Discrete Dark Matter

Eduardo Peinado
Instituto de Fisica Corpuscular (IFIC - CSIC- Universidad de Valencia)

PASCOS 2012-18th International Symposium on Particles Strings and Cosmology

Plan of the Talk

1. Introduction
2. Stability Mechanism
3. The Model
4. Phenomenology
5. Conclusions

Flavor and Flavor models

Horizontal flavor symmetries used to:

Predict relations beween quark masses and mixings

Wilczek and Zee Phys.Lett. B70 (1977) 418
Pakvasa and Sugawara Phys.Lett. B73 (1978) 61
Sartori Phys.Lett. B82 (1979) 255
Wyler Phys.Rev. D19 (1979) 3369

$$
\Theta_{C} \simeq \sqrt{m_{d} / m_{\mathrm{s}}} \quad \text { Gatto Satori, Tonin Phys.Lett. B28 (1968) 128-130 }
$$

Mixing
Small mixing angles

$$
\begin{gathered}
U_{C K M} \sim\left[\begin{array}{lll}
1 & \lambda & \lambda^{3} \\
-\lambda & 1 & \lambda^{2} \\
\lambda^{3} & -\lambda^{2} & 1
\end{array}\right] \\
\lambda=\sin \theta_{C}=0.23
\end{gathered}
$$

Neutrino masses

There is evidence of solar, atmospheric and reactor neutrino oscillation

Difference mass squared

$$
\begin{aligned}
& \Delta \mathrm{m}^{2}{ }_{\text {atm }} \sim 2.510^{-3} \mathrm{eV}^{2}, \\
& \Delta \mathrm{~m}_{\text {sol }}^{2} \sim 810^{-5} \mathrm{eV}^{2}
\end{aligned}
$$

Forero, Tortola and Valle
arXiv:1205.4018v2 [hep-ph]

Mixing angles

$$
\begin{aligned}
& \theta_{12} \text { (solar) large } \\
& \theta_{23} \text { (atm) large, } \sim \text { maximal } \\
& \theta_{13} \text { (T2K, Double Chooz, Daya } \\
& \text { Bay) small }
\end{aligned}
$$

3-Neutrino oscillation parameters

parameter	best fit $\pm 1 \sigma$	2σ	3σ	Double CHOOZ experiment, talk by H.De. Kerrect at LowNu2011, http://workshop.kias.re.kr/lownu11/
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.599_{-0.18}^{+0.20}$	7.24-7.99	7.09-8.19	
$\Delta m_{31}^{2}\left[10^{-3} \mathrm{eV}^{2}\right]$	$\begin{gathered} 2.50_{-0.16}^{+0.09} \\ -\left(2.40^{+0.08)}\right. \end{gathered}$	$\begin{gathered} 2.25-2.68 \\ -(2.23-2.58) \\ \hline \end{gathered}$	$\begin{gathered} 2.14-2.76 \\ -(2.13-2.67) \\ \hline \end{gathered}$	
$\sin ^{2} \theta_{12}$	$0.312_{-0.015}^{+0.017}$	0.28-0.35	0.27-0.36	Best measured
$\sin ^{2} \theta_{23}$		0.42-0.61	0.39-0.64	
$\sin ^{2} \theta_{13}$	$\begin{aligned} & 0.013_{-0.007}^{+0.005} \\ & 0.016_{-0.006}^{+0.008} \end{aligned}$	$\begin{aligned} & 0.004-0.028 \\ & 0.005-0.031 \end{aligned}$	$\begin{aligned} & 0.001-0.035 \\ & 0.001-0.039 \end{aligned}$	Daya Bay: $\sin ^{2} \theta_{13} \sim 0.0235$
δ	$\begin{aligned} & \left(-0.61_{-0.65}^{+0.75}\right) \pi \\ & \left(-0.41_{-0.70}^{+0.65}\right) \pi \\ & \hline \end{aligned}$	$0-2 \pi$	$0-2 \pi$	

DM Stability

DM is stable

$$
\begin{aligned}
& \tau_{D M}>\tau_{U} \sim 10^{18} \mathrm{sec} \\
& \tau_{D M} \gtrsim 10^{26} \mathrm{sec} \quad \lessdot \Longleftarrow \begin{array}{l}
\text { in most models not to produce } \\
e^{+}, \bar{p}, \gamma, \ldots \text { fluxes larger than observed }
\end{array}
\end{aligned}
$$

In many models Stability

DM Stability

DM is stable

$$
\begin{aligned}
& \tau_{D M}>\tau_{U} \sim 10^{18} \mathrm{sec} \\
& \tau_{D M} \gtrsim 10^{26} \mathrm{sec} \quad \longleftarrow \Leftarrow \begin{array}{l}
\text { in most models not to produce } \\
e^{+}, \bar{p}, \gamma, \ldots \text { fluxes larger than observed }
\end{array}
\end{aligned}
$$

In many models Stability assumed by hand

DM Stability

DM is stable

```
\(\tau_{D M}>\tau_{U} \sim 10^{18} \mathrm{sec}\)
\(\tau_{D M} \gtrsim 10^{26} \mathrm{sec} \quad \Longleftarrow \quad \begin{aligned} & \text { in most models not to produce } \\ & e^{+}, \bar{p}, \gamma, \ldots \text { fluxes larger than observed }\end{aligned}\)
```

In many models Stability assumed by hand
ad hoc global symmetry assumed, e.g. a Z_{2}

DM Stability

DM is stable

```
\(\tau_{D M}>\tau_{U} \sim 10^{18} \mathrm{sec}\)
\(\tau_{D M} \gtrsim 10^{26} \mathrm{sec} \Longleftarrow<\begin{aligned} & \text { in most models not to produce } \\ & e^{+}, \bar{p}, \gamma, \ldots \text { fluxes larger than observed }\end{aligned}\)
```

In many models Stability assumed by hand
ad hoc global symmetry assumed, e.g. a Z_{2}

Some fundamental expanations e.g. GUTS and SUSY GUTS

Neutrino masses

3-Neutrino oscillation parameters

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline parameter \& best fit $\pm 1 \sigma$ \& 2σ \& 3σ \& \multicolumn{3}{|l|}{\multirow[b]{3}{*}{Double CHOOZ experiment Daya Bay, RENO}}

\hline $\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$ \& 7.62 ± 0.19 \& 7.27-8.01 \& 7.12-8.20 \& \& \&

\hline $\Delta m_{31}^{2}\left[10^{-3} \mathrm{eV}^{2}\right]$ \& $$
\begin{gathered}
2.53_{-0.10}^{+0.08} \\
-\left(2.40_{-0.07}^{+0.10}\right)
\end{gathered}
$$ \& $$
\begin{aligned}
& 2.34-2.69 \\
& (2.25-2.59)
\end{aligned}
$$ \& $$
\begin{gathered}
2.26-2.77 \\
-(2.15-2.68)
\end{gathered}
$$ \& \& \&

\hline $\sin ^{2} \theta_{12}$ \& $0.320_{-0.017}^{+0.015}$ \& 0.29-0.35 \& 0.27-0.37 \& \multicolumn{2}{|l|}{Best measured} \&

\hline \multirow[t]{4}{*}{$\sin ^{2} \theta_{23}$
$\sin ^{2} \theta_{13}$

δ} \& \[
$$
\begin{aligned}
& 0.49_{-0.05}^{+0.08} \\
& 0.53_{-0.07}^{+0.05}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0.41-0.62 \\
0.42-0.62
\end{gathered}
$$
\] \& 0.39-0.64 \& \multirow[t]{3}{*}{Daya Bay:} \& \multirow[t]{2}{*}{$\sin ^{2} \theta_{13}$} \& 0.026

\hline \& $0^{0.026}{ }_{-0.004}^{+0.003}$ \& 0.019-0.033 \& 0.015-0.036 \& \& \& 0.027

\hline \& $0.027_{-0.004}^{+0.003}$ \& 0.020-0.034 \& 0.016-0.037 \& \& \&

\hline \& $$
\begin{gathered}
\left(0.83_{-0.64}^{+0.54}\right) \pi \\
0.07 \pi^{a}
\end{gathered}
$$ \& $0-2 \pi$ \& $0-2 \pi$ \& \multicolumn{3}{|l|}{CP mesurable??}

\hline
\end{tabular}

TBM mixing

$$
\begin{gathered}
U_{\mathrm{HPS}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
\\
\sin ^{2} \theta_{23}=0.5 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

```
Schwetz et al
Gonzalez et al
```

Fogli et al

Different ansatz has been studied: mu-tau, trimaximal, tetramaximal, symmetric mixing, hexagon mixing, bimaximal, golden, quark-lepton complementarity...

DM - neutrino

Dark matter

Gf flavor

neutrino

Talk by M. lindner

A4 Symmetry

the discrete group even permutations four objects

Contains 4 Irreducible representations
three singlets 1, 1', 1"
one triplet 3

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

A4 Symmetry

The generators are :

$$
S \text { and } T \quad S^{2}=T^{3}=(S T)^{3}=\mathcal{I} .
$$

$$
1,1^{\prime}, 1^{\prime \prime} \text { and } 3
$$

A4 spontaneously broken

Z3 in the charged sector $\quad \mathrm{Z} 2$ in the neutrino sector

A4 spontaneously broken

Z3 in the chXrged sector
Z2 in the neutrino sector stabilize the DM

A4 spontaneously broken

$\mathbf{Z 2}$ in the charged sector $\mathbf{Z 2}$ in the neutrino sector

stabilize the DM

Hirch, Morisi, Peinado and Valle Phys. Rev. D 82, 116003 (2010)
1,
$1 "$

3

The mechanism

SM +3 Higgs SU(2) doublets , 4 right handed neutrinos
Hirch, Morisi, Peinado and Valle Phys. Rev. D 82, 116003 (2010)
\(\left.\begin{array}{|c|ccccccc}\hline \& L_{e} \& L_{\mu} \& L_{\tau} \& l_{e}^{c} \& l_{\mu}^{c} \& l_{\tau}^{c} \& N_{T}

\hline S U(2) \& N_{4}

2 \& 2 \& 2 \& 1 \& 1 \& 1 \& 1 \& 1

1 \& 1^{\prime} \& 1^{\prime \prime} \& 1 \& 1^{\prime \prime} \& 1^{\prime} \& 3 \& 1

1 \& 3 \& 1

1\end{array}\right]\)| η |
| :---: |

The alignment

Z_{2} residual symmetry

$$
\langle\eta\rangle \sim(1,0,0)
$$

$$
\begin{aligned}
& H=\binom{\tilde{H}_{0}^{+}}{\left(v_{h}+\tilde{H}_{0}+i \tilde{A}_{0}\right) / \sqrt{2}}, \eta_{1}=\binom{\tilde{H}_{1}^{+}}{\left(v_{n}+\tilde{H}_{1}+i \tilde{A}_{1}\right) / \sqrt{2}} \cdots \cdots \quad Z_{2} \text { even }
\end{aligned}
$$

The mechanism

Hirch, Morisi, Peinado and Valle
Phys. Rev. D 82, 116003 (2010)
$\boldsymbol{I H}: m_{3}=0$
$0.03 \mathrm{eV}<$ Onubb <0.05 eV

$$
\theta_{13}=0
$$

DM mass

Constraints

- Relic Density
- Collider bounds
- EW precision
- Vacuum stability
M. S. Boucenna, M. Hirsch, S. Morisi, E. Peinado, M. Taoso and J. W. F. Valle, JHEP 1105 (2011) 037

The Model

Is it possible to have non trivial rep for charged leptons (and quarks)?

$$
\begin{aligned}
& \text { G: } \quad r_{a} \text { and } r_{b} \text { with } \operatorname{dim}\left(r_{a, b}\right)>1 \\
& G \supset Z_{N} \quad \text { DM stability } \\
& \Delta(54) \sim\left(Z_{3} \times Z_{3}\right) \rtimes S_{3} \\
& \text { triplets } \\
& 2_{\mathrm{k}} \times 2_{\mathrm{k}}=1_{+}+1_{-}+2_{\mathrm{k}} \\
& P \equiv\left(Z_{3} \times Z_{3}\right) \\
& 2_{1} \times 2_{2}=2_{3}+2_{4} \quad 2_{3} \sim\left(\chi_{1}, \chi_{2}\right) \\
& \chi_{1}\left(\omega^{2}, \omega\right) \\
& \chi_{2}\left(\omega, \omega^{2}\right)
\end{aligned}
$$

The Model

S. Boucenna, S. Morisi, E. Peinado, Yusuke Shimizu and J. W. F. Valle arXiv:1204.4733 [hep-ph]

	\bar{L}_{e}	\bar{L}_{D}	e_{R}	l_{D}	H	χ	η	Δ
$S U(2)$	2	2	1	1	2	2	2	3
$\Delta(54)$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{2}_{\mathbf{3}}$	$\mathbf{2}_{1}$

$$
\begin{gathered}
\langle\Delta\rangle \sim(1,1) \text { and }\left\langle\chi_{1}\right\rangle \neq\left\langle\chi_{2}\right\rangle \\
r=\left\langle\chi_{2}\right\rangle /\left\langle\chi_{1}\right\rangle \\
M_{\ell}=\left(\begin{array}{ccc}
a & b r & b \\
c r & d & e \\
c & e & d r
\end{array}\right) \quad M_{\nu} \propto\left(\begin{array}{ccc}
0 & \delta & \delta \\
\delta & \alpha & 0 \\
\delta & 0 & \alpha
\end{array}\right)
\end{gathered}
$$

Mass sum rule

The Model

S. Boucenna, S. Morisi, E. Peinado, Yusuke Shimizu and J. W. F. Valle arXiv:1204.4733 [hep-ph]

	\bar{L}_{e}	\bar{L}_{D}	e_{R}	l_{D}	H	χ	η	Δ
$S U(2)$	2	2	1	1	2	2	2	3
$\Delta(54)$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{2}_{3}$	$\mathbf{2}_{1}$

$\langle\Delta\rangle \sim(1,1)$ and $\left\langle\chi_{1}\right\rangle \neq\left\langle\chi_{2}\right\rangle$

$$
r=\left\langle\chi_{2}\right\rangle /\left\langle\chi_{1}\right\rangle
$$

$$
M_{\nu} \propto\left(\begin{array}{lll}
0 & \delta & \delta \\
\delta & \alpha & 0 \\
\delta & 0 & \alpha
\end{array}\right)
$$

L. Dorame, D. Meloni, S. Morisi, EP and J. Valle, 1111.5614
J. Barry and W. Rodejohann, Nucl.Phys. B842, 33 (2011), 1007.5217

Mass sum rule

Mass sum rule

The Model

	$Q_{1,2}$	Q_{3}	$\left(u_{R}, c_{R}\right)$	t_{R}	d_{R}	s_{R}	b_{R}
$S U(2)$	2	2	1	1	1	1	1
$\Delta(54)$	$\mathbf{2}_{1}$	$\mathbf{1}_{+}$	$\mathbf{2}_{1}$	$\mathbf{1}_{+}$	$\mathbf{1}_{-}$	$\mathbf{1}_{+}$	$\mathbf{1}_{+}$

$$
M_{d}=\left(\begin{array}{ccc}
r a_{d} & r b_{d} & r d_{d} \\
-a_{d} & b_{d} & d_{d} \\
0 & c_{d} & e_{d}
\end{array}\right), \quad M_{u}=\left(\begin{array}{ccc}
r a_{u} & b_{u} & d_{u} \\
b_{u} & a_{u} & r d_{u} \\
c_{u} & r c_{u} & e_{u}
\end{array}\right)
$$

$$
4 \text { ل }
$$

Correlations

$$
m_{1}^{\nu}+m_{2}^{\nu}=m_{3}^{\nu}
$$

Correlations

NI

IH

Conclusions

Non-Abelian Flavor Symmetries are useful to explain the patterns of masses and mixings of neutrinos: Reduce the number of free parameters in the SM

We show that are also useful to explain the DM in the Universe: Also with a rich phenomenology

... Direct Detection

