ tt̄ + jets
 - One W decays leptonically
 - One W decays hadronically
- Diboson (WW/WZ/ZZ)
- Z + Jets
 - One lepton fails ID
- Multijet Processes
 - With a jet faking lepton

CMS EXO-11-027 and CMS EXO-11-028

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00	

Channels for the Searches

$bb \nu_{\tau} \nu_{\tau}$ Channel

CMS EXO-11-030

Backgrounds

- Heavy Flavor Multijets
- ▶ W + HF Jets
- $\blacktriangleright \ Z + HF \ Jets$
- ▶ tt̄ + jets
- Diboson

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000 •00	0	0	00 0 0	

Discriminating Against Background

Discriminating Variables for Iljj

• Optimized cuts on M_{ll} , $S_T^{lljj} \equiv p_T(l_1) + p_T(l_2) + p_T(j_1) + p_T(j_2)$, and the LQ (l+jet) invariant Mass

M_{LQ} (GeV)	250	350	400	450	500	550	600	650	750	850
$S_T^{ll} > (\text{GeV})$	330	450	530	610	690	720	770	810	880	900
$\dot{M}_{ll} > (\text{GeV})$	100	110	120	130	130	130	130	130	140	150
minM(l, jet) > (GeV)	60	160	200	250	300	340	370	400	470	500

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

Discriminating Against Background

Discriminating Variables for $l\nu jj$

- ▶ Demand $M_T^{(I, \not\in_T)} > 120 \text{ GeV}$
- Optimized cuts on $\not\!\!\!E_T$, $S_T^{l\nu jj} \equiv p_T(l_1) + \not\!\!\!E_T + p_T(j_1) + p_T(j_2)$, and the LQ (I+jet) invariant Mass

The Search for Leptoquark Pair Production, With the CMS Detector at the LHC

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 0	

Discriminating Against Background

Discriminating Variables for $bb\nu\nu$

- Select events with two high p_T b-tagged jets, using track-counting high-efficiency
 - Two good tracks in the jet with high significance of the impact parameter.
- Using a Razor analysis by grouping event products into two "mega-jets"
- Event is viewed in the Razor Frame, a longitudinally boosted frame in which jet energies are equal.

•
$$\beta_L^{R^*} \equiv (p_z^{j1} + p_z^{j2})/(E^{j1} + E^{j2})$$

 Discrimination performed with the Razor Mass and the Razor Transverse Mass.

•
$$M_R \equiv \sqrt{(E^{j1} + E^{j2})^2 - (p_z^{j1} + p_z^{j2})^2}$$

• $M_R^T \equiv \frac{1}{4} \sqrt{\not{E}_T (p_T^{j1} + p_T^{j2}) - \not{E}_T \cdot (\vec{p_T}^{j1} + \vec{p_T})}$

•
$$R \equiv M_R^T / M_R$$

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling

Monte Carlo and DataSets Background Estimation With Data

Uncertainties

Nominal Values

Results

LQ1/2 *Iljj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	•	0	00	

Monte Carlo and DataSets

MC Samples For Signal And Background

▶ PYTHIA Samples with $\approx 50k$ events at each M_{LQ} ; 250 < M_{LQ} < 850 GeV

m_{LQ} [GeV]	μ/m_{LQ}	σ (NLO)[pb]	PDF uncertainty
250	1	3.47	0.372
400	1	0.205	0.0357
550	1	0.0236	0.00558
700	1	0.00377	0.00114
850	1	0.000732	0.000276

- ▶ *tt* events, generated with MADGRAPH;
- ► W and Z events (N_{Jets} ≤ 5), with SHERPA in binned by N_{Jets}. [LQ1/2]
- ▶ W and Z with MADGRAPH [LQ3]
- DiBoson WW, WZ, ZZ generated with MADGRAPH;

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	•	0	00 0	

Background Estimation With Data

Background Estimation

$\mathsf{LQ} + \overline{\mathsf{LQ}} \to \mathit{IIjj}$ Final State

- ► Z MC scale factor derived in the control region 80 < M_{II} < 100 GeV</p>
- $t\bar{t}$ determined from data with orthogonal $e \mu$ sample.
- Multijet with fake-rate method.

$LQ + \overline{LQ} \rightarrow l\nu jj$ Final State

- ► W MC scale factor derived in the control region 50 < M^T_{lν} < 110 GeV</p>
- ► tt MC scaled to data in the N_{jet} ≥ 4 control region.
- Multijet with fake-rate method.

$LQ + \overline{LQ} \rightarrow bb\nu\nu$ Final State

- Backgrounds are determined as the shape of the M_R variable.
 - Empirically, M_R fits well to two exponentials of differing slopes.
 - Shapes can be derived in orthogonal control regions containing leptons.
 - ► For various cuts on *R*
- W/Z shapes from simulation.
- $t\bar{t}$ from control region with tight μ .
- HF Multijets from control region with loose μ.
- ► Normalizations from side band of search region (high H_T)

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data

Uncertainties Nominal Values

Results

LQ1/2 *Iljj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	•	00 0 0	

Nominal Values

Systematic Uncertainties

LQ1/2 Uncertainties

Uncertainty	Magnitude
Jet Energy Scale	4%
Background modeling	Varies
e Energy Scale	1(3)%
<i>e</i> Trigger/Reco/ID/Iso	3%
μ Momentum Scale	1%
$\mu\;Reco/ID/Iso$	1%
Jet Resolution	(5 - 14)%
Electron Resolution	1(3)%
Muon Resolution	4%
Pileup	8%
Integrated Luminosity	2.2%

LQ3 Uncertainties

Uncertainty	Magnitude
Jet Energy Scale	3%
B-Tagging Efficiency	10%
<i>M_R</i> Shape	9%
Lepton Trigger	3%
Razor Trigger	2%
Integrated Luminosity	4.5%

		Officertainties	results	Conclusions/ Looking Forward
00 00	0	0	00 0 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data Incertainties Nominal Values

Results

LQ1/2 *Iljj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results

Conclusions/Looking Forward

the second s		
0 00 000 0 000	0)

LQ1/2 IIjj and $I\nu jj$ Limit Results

LQ1 Limits

Using the CL_S frequentist method, first generation scalar LQs are excluded with masses less than 834 (641) GeV with the assumption that $\beta = 1(0.5)$. The median expected limit is 792 (640) GeV.

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	0 0 0	

LQ1/2 IIjj and $I\nu jj$ Limit Results

LQ2 Limits

Using the CL_S frequentist method, second generation scalar LQs are excluded with masses less than 842 (615) GeV with the assumption that $\beta = 1(0.5)$. The median expected limit is 785 (609) GeV.

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 • 0	

LQ1 and LQ2 Channel Combination Results

Combination of *IIjj* and $I\nu jj$ channels.

Combining the *IIjj* and *Ivjj* channels, the observed and expected limits on β vs M_{LQ} can be further improved. For $\beta = 1/2$, the observed limits on mass becomes 642 and 646 GeV for first and second generation LQ's, respectively.

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 •	

Third Generation Limit Results

LQ3 Results For Unit and Variable Branching

Third generation scalar LQs with masses less than 350 GeV with the assumption that $\beta = 0$. The median expected limit is 340 GeV. Limits are also shown for variable branching ration BR(LQ \rightarrow b ν) = $(1 - \beta)$.

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0 0	

The Experimental Apparatus An Overview of the LHC The CMS Detector Leptoquarks Intro To Leptoquarks Searching Strategy Channels for the Searches Discriminating Against Background Samples & Modeling Monte Carlo and DataSets Background Estimation With Data Uncertainties Nominal Values Results LQ1/2 *IIjj* and *Ivjj* Limit Results LQ1 and LQ2 Channel Combination Results Third Generation Limit Results Conclusions/Looking Forward

The Experimental Apparatus	Leptoquarks	Searching Strategy	Samples & Modeling	Uncertainties	Results	Conclusions/Looking Forward
0	00	000	0	0	00 0	

Conclusions and looking forward.

- Using the most recent 7TeV Data from the CMS Detector, we've made huge improvements on the known limits of leptoquark pair production.
- Results include scalar leptoquarks in three generations.
- Efforts are underway to continue with increased energy and integrated luminosity in 2012.
- We'd like to thank our collaborators at CMS and the LHC for their tremendous efforts and success in keep the collider and detectors productive and operational.