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• Neutrino oscillation experiments have adduced robust 
evidence for a  non-zero neutrino mass but they are not 
sensitive to the absolute scale of neutrino masses. 

• Cosmology provides one of the means to tackle the 
absolute scale of neutrino masses. A current limit on the 
sum of neutrino masses is                        at 95% CL, 
depending on the cosmological data and on the 
cosmological model.

• We derive neutrino mass constrains from the angular 
power spectra of galaxy density at different redshifts, 
in combination with priors from the CMB and from 
measurements of the Hubble parameter.

Introduction 
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Combining the CMASS data with a CMB prior from
the WMAP7 survey, we find an upper bound Σmν < 0.6
eV (0.90 eV) at 95% confidence level for "max = 200 in the
model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the prob-
ability distribution tightens and we find Σmν < 0.6 eV

(0.36 eV). Σmν < 0.90 We have also considered the effect
of adding supernova and a (lower redshift) BAO measure-
ment, but when the HST prior is included already, these
additions lower the upper limit to 0.25 eV (in the bias-
only model). Considering the dependence on the multi-
pole range, characterized by a maximum multipole "max,
we find that a significant amount of information resides
in the largest multipoles " = 150− 200, but that even for
"max = 150, the galaxy spectra place a strong bound on
neutrino mass.



Data
• Imaging data from DR8 

(Aihara et al, APJS ’11) 
of Sloan Digital Sky 
Survey III, SDSS-III 
(York et al, APJ ’00) 

• The first data release of 
the Baryon Oscillation 
Spectroscopic Survey, 
BOSS (Eisenstein et al, 
APJ ’11)

CMASS sample of luminous galaxies (White et al APJ ’11)  is divided 
into four photometric redshift bins, 
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-

Ross et al, APJ ’11  

It covers an area of 10,000 square degree and consists of 900,000 
galaxies.



Angular power spectra of the galaxy density

The theoretical power spectra is given by:
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showing that this is a safe approximation15. It then fol-
lows from the above (see Fisher et al. (1994); Heavens &
Taylor (1995); Padmanabhan et al. (2007)) that

C(ii)
� = b2i

2

π

�
k2dk Pm(k, z = 0)

�
∆(i)

� (k) +∆RSD,(i)
� (k)

�2
,

(9)
where Pm(k, z = 0) is the matter power spectrum at
redshift zero and

∆(i)
� (k) =

�
dz gi(z)T (k, z) j�(k d(z)) . (10)

Here, j� is the spherical Bessel function and T (k, z) the
matter transfer function relative to redshift zero16. The
contribution due to redshift space distortions is

∆RSD,(i)
l (k)=βi

�
dz gi(z)T (k, z)

�
(2l2 + 2l − 1)

(2l + 3)(2l − 1)
jl(kd(z))

− l(l − 1)

(2l − 1)(2l + 1)
jl−2(kd(z))

− (l + 1)(l + 2)

(2l + 1)(2l + 3)
jl+2(kd(z))

�
. (11)

To compute the matter power spectrum at a given red-
shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be

ignored, the contribution to a given angular mode � from
a redshift z comes exclusively from three-dimensional
modes with wave vector k ≈ �/d(z). Clearly, to avoid

15
A similar approach is considered to model β(z), appearing in

the redshift space distortion contribution. For each bin we calculate

an effective growth rate fi = (ΩDM(zi))
0.56

where zi is the mean

redshift of the i-th bin, ignoring the scale dependence of the RSD

growth.
16

The transfer function is defined as δm(k, z) =

T (k, z) δm(k, z = 0).
17

Recently, Bird et al. (2011) developed an extension to HaloFit

that incorporates the effect of massive neutrinos. We do not use

this prescription as the correction to standard HaloFit is negligible

on the scales of our interest.

large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),

C(ii)
� = b2i

2

π

�
k2dk Pm(k, z = 0)

�
∆(i)

� (k) +∆RSD,(i)
� (k)

�2
+ai .

(12)
The parameters ai serve to mimic effects of scale-
dependent galaxy bias and to model the effect of poten-
tial insufficient shot noise subtraction. This model is a
version of what is sometimes referred to as the “P-model”
(e.g. Hamann et al. (2008); Swanson et al. (2010)) and is
independently motivated by the halo model Seljak (2000,
2001); Schulz & White (2006); Guzik et al. (2007) and
the local bias ansatz Scherrer & Weinberg (1998); Coles

18
However, one must keep in mind that this may underestimate

the effect of non-linear galaxy bias, as galaxies are more strongly

clustered than matter and are thus prone to larger non-linear cor-

rections.
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four free bias, one 
for each bin
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To compute the matter power spectrum at a given red-
shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be

ignored, the contribution to a given angular mode � from
a redshift z comes exclusively from three-dimensional
modes with wave vector k ≈ �/d(z). Clearly, to avoid
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),
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The parameters ai serve to mimic effects of scale-
dependent galaxy bias and to model the effect of poten-
tial insufficient shot noise subtraction. This model is a
version of what is sometimes referred to as the “P-model”
(e.g. Hamann et al. (2008); Swanson et al. (2010)) and is
independently motivated by the halo model Seljak (2000,
2001); Schulz & White (2006); Guzik et al. (2007) and
the local bias ansatz Scherrer & Weinberg (1998); Coles
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the linear power spectrum by integrating the Boltzmann
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for an approach based on perturbation theory and the
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While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be

ignored, the contribution to a given angular mode � from
a redshift z comes exclusively from three-dimensional
modes with wave vector k ≈ �/d(z). Clearly, to avoid
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),
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The parameters ai serve to mimic effects of scale-
dependent galaxy bias and to model the effect of poten-
tial insufficient shot noise subtraction. This model is a
version of what is sometimes referred to as the “P-model”
(e.g. Hamann et al. (2008); Swanson et al. (2010)) and is
independently motivated by the halo model Seljak (2000,
2001); Schulz & White (2006); Guzik et al. (2007) and
the local bias ansatz Scherrer & Weinberg (1998); Coles
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the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
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to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
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extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
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stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
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value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
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the range of scales of our choice is given by Fig. 13 (left
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three-dimensional scales relevant to the multipole range
we have chosen.
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possible to model the galaxy spectrum in a more sophis-
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for an approach based on perturbation theory and the
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(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
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characterized by bias parameters bi. In addition to this
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shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be
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15
A similar approach is considered to model β(z), appearing in

the redshift space distortion contribution. For each bin we calculate

an effective growth rate fi = (ΩDM(zi))
0.56

where zi is the mean

redshift of the i-th bin, ignoring the scale dependence of the RSD

growth.
16

The transfer function is defined as δm(k, z) =

T (k, z) δm(k, z = 0).
17

Recently, Bird et al. (2011) developed an extension to HaloFit

that incorporates the effect of massive neutrinos. We do not use

this prescription as the correction to standard HaloFit is negligible

on the scales of our interest.

large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
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the linear power spectrum by integrating the Boltzmann
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then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
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modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
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value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
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shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),
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The parameters ai serve to mimic effects of scale-
dependent galaxy bias and to model the effect of poten-
tial insufficient shot noise subtraction. This model is a
version of what is sometimes referred to as the “P-model”
(e.g. Hamann et al. (2008); Swanson et al. (2010)) and is
independently motivated by the halo model Seljak (2000,
2001); Schulz & White (2006); Guzik et al. (2007) and
the local bias ansatz Scherrer & Weinberg (1998); Coles
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To compute the matter power spectrum at a given red-
shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be

ignored, the contribution to a given angular mode � from
a redshift z comes exclusively from three-dimensional
modes with wave vector k ≈ �/d(z). Clearly, to avoid

15
A similar approach is considered to model β(z), appearing in
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),
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To compute the matter power spectrum at a given red-
shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be

ignored, the contribution to a given angular mode � from
a redshift z comes exclusively from three-dimensional
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),
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The parameters ai serve to mimic effects of scale-
dependent galaxy bias and to model the effect of poten-
tial insufficient shot noise subtraction. This model is a
version of what is sometimes referred to as the “P-model”
(e.g. Hamann et al. (2008); Swanson et al. (2010)) and is
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To compute the matter power spectrum at a given red-
shift Pm(k, z) = Pm(k, z = 0)T 2(k, z), we first make use
of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
equations of all species including massive neutrinos. We
then apply the HaloFit prescription17 Smith et al. (2003)
to the linear power spectrum to account for non-linear ef-
fects on the matter power spectrum.
While in the linear regime the galaxy spectrum is easy

to model, calculations on non-linear scales inevitably
have large uncertainties. This effect is aggravated by the
presence of massive neutrinos since for the massive neu-
trino case the non-linear regime has been explored less
extensively in the literature than for a vanilla ΛCDM
model. In the non-linear regime, the matter power spec-
trum receives corrections due to gravitational collapse,
the galaxy bias becomes scale-dependent, and redshift
space distortions receive important contributions from
velocity dispersion in collapsed objects. We take into
account non-linear corrections to the matter spectrum
using HaloFit. The effect of non-linearities on redshift
space distortions at the relevant scales here is small as
it is largely washed out by line-of-sight projection. How-
ever, we do expect significant corrections to our model
on small scales due to non-linear galaxy bias, which we
address below.
For angular scales where non-linear effects cannot be

ignored, the contribution to a given angular mode � from
a redshift z comes exclusively from three-dimensional
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),
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of the CAMB code Lewis et al. (2000), which provides
the linear power spectrum by integrating the Boltzmann
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to the linear power spectrum to account for non-linear ef-
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presence of massive neutrinos since for the massive neu-
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large non-linear corrections, the analysis must be re-
stricted to low �. On the other hand, the density of
modes per unit � increases with � so we want to use as
many modes as possible without biasing the results. Fig-
ure 3 (left panel) depicts (as a function of redshift z) the
value of � above which non-linear corrections to the three-
dimensional power spectrum contributions to the angu-
lar spectrum become important (i.e. �NL ≡ kNL(z) d(z)),
considering various assumptions for the non-linear scale
kNL(z). Given that most of our signal is produced in the
range z = 0.45− 0.65, and assuming that our model be-
comes inadequate at k > 0.15hMpc−1, we conclude that
a conservative choice would be �max somewhere between
150 and 200.
Alternatively, we can obtain an indication of the im-

portance of non-linear galaxy bias by considering the ef-
fect of non-linear corrections to the matter power spec-
trum18 (which we do include in our model). The right
panel in Figure 3 therefore shows the signal to noise ra-
tio squared in the difference between our default model
and the same model, but using the linear matter power
spectrum instead of the non-linear (HaloFit) one. The
signal to noise reaches one somewhere between �max =
150 and 200, corresponding to contributions of modes
kmax ≈ 0.10hMpc−1 and kmax ≈ 0.14hMpc−1 at the
median redshift z = 0.55. Finally, a more concrete in-
dication of the importance of non-linear galaxy bias to
the range of scales of our choice is given by Fig. 13 (left
panel) of Hamaus et al. (2010), which shows the halo bias
as a function of three-dimensional mode k. Since for our
sample of galaxies the bias b ∼ 2, the plot confirms that
there is only a mild bias variation in the relevant range of
three-dimensional scales relevant to the multipole range
we have chosen.
Based on the above discussion, we choose a default

value �max = 200, but we will also present results for
the more conservative choice �max = 150. While it is
possible to model the galaxy spectrum in a more sophis-
ticated manner (see e.g. Saito et al. (2008, 2009, 2011)
for an approach based on perturbation theory and the
local bias model McDonald (2006), and Swanson et al.
(2010) for a cross-comparison of a number of methods),
we consider it appropriate, given the multipole range we
include, to use the simple model described in Eq. (9),
characterized by bias parameters bi. In addition to this
model, we also consider an alternative model with more
freedom, by adding shot noise-like parameters ai (see also
our companion papers),

C(ii)
� = b2i

2

π

�
k2dk Pm(k, z = 0)

�
∆(i)

� (k) +∆RSD,(i)
� (k)

�2
+ai .

(12)
The parameters ai serve to mimic effects of scale-
dependent galaxy bias and to model the effect of poten-
tial insufficient shot noise subtraction. This model is a
version of what is sometimes referred to as the “P-model”
(e.g. Hamann et al. (2008); Swanson et al. (2010)) and is
independently motivated by the halo model Seljak (2000,
2001); Schulz & White (2006); Guzik et al. (2007) and
the local bias ansatz Scherrer & Weinberg (1998); Coles
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However, one must keep in mind that this may underestimate

the effect of non-linear galaxy bias, as galaxies are more strongly

clustered than matter and are thus prone to larger non-linear cor-

rections.

shot-noise that serves to mimic 
effects of scale dependent 
galaxy bias
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Fig. 2.— Observed power spectra (black points) with error bars and theoretical power spectra (solid curves). We show the theoretical
power spectra for different models: the default, HaloFit (HF) based model used in our analysis (black; see text for details), the same
model, but using the linear matter power spectrum as input (red), the default model, but using the Limber approximation (blue) and the
default model without redshift space distortions (green). We restrict ourselves to the range � = 30−200 in our analysis. For the theoretical
spectra, we assume the WMAP7+HST best-fit cosmology and use the bias bi that best fits the data. We do not here include the shot noise
parameters ai.

unit redshift), d(z) is the comoving distance to redshift

z (assuming a flat universe) and v is the galaxy velocity

field. The velocity term arises because gradients of the

peculiar velocity contribution to the distance in redshift

space change the volume, and consequently, the number

density
14
.

We assume a linear, scale-independent bias for the

galaxy density,

δg(x, z) = bg(z) δm(x, z) , (6)

with δm the matter overdensity. For the peculiar velocity

field, we use the continuity equation in the linear regime,

which gives for a Fourier mode with wave vector k,

v = −ı̇β(z)δg(k)
k

k2
, (7)

14 Instead of writing the projected galaxy overdensity as an inte-
gral over the observed redshift (including peculiar velocity contri-
butions) as in Eq. (4), one could equivalently do the integral over
“true” cosmic redshift, see Ref. Padmanabhan et al. (2007), in
which case only the true three-dimensional galaxy overdensity ap-
pears explicitly and the redshift space distortions come in through
a modification of the distribution gi(z).

where β(z) = f(z)/bg(z) is the redshift distortion pa-

rameter and

f(z) ≡ d lnD(z)

d ln a
(8)

is the growth factor (with D(z) the linear growth func-

tion). In the presence of neutrinos, the growth function

is no longer scale independent at late time as the neutri-

nos suppress growth on scales below the free streaming

length Hu & Eisenstein (1998); Eisenstein & Hu (1997),

but not on larger scales (with a broad transition regime

in between). We shall ignore the scale dependent growth

in β(z) since it is a small (� 10%) correction to the

already small effect (on the scales of interest here) of

redshift space distortions (RSD, see Fig. 2). However,

this scale-dependent growth is included in the real space

power spectrum, as this is the main signature of massive

neutrinos.

We simplify our treatment of the galaxy bias by follow-

ing the approach of our two companion papers, adding

four free parameters bi to describe the bias in each bin.

The results from our simulations barely change when

considering a bias bg(z) that varies within redshift bins,

Angular power spectra of the galaxy 
density
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max

We assume that there are 
three degenerate species of 
massive neutrinos with 
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a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max

In the presence of massive neutrinos the angular power spectra are suppressed at 
any redshift. This suppression could be partially compensate by increasing the 
cold dark matter energy density,  while the effect of bias is to lower the power 
spectra at any multipole range.  

De Putter et al. 1201.1909, accepted for publication in ApJ



MCMC Analysis and Results
ΛCDM + neutrino mass fraction     , Amplitude of the Sunyaev-Zel’dovich 
spectrum        , four galaxy bias parameters     and (optionally) four nuisance 
parameters 
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-

We derive 
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max
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mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max

1
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WMAP7 prior 1.1 0.76 (0.95) 0.55 (0.91)
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∑

mν [eV] prior only prior+CMASS,!max = 150 prior+CMASS,!max = 200

WMAP7 + HST prior 0.40 0.31 (0.41) 0.27 (0.38)
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max
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Fig. 6.— Left panel: Recovered values of ΩDMh
2 from averaged mock spectrum together with CMB prior. We consider spectra from eight

different lines of sight. The points with error bars show the posterior mean values and 1σ error bars after the Monte Carlo analysis for two
scenarios: varying Σmν with (red) and without (blue) a0 marginalized. The vertical magenta lines indicate the input value ΩDMh

2 = 0.11166
(solid) and the input ± one and two σ, where σ = 0.0032 is the parameter uncertainty based on the data set WMAP7+HST+angular
spectra (ai = 0 fixed). There is a bias of about 1σ without the nuisance parameter, which disappears when ai is marginalized over. Right
panel: The posterior neutrino mass distributions for the two cases discussed above. The mock constraints are consistent with the input
cosmology of Σmν = 0. Other parameters are all reconstructed to close to their input values and are not strongly affected by the angular
spectra.

95% CL
�

mν [eV] prior only prior+CMASS,�max = 150 prior+CMASS,�max = 200

WMAP7 prior 1.1 0.74 (0.92) 0.56 (0.90)

WMAP7 + HST prior 0.44 0.31 (0.40) 0.26 (0.36)

TABLE 1

The 95% confidence level upper limits on the sum of the neutrino masses Σmν . The top row investigates the effect of

adding the CMASS galaxy power spectra to a WMAP prior while the bottom row uses WMAP and the H0 constraint

from HST as a prior. In parentheses we show results for the more conservative model marginalizing over the shot

noise-like parameters ai.

row of Table 1, with the results with ai marginalized in

parentheses. The bound improves from 1.1 eV for CMB

only to 0.56 eV for CMB with CMASS data (�max = 200).

This constraint is comparable to the limit Σmν < 0.62

eV derived by Reid et al. (2010) from the DR7 spectro-

scopic sample. It thus appears that the advantage of

spectroscopic redshifts (providing information on clus-

tering along the line of sight) in that sample is offset
by the advantage of the current sample having a larger

volume, although there are other differences between the

samples and analyses as well. Note, however, that the

constraint deteriorates significantly when marginalizing

over the nuisance parameters ai. In this case, the mass

bound is not significantly better than with CMB alone.

We show the posterior probability distributions for Σmν
and the other cosmological parameters in Fig. 7.

We next consider the constraints using WMAP7 with

HST H0 prior. The CMB alone provides a strong mea-

surement of one combination of late-universe parameters

through its sensitivity to the distance to the last scatter-

ing surface. However, this distance measurement leaves

a degeneracy between ΩΛ and Σmν so that the CMB-

only limit on the neutrino mass arises mainly from the

effect of neutrinos on the primary anisotropies and not

from this distance measurement. Measuring H0 con-

strains a different combination of late universe param-

eters and thus breaks the CMB degeneracy. This is why

the WMAP7+HST bound is so much stronger than the

WMAP7-only one, i.e. Σmν < 0.44 eV as opposed to

Σmν < 1.1 eV. Adding the CMASS angular spectra

tightens the bound significantly so that an impressive up-

per bound of Σmν < 0.26 eV is reached for �max = 200

(in the bias-only model), as is shown in the second row

of Table 1. The effect of marginalization over ai is again

to bring the constraint back to closer to the CMB+HST

bound.

The posteriors for all cosmological parameters are

shown in Fig. 8. In addition to the full likelihoods

for Σmν , summarized in Table 1, the ΩDMh
2
posteri-

ors are worth noting. The effect of the angular spec-

tra is to strongly shift the average value of this parame-

ter (blue curve), while including the nuisance parameters

(red curve) weakens the shift. The last two parameters in

Fig. 8 (and 7), ΩΛ and H0, are not independent and can

be expressed in terms of the preceding parameters. The

shift thus is really only significant for one independent

parameter, ΩDMh
2
, in our basis. The results in section

5 suggest that the shift in the bias-only case might par-

tially be a bias due to our model and that the results

with ai marginalized are unbiased.

We do not explicitly show the correlations between pa-

rameters, but have verified that, in the CMB+CMASS

case, the neutrino mass has its strongest degeneracies

with ΩDMh
2
, the bias parameters bi and σ8. While, in

1

95% CL
∑

mν [eV] prior only prior+CMASS,!max = 150 prior+CMASS,!max = 200

WMAP7 prior 1.1 0.76 (0.95) 0.55 (0.91)

95% CL
∑

mν [eV] prior only prior+CMASS,!max = 150 prior+CMASS,!max = 200

WMAP7 + HST prior 0.40 0.31 (0.41) 0.27 (0.38)
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max
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Fig. 6.— Left panel: Recovered values of ΩDMh
2 from averaged mock spectrum together with CMB prior. We consider spectra from eight

different lines of sight. The points with error bars show the posterior mean values and 1σ error bars after the Monte Carlo analysis for two
scenarios: varying Σmν with (red) and without (blue) a0 marginalized. The vertical magenta lines indicate the input value ΩDMh

2 = 0.11166
(solid) and the input ± one and two σ, where σ = 0.0032 is the parameter uncertainty based on the data set WMAP7+HST+angular
spectra (ai = 0 fixed). There is a bias of about 1σ without the nuisance parameter, which disappears when ai is marginalized over. Right
panel: The posterior neutrino mass distributions for the two cases discussed above. The mock constraints are consistent with the input
cosmology of Σmν = 0. Other parameters are all reconstructed to close to their input values and are not strongly affected by the angular
spectra.

95% CL
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mν [eV] prior only prior+CMASS,�max = 150 prior+CMASS,�max = 200

WMAP7 prior 1.1 0.74 (0.92) 0.56 (0.90)

WMAP7 + HST prior 0.44 0.31 (0.40) 0.26 (0.36)

TABLE 1

The 95% confidence level upper limits on the sum of the neutrino masses Σmν . The top row investigates the effect of

adding the CMASS galaxy power spectra to a WMAP prior while the bottom row uses WMAP and the H0 constraint

from HST as a prior. In parentheses we show results for the more conservative model marginalizing over the shot

noise-like parameters ai.

row of Table 1, with the results with ai marginalized in

parentheses. The bound improves from 1.1 eV for CMB

only to 0.56 eV for CMB with CMASS data (�max = 200).

This constraint is comparable to the limit Σmν < 0.62

eV derived by Reid et al. (2010) from the DR7 spectro-

scopic sample. It thus appears that the advantage of

spectroscopic redshifts (providing information on clus-

tering along the line of sight) in that sample is offset
by the advantage of the current sample having a larger

volume, although there are other differences between the

samples and analyses as well. Note, however, that the

constraint deteriorates significantly when marginalizing

over the nuisance parameters ai. In this case, the mass

bound is not significantly better than with CMB alone.

We show the posterior probability distributions for Σmν
and the other cosmological parameters in Fig. 7.

We next consider the constraints using WMAP7 with

HST H0 prior. The CMB alone provides a strong mea-

surement of one combination of late-universe parameters

through its sensitivity to the distance to the last scatter-

ing surface. However, this distance measurement leaves

a degeneracy between ΩΛ and Σmν so that the CMB-

only limit on the neutrino mass arises mainly from the

effect of neutrinos on the primary anisotropies and not

from this distance measurement. Measuring H0 con-

strains a different combination of late universe param-

eters and thus breaks the CMB degeneracy. This is why

the WMAP7+HST bound is so much stronger than the

WMAP7-only one, i.e. Σmν < 0.44 eV as opposed to

Σmν < 1.1 eV. Adding the CMASS angular spectra

tightens the bound significantly so that an impressive up-

per bound of Σmν < 0.26 eV is reached for �max = 200

(in the bias-only model), as is shown in the second row

of Table 1. The effect of marginalization over ai is again

to bring the constraint back to closer to the CMB+HST

bound.

The posteriors for all cosmological parameters are

shown in Fig. 8. In addition to the full likelihoods

for Σmν , summarized in Table 1, the ΩDMh
2
posteri-

ors are worth noting. The effect of the angular spec-

tra is to strongly shift the average value of this parame-

ter (blue curve), while including the nuisance parameters

(red curve) weakens the shift. The last two parameters in

Fig. 8 (and 7), ΩΛ and H0, are not independent and can

be expressed in terms of the preceding parameters. The

shift thus is really only significant for one independent

parameter, ΩDMh
2
, in our basis. The results in section

5 suggest that the shift in the bias-only case might par-

tially be a bias due to our model and that the results

with ai marginalized are unbiased.

We do not explicitly show the correlations between pa-

rameters, but have verified that, in the CMB+CMASS

case, the neutrino mass has its strongest degeneracies

with ΩDMh
2
, the bias parameters bi and σ8. While, in
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max

by Reid et al, JCAP’10
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Fig. 6.— Left panel: Recovered values of ΩDMh
2 from averaged mock spectrum together with CMB prior. We consider spectra from eight

different lines of sight. The points with error bars show the posterior mean values and 1σ error bars after the Monte Carlo analysis for two
scenarios: varying Σmν with (red) and without (blue) a0 marginalized. The vertical magenta lines indicate the input value ΩDMh

2 = 0.11166
(solid) and the input ± one and two σ, where σ = 0.0032 is the parameter uncertainty based on the data set WMAP7+HST+angular
spectra (ai = 0 fixed). There is a bias of about 1σ without the nuisance parameter, which disappears when ai is marginalized over. Right
panel: The posterior neutrino mass distributions for the two cases discussed above. The mock constraints are consistent with the input
cosmology of Σmν = 0. Other parameters are all reconstructed to close to their input values and are not strongly affected by the angular
spectra.

95% CL
�

mν [eV] prior only prior+CMASS,�max = 150 prior+CMASS,�max = 200

WMAP7 prior 1.1 0.74 (0.92) 0.56 (0.90)

WMAP7 + HST prior 0.44 0.31 (0.40) 0.26 (0.36)

TABLE 1

The 95% confidence level upper limits on the sum of the neutrino masses Σmν . The top row investigates the effect of

adding the CMASS galaxy power spectra to a WMAP prior while the bottom row uses WMAP and the H0 constraint

from HST as a prior. In parentheses we show results for the more conservative model marginalizing over the shot

noise-like parameters ai.

row of Table 1, with the results with ai marginalized in

parentheses. The bound improves from 1.1 eV for CMB

only to 0.56 eV for CMB with CMASS data (�max = 200).

This constraint is comparable to the limit Σmν < 0.62

eV derived by Reid et al. (2010) from the DR7 spectro-

scopic sample. It thus appears that the advantage of

spectroscopic redshifts (providing information on clus-

tering along the line of sight) in that sample is offset
by the advantage of the current sample having a larger

volume, although there are other differences between the

samples and analyses as well. Note, however, that the

constraint deteriorates significantly when marginalizing

over the nuisance parameters ai. In this case, the mass

bound is not significantly better than with CMB alone.

We show the posterior probability distributions for Σmν
and the other cosmological parameters in Fig. 7.

We next consider the constraints using WMAP7 with

HST H0 prior. The CMB alone provides a strong mea-

surement of one combination of late-universe parameters

through its sensitivity to the distance to the last scatter-

ing surface. However, this distance measurement leaves

a degeneracy between ΩΛ and Σmν so that the CMB-

only limit on the neutrino mass arises mainly from the

effect of neutrinos on the primary anisotropies and not

from this distance measurement. Measuring H0 con-

strains a different combination of late universe param-

eters and thus breaks the CMB degeneracy. This is why

the WMAP7+HST bound is so much stronger than the

WMAP7-only one, i.e. Σmν < 0.44 eV as opposed to

Σmν < 1.1 eV. Adding the CMASS angular spectra

tightens the bound significantly so that an impressive up-

per bound of Σmν < 0.26 eV is reached for �max = 200

(in the bias-only model), as is shown in the second row

of Table 1. The effect of marginalization over ai is again

to bring the constraint back to closer to the CMB+HST

bound.

The posteriors for all cosmological parameters are

shown in Fig. 8. In addition to the full likelihoods

for Σmν , summarized in Table 1, the ΩDMh
2
posteri-

ors are worth noting. The effect of the angular spec-

tra is to strongly shift the average value of this parame-

ter (blue curve), while including the nuisance parameters

(red curve) weakens the shift. The last two parameters in

Fig. 8 (and 7), ΩΛ and H0, are not independent and can

be expressed in terms of the preceding parameters. The

shift thus is really only significant for one independent

parameter, ΩDMh
2
, in our basis. The results in section

5 suggest that the shift in the bias-only case might par-

tially be a bias due to our model and that the results

with ai marginalized are unbiased.

We do not explicitly show the correlations between pa-

rameters, but have verified that, in the CMB+CMASS

case, the neutrino mass has its strongest degeneracies

with ΩDMh
2
, the bias parameters bi and σ8. While, in
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max
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Fig. 6.— Left panel: Recovered values of ΩDMh
2 from averaged mock spectrum together with CMB prior. We consider spectra from eight

different lines of sight. The points with error bars show the posterior mean values and 1σ error bars after the Monte Carlo analysis for two
scenarios: varying Σmν with (red) and without (blue) a0 marginalized. The vertical magenta lines indicate the input value ΩDMh

2 = 0.11166
(solid) and the input ± one and two σ, where σ = 0.0032 is the parameter uncertainty based on the data set WMAP7+HST+angular
spectra (ai = 0 fixed). There is a bias of about 1σ without the nuisance parameter, which disappears when ai is marginalized over. Right
panel: The posterior neutrino mass distributions for the two cases discussed above. The mock constraints are consistent with the input
cosmology of Σmν = 0. Other parameters are all reconstructed to close to their input values and are not strongly affected by the angular
spectra.

95% CL
�

mν [eV] prior only prior+CMASS,�max = 150 prior+CMASS,�max = 200

WMAP7 prior 1.1 0.74 (0.92) 0.56 (0.90)

WMAP7 + HST prior 0.44 0.31 (0.40) 0.26 (0.36)

TABLE 1

The 95% confidence level upper limits on the sum of the neutrino masses Σmν . The top row investigates the effect of

adding the CMASS galaxy power spectra to a WMAP prior while the bottom row uses WMAP and the H0 constraint

from HST as a prior. In parentheses we show results for the more conservative model marginalizing over the shot

noise-like parameters ai.

row of Table 1, with the results with ai marginalized in

parentheses. The bound improves from 1.1 eV for CMB

only to 0.56 eV for CMB with CMASS data (�max = 200).

This constraint is comparable to the limit Σmν < 0.62

eV derived by Reid et al. (2010) from the DR7 spectro-

scopic sample. It thus appears that the advantage of

spectroscopic redshifts (providing information on clus-

tering along the line of sight) in that sample is offset
by the advantage of the current sample having a larger

volume, although there are other differences between the

samples and analyses as well. Note, however, that the

constraint deteriorates significantly when marginalizing

over the nuisance parameters ai. In this case, the mass

bound is not significantly better than with CMB alone.

We show the posterior probability distributions for Σmν
and the other cosmological parameters in Fig. 7.

We next consider the constraints using WMAP7 with

HST H0 prior. The CMB alone provides a strong mea-

surement of one combination of late-universe parameters

through its sensitivity to the distance to the last scatter-

ing surface. However, this distance measurement leaves

a degeneracy between ΩΛ and Σmν so that the CMB-

only limit on the neutrino mass arises mainly from the

effect of neutrinos on the primary anisotropies and not

from this distance measurement. Measuring H0 con-

strains a different combination of late universe param-

eters and thus breaks the CMB degeneracy. This is why

the WMAP7+HST bound is so much stronger than the

WMAP7-only one, i.e. Σmν < 0.44 eV as opposed to

Σmν < 1.1 eV. Adding the CMASS angular spectra

tightens the bound significantly so that an impressive up-

per bound of Σmν < 0.26 eV is reached for �max = 200

(in the bias-only model), as is shown in the second row

of Table 1. The effect of marginalization over ai is again

to bring the constraint back to closer to the CMB+HST

bound.

The posteriors for all cosmological parameters are

shown in Fig. 8. In addition to the full likelihoods

for Σmν , summarized in Table 1, the ΩDMh
2
posteri-

ors are worth noting. The effect of the angular spec-

tra is to strongly shift the average value of this parame-

ter (blue curve), while including the nuisance parameters

(red curve) weakens the shift. The last two parameters in

Fig. 8 (and 7), ΩΛ and H0, are not independent and can

be expressed in terms of the preceding parameters. The

shift thus is really only significant for one independent

parameter, ΩDMh
2
, in our basis. The results in section

5 suggest that the shift in the bias-only case might par-

tially be a bias due to our model and that the results

with ai marginalized are unbiased.

We do not explicitly show the correlations between pa-

rameters, but have verified that, in the CMB+CMASS

case, the neutrino mass has its strongest degeneracies

with ΩDMh
2
, the bias parameters bi and σ8. While, in
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clei. Observational upper limits on ββ(0ν) rates pro-
vide an upper bound on the so-called effective Majorana
mass of the electron neutrino, �meff� < 0.3 − 1.0 eV,
bound which would only apply if neutrinos are Majo-
rana particles Gomez-Cadenas et al. (2011). Forthcom-
ing ββ(0ν) experiments aim for sensitivity approaching
�meff� < 0.05 eV Gomez-Cadenas et al. (2011).
Cosmology provides one of the means to tackle the ab-

solute scale of neutrino masses. Some of the earliest cos-
mological bounds on neutrino masses followed from the
requirement that massive relic neutrinos, present today
in the expected numbers, do not saturate the critical den-
sity of the Universe, i.e., that the neutrino mass energy
density given by

Ων =

�
mν

93.1h2eV
(1)

satisfies Ων ≤ 1. The Universe therefore offers a new lab-
oratory for testing neutrino masses and neutrino physics.
Accurate measurements of the Cosmic Microwave Back-
ground (CMB) temperature and polarization anisotropy
from satellite, balloon-borne and ground-based experi-
ments have fully confirmed the predictions of the stan-
dard cosmological model and allow us to weigh neutri-
nos Lesgourgues & Pastor (2006). Indeed, neutrinos can
play a relevant role in large-scale structure formation
and leave key signatures in several cosmological data
sets. More specifically, the amount of primordial rela-
tivistic neutrinos changes the epoch of matter-radiation
equality, leaving an imprint on CMB anisotropies. Af-
ter becoming non-relativistic, their free-streaming nature
damps power on small scales, suppressing the growth
of matter density fluctuations and thus affecting both
the CMB and galaxy clustering observables in the low-
redshift universe Lesgourgues & Pastor (2006). Measure-
ments of all of these observations have been used to place
new bounds on neutrino physics from cosmology Elgaroy
et al. (2002); Spergel et al. (2003); Hannestad (2003);
Allen et al. (2003); Tegmark et al. (2004); Barger et al.
(2004); Hannestad & Raffelt (2004); Crotty et al. (2004);
Seljak et al. (2005); Elgaroy & Lahav (2005); Hannes-
tad (2005); Goobar et al. (2006); Spergel et al. (2007);
Seljak et al. (2006); Fogli et al. (2008); Komatsu et al.
(2009); Reid et al. (2010); Reid et al. (2010a); Thomas
et al. (2010); Reid et al. (2010b); Komatsu et al. (2011);
Saito et al. (2011); Riemer–Sørensen et al. (2011); Ben-
son et al. (2011), with a current limit on the sum of neu-
trino masses Σmν

<∼ 0.6 eV at 95% CL (e.g. Reid et al.
(2010)), depending on the precise combination of data
sets and on the underlying cosmological model.
We present here neutrino mass bounds from the fi-

nal imaging data set of the Sloan Digital Sky Survey
(SDSS-III) York et al. (2000), using the photometric
redshift catalog of Ross et al. Ross et al. (2011). We
consider the CMASS sample White et al. (2011) of lu-
minous galaxies of SDSS DR8 Aihara et al. (2011), the
eighth data release of SDSS and the first data release
of the Baryon Oscillation Spectroscopic Survey (BOSS)
Eisenstein et al. (2011), with photometric redshifts z =
0.45−0.65. This sample covers an area of approximately
10,000 square degrees and consists of 900,000 galaxies.
It is thus the largest sample of luminous galaxies so far
and promises strong constraints on the neutrino proper-

ties (see Thomas et al. (2010) for an analysis of a slightly
smaller SDSS photometric sample).
We derive neutrino constraints from the angular power

spectra of the galaxy density at different redshifts, in
combination with priors from the CMB and from mea-
surements of the Hubble parameter, supernovae dis-
tances and the BAO scale. The spectra and the analysis
of a minimal ΛCDM cosmology are described in detail in
our companion paper Ho et al. (2012) and the measure-
ment of the BAO scale from the spectra is presented in
a separate companion paper Seo et al. (2012). We will
often refer to these works for details and focus here on
the neutrino bound.
The structure of the paper is as follows. In section 2,

we describe the data set and the derived angular spectra.
We then discuss our theoretical model for the spectra and
their cosmology dependence in section 3. In section 4 we
explain the specific signature of neutrino mass on galaxy
clustering data. We test our model for the angular power
spectra against mock data in section 5 and present the
constraints on the sum of the neutrino masses and other
parameters for several data combinations in section 6.
Finally, we discuss these results and conclude in section
7.

2. DATA

The data and the method for obtaining angular spectra
have been described in detail in Ref. Ross et al. (2011)
and in Ho et al. (2012). Here we provide a brief descrip-
tion of the main properties and refer the reader to those
papers for details. Our galaxy sample is obtained from
imaging data from DR8 Aihara et al. (2011) of SDSS-
III York et al. (2000). This survey mapped about 15, 000
square degrees of the sky in five pass bands (u, g, r, i and
z) Fukugita et al. (1996) using a wide field CCD camera
Gunn et al. (1998) on the 2.5 meter Sloan telescope at
Apache Point Observatory Gunn et al. (2006) (the sub-
sequent astrometric calibration of these imaging data is
described in Pier et al. (2003)). A sample of 112, 778
galaxy spectra from BOSS Eisenstein et al. (2011) were
used as a training sample for the photometric redshift
catalog, as described in Ross et al. (2011).
We focus on the approximately stellar mass-limited

CMASS sample of luminous galaxies, detailed in White
et al. (2011), which are divided into four photometric
redshift bins, zphoto = 0.45 − 0.5 − 0.55 − 0.6 − 0.65.
The photometric redshift error lies in the range σz(z) =
0.04− 0.06, increasing from low to high redshift. Figure
1 shows the estimated true redshift distribution of each
bin, determined using the methods described in section
5.3 of Ross et al. (2011).
The calculation of the angular power spectrum for each

bin is described in detail in our companion paper Ho et al.
(2012) and uses the optimal quadratic estimator (OQE)
method outlined in Seljak (1998); Tegmark et al. (1998);
Padmanabhan et al. (2003, 2007). The four power spec-
tra are binned in � space with a typical wave band width
of ∆� = 10. The expectation value of the power spec-
trum in a wave band is a convolution of the true power
spectrum with a window function of width roughly equal
to the typical wave band width. Examples of these win-
dow functions are shown in Fig. 3 of the companion paper
Seo et al. (2012). When fitting the data to the underlying
theoretical model, we always apply these window func-

We derive 
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Fig. 4.— Effect of neutrinos on the angular power spectra. The solid and dashed curves depict the massless and Σmν = 0.3 eV cases,
respectively.

the input values (although the parameter most affected
by the mock CMASS data, ΩDMh2, is higher than the

input by close to 1σ).
Unfortunately, we do not have mocks based on

a cosmology with non-zero Σmν . One check we

can do, however, is to fit a model with parameters

{Ωbh2,ΩDMh2, θ, As, ns, τ,Σmν , b0} to our Σmν = 0

mock spectra. The parameters affected by far the most

by the angular spectra are (again) ΩDMh2 and Σmν . We

show the posteriors of this calculation in Fig. 6. In the

left panel, the vertical lines indicate the ΩDMh2 input

value, and the 1σ and 2σ bounds based on the uncer-

tainty σ from the actual data. The blue points with

error bars are the posterior mean values and 1σ recov-

ered errors after fitting to the averaged mock spectrum.

Note that the recovered error bars (from the averaged

mock power spectrum) are typically similar to the data-

based error bars. While the different lines of sight are

not entirely independent, Fig. 6 points towards a bias of

about 1 − 1.5σ in ΩDMh2. For the neutrino mass, the

right panel shows the posterior probability distributions

in blue. The posteriors are always consistent with the in-

put value Σmν = 0 and can be interpreted as providing

upper bounds. We have made the same plot as in the

left panel for the other parameters and they were biased

significantly less (as their reconstruction is dominated by

the mock CMB prior).

Adding the nuisance parameter a0, we obtain the red

points and curves in Fig. 6. The effect of marginalizing

over a0 is to diminish the parameter bias so that ΩDMh2

is typically reconstructed to well within 1σ. We at-

tribute this change to a0 accounting for a possible scale-

dependence in galaxy bias on quasilinear scales. The

neutrino constraints are also still consistent with the in-

put, although the mock upper limits do become signif-

icantly weaker. We have also studied mock cosmology

constraints using �max = 150, and found that the main ef-

fect is to widen the posterior distributions slightly, while

the change in parameter bias relative to �max = 200 is

small.

We conclude that our galaxy bias-only model and the

fitting method used here properly reproduce the input

cosmology for our choices of �max, except that there is

a bias of about 1 − 1.5σ in ΩDMh2. The model with

nuisance parameter a0 removes this parameter bias at

the cost of larger error bars. While the bias in ΩDMh2

is not extreme, being only slightly above the 1σ level, it

is sufficiently worrying that we will quote results for the

galaxy bias-only model and for the more conservative

model with shot noise-like parameters. Changing �max
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Fig. 6.— Left panel: Recovered values of ΩDMh
2 from averaged mock spectrum together with CMB prior. We consider spectra from eight

different lines of sight. The points with error bars show the posterior mean values and 1σ error bars after the Monte Carlo analysis for two
scenarios: varying Σmν with (red) and without (blue) a0 marginalized. The vertical magenta lines indicate the input value ΩDMh

2 = 0.11166
(solid) and the input ± one and two σ, where σ = 0.0032 is the parameter uncertainty based on the data set WMAP7+HST+angular
spectra (ai = 0 fixed). There is a bias of about 1σ without the nuisance parameter, which disappears when ai is marginalized over. Right
panel: The posterior neutrino mass distributions for the two cases discussed above. The mock constraints are consistent with the input
cosmology of Σmν = 0. Other parameters are all reconstructed to close to their input values and are not strongly affected by the angular
spectra.

95% CL
�

mν [eV] prior only prior+CMASS,�max = 150 prior+CMASS,�max = 200

WMAP7 prior 1.1 0.74 (0.92) 0.56 (0.90)

WMAP7 + HST prior 0.44 0.31 (0.40) 0.26 (0.36)

TABLE 1

The 95% confidence level upper limits on the sum of the neutrino masses Σmν . The top row investigates the effect of

adding the CMASS galaxy power spectra to a WMAP prior while the bottom row uses WMAP and the H0 constraint

from HST as a prior. In parentheses we show results for the more conservative model marginalizing over the shot

noise-like parameters ai.

row of Table 1, with the results with ai marginalized in

parentheses. The bound improves from 1.1 eV for CMB

only to 0.56 eV for CMB with CMASS data (�max = 200).

This constraint is comparable to the limit Σmν < 0.62

eV derived by Reid et al. (2010) from the DR7 spectro-

scopic sample. It thus appears that the advantage of

spectroscopic redshifts (providing information on clus-

tering along the line of sight) in that sample is offset
by the advantage of the current sample having a larger

volume, although there are other differences between the

samples and analyses as well. Note, however, that the

constraint deteriorates significantly when marginalizing

over the nuisance parameters ai. In this case, the mass

bound is not significantly better than with CMB alone.

We show the posterior probability distributions for Σmν
and the other cosmological parameters in Fig. 7.

We next consider the constraints using WMAP7 with

HST H0 prior. The CMB alone provides a strong mea-

surement of one combination of late-universe parameters

through its sensitivity to the distance to the last scatter-

ing surface. However, this distance measurement leaves

a degeneracy between ΩΛ and Σmν so that the CMB-

only limit on the neutrino mass arises mainly from the

effect of neutrinos on the primary anisotropies and not

from this distance measurement. Measuring H0 con-

strains a different combination of late universe param-

eters and thus breaks the CMB degeneracy. This is why

the WMAP7+HST bound is so much stronger than the

WMAP7-only one, i.e. Σmν < 0.44 eV as opposed to

Σmν < 1.1 eV. Adding the CMASS angular spectra

tightens the bound significantly so that an impressive up-

per bound of Σmν < 0.26 eV is reached for �max = 200

(in the bias-only model), as is shown in the second row

of Table 1. The effect of marginalization over ai is again

to bring the constraint back to closer to the CMB+HST

bound.

The posteriors for all cosmological parameters are

shown in Fig. 8. In addition to the full likelihoods

for Σmν , summarized in Table 1, the ΩDMh
2
posteri-

ors are worth noting. The effect of the angular spec-

tra is to strongly shift the average value of this parame-

ter (blue curve), while including the nuisance parameters

(red curve) weakens the shift. The last two parameters in

Fig. 8 (and 7), ΩΛ and H0, are not independent and can

be expressed in terms of the preceding parameters. The

shift thus is really only significant for one independent

parameter, ΩDMh
2
, in our basis. The results in section

5 suggest that the shift in the bias-only case might par-

tially be a bias due to our model and that the results

with ai marginalized are unbiased.

We do not explicitly show the correlations between pa-

rameters, but have verified that, in the CMB+CMASS

case, the neutrino mass has its strongest degeneracies

with ΩDMh
2
, the bias parameters bi and σ8. While, in

marginalization over the parameters 
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Fig. 8.— Cosmological constraints with a WMAP7 CMB and Hubble parameter prior. We show the probability distribution functions

for CMB + H0 only (black), CMB + H0 with CMASS spectra in the range � = 30 − 150 (blue dashed) and CMB + H0 with CMASS

spectra in the range � = 30 − 200 (blue solid). The red curves represent the constraints in the conservative model where we marginalize

over a set of nuisance parameters ai. While this marginalization degrades the neutrino bound, simulations have shown it removes the bias

in ΩDMh
2
(see section 5).

on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-
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Fig. 8.— Cosmological constraints with a WMAP7 CMB and Hubble parameter prior. We show the probability distribution functions

for CMB + H0 only (black), CMB + H0 with CMASS spectra in the range � = 30 − 150 (blue dashed) and CMB + H0 with CMASS

spectra in the range � = 30 − 200 (blue solid). The red curves represent the constraints in the conservative model where we marginalize

over a set of nuisance parameters ai. While this marginalization degrades the neutrino bound, simulations have shown it removes the bias

in ΩDMh
2
(see section 5).

on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-
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95% CL
�

mν [eV] prior only prior+CMASS,�max = 150 prior+CMASS,�max = 200

WMAP7 prior 1.1 0.76 (0.95) 0.55 (0.91)

WMAP7 + HST prior 0.40 0.31 (0.41) 0.27 (0.38)

TABLE 1

The 95% confidence level upper limits on the sum of the neutrino masses Σmν . The top row investigates the effect of

adding the CMASS galaxy power spectra to a WMAP prior while the bottom row uses WMAP and the H0 constraint

from HST as a prior. In parentheses we show results for the more conservative model marginalizing over the shot

noise-like parameters ai.

Fig. 7.— Cosmological constraints with a WMAP7 CMB prior. We show the probability distribution functions for CMB only (black),
CMB with CMASS spectra in the range � = 30− 150 (blue dashed) and CMB with CMASS spectra in the range � = 30− 200 (blue solid).
The red curves represent the constraints in the conservative model where we marginalize over a set of nuisance parameters ai.

samples and analyses as well. Note, however, that the

constraint deteriorates significantly when marginalizing

over the nuisance parameters ai. We show the posterior

probability distributions for Σmν and the other cosmo-

logical parameters in Fig. 7.

We next consider the constraints using WMAP7 with

HST H0 prior. The CMB alone provides a strong mea-

surement of one combination of late-universe parameters

through its sensitivity to the distance to the last scatter-

ing surface. However, this distance measurement leaves

a degeneracy between ΩΛ and Σmν so that the CMB-

only limit on the neutrino mass arises mainly from the

effect of neutrinos on the primary anisotropies and not

from this distance measurement. Measuring H0 con-

strains a different combination of late universe param-

eters and thus breaks the CMB degeneracy. This is why

the WMAP7+HST bound is so much stronger than the

WMAP7-only one, i.e. Σmν < 0.40 eV as opposed to

Σmν < 1.1 eV. Adding the CMASS angular spectra

tightens the bound significantly so that an impressive up-

per bound of Σmν < 0.27 eV is reached for �max = 200

(in the linear galaxy bias-only model), as is shown in the

second row of Table 1. The effect of marginalization over

ai is again to bring the constraint back to closer to the

CMB+HST bound.

The posteriors for all cosmological parameters are

De Putter et al. 1201.1909, accepted for publication in ApJ



Posterior probability for all cosmological 
parameters

CMB+H0

CMB+H0 with 
CMASS spectra 
in the range 

CMB+H0 with 
CMASS spectra 
in the range 

Constraints in the 
conservative model 
where we marginalize 
over  

12

Fig. 8.— Cosmological constraints with a WMAP7 CMB and Hubble parameter prior. We show the probability distribution functions

for CMB + H0 only (black), CMB + H0 with CMASS spectra in the range � = 30 − 150 (blue dashed) and CMB + H0 with CMASS

spectra in the range � = 30 − 200 (blue solid). The red curves represent the constraints in the conservative model where we marginalize

over a set of nuisance parameters ai. While this marginalization degrades the neutrino bound, simulations have shown it removes the bias

in ΩDMh
2
(see section 5).

on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-
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factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV
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supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
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shown in Fig. 8. In addition to the full likelihoods for
Σmν , summarized in Table 1, the ΩDMh

2 posteriors are
worth noting. The effect of the CMASS angular spec-
tra is to strongly shift the average value of this parame-
ter (blue curve), while including the nuisance parameters
(red curve) weakens the shift. The last two parameters in
Fig. 8 (and 7), ΩΛ and H0, are not independent and can
be expressed in terms of the preceding parameters. The
shift thus is really only significant for one independent
parameter, ΩDMh

2, in our basis. The results in section
5 suggest that the shift in the bias-only case might par-
tially be a bias due to our model and that the results
with ai marginalized are unbiased.
In Fig. 9, we show the joint probability distributions

(in the form of 95 % CL contours) of neutrino mass and
the bias parameter in the second redshift slice and the
shot noise parameter. We do not explicitly show the
correlations with the other parameters, but have verified
that, in the CMB+CMASS case, the neutrino mass has
its strongest degeneracies with ΩDMh

2, the bias param-
eters bi and σ8. While, in agreement with our discussion
in section 4, the inclusion of the Hubble prior removes

the Σmν − ΩDMh
2 degeneracy, the strong correlations

with bi and σ8 remain. As shown in Fig. 9, the sum of
neutrino masses does not have a very strong degeneracy
with the shot noise parameters ai. However, the figure
does show that, when the value of ai preferred by the
data deviates from zero, setting ai to zero strengthens
the upper bound on neutrino mass. This explains the
improvement in the mass bound when going from the
case with ai marginalized to the case with ai fixed.
We have also added supernova and BAO data to the

CMB+HST+CMASS data set, and considered the neu-
trino mass bound in the bias-only model, but we found
negligible improvement (from 0.27 eV to 0.25 eV) rela-
tive to the case without these additional data sets. These
additional data sets do carry significant information, but
this information is degenerate with the information al-
ready present in the three default data sets.
For the multipole range � = 30 − 150, we show the

results using dashed lines in Figures 7 and 8. The 95%
CL upper limit for CMB+HST+CMASS in this case is
0.31(0.41) eV21 and for CMB+CMASS it is 0.76(0.95) eV

21
We do not consider the slight deterioration relative to the
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on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-
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on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-
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Fig. 9.— 95 % confidence level contours of Σmν against the galaxy bias in the second redshift slice, b2 (left), and against the shot
noise-like nuisance parameter in the same slice, a2 (right). Contours look similar for the three other redshift slices. As in the previous
figures, red contours indicate the model with only the linear bias parameters bi and blue the model with ai and bi. The thick (inner)
contours are for the data sets CMB+H0+CMASS, while the thin (outer) contours represent CMB+CMASS only. In both cases, the range
� = 30− 200 was used.
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over a set of nuisance parameters ai. While this marginalization degrades the neutrino bound, simulations have shown it removes the bias

in ΩDMh
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(see section 5).

on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-
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We also add supernova and BAO data to the CMB+HST+CMASS data sets, 
and consider the neutrino mass bound with the bias only (i.e. without shot 
noise). We find a negligible improvement (from 0.27 eV to 0.25 eV) relative 
to the case without these additional data sets. 
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Fig. 9.— 95 % confidence level contours of Σmν against the galaxy bias in the second redshift slice, b2 (left), and against the shot
noise-like nuisance parameter in the same slice, a2 (right). Contours look similar for the three other redshift slices. As in the previous
figures, red contours indicate the model with only the linear bias parameters bi and blue the model with ai and bi. The thick (inner)
contours are for the data sets CMB+H0+CMASS, while the thin (outer) contours represent CMB+CMASS only. In both cases, the range
� = 30− 200 was used.
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Fig. 8.— Cosmological constraints with a WMAP7 CMB and Hubble parameter prior. We show the probability distribution functions

for CMB + H0 only (black), CMB + H0 with CMASS spectra in the range � = 30 − 150 (blue dashed) and CMB + H0 with CMASS

spectra in the range � = 30 − 200 (blue solid). The red curves represent the constraints in the conservative model where we marginalize

over a set of nuisance parameters ai. While this marginalization degrades the neutrino bound, simulations have shown it removes the bias

in ΩDMh
2
(see section 5).

on the sum of neutrino masses. We have used mock
galaxy catalogs based on N-body simulations and HOD
modeling to test two models for the angular galaxy spec-
tra. Based on these tests, we decided to compare the
data to theoretical spectra based on the non-linear mat-
ter power spectrum augmented by a linear galaxy bias
factor. However, since this model does result in a bias
in ΩDMh2 of ∼ 1 − 1.5σ, we have also fitted the data
to a more conservative model, with an additional set of
shot noise-like fitting parameters, in which this bias is
virtually absent. The tests also motivated us to use the
multipole range � = 30 − 200, but we quoted results for
the more conservative choice � = 30 − 150 as well. The
added advantage is that this analysis provides insight
into the range of scales that yields the galaxy clustering
information.
Combining the CMASS data with a CMB prior from

the WMAP7 survey, we find an upper bound Σmν < 0.56
eV (0.90 eV) at 95% confidence level for �max = 200 in
the model with free parameters bi (bi and ai). Adding the
HST measurement of the Hubble parameter, the proba-
bility distribution tightens and we find Σmν < 0.26 eV

(0.36 eV). We have also considered the effect of adding
supernova and a (lower redshift) BAO measurement, but
when the HST prior is included already, these addi-
tions lower the upper limit to 0.25 eV (in the bias-only
model). Considering the dependence on the multipole
range, characterized by a maximum multipole �max, we
find that a significant amount of information resides in
the largest multipoles � = 150 − 200, but that even for
�max = 150, the galaxy spectra place a strong bound
on neutrino mass. Our main results are summarized in
Table 1.
It is interesting to compare these results to the outcome

of an analysis of a similar (but smaller) high redshift
SDSS photometric catalog, the MegaZ sample Collister
et al. (2007). In Thomas et al. (2010), the strongest
bound quoted is a 95% CL upper limit of 0.28 eV, in-
cluding SN and BAO data in addition to CMB, HST
and MegaZ. However, this particular bound is based on
a multipole range with �max = 300 and no nuisance pa-
rameters ai. As we have discussed extensively, we believe
�max = 200 (or even slightly lower) is a better choice if
one wants to avoid significant, unknown non-linear cor-

De Putter et al. 1201.1909, accepted for publication in ApJ



• We have exploited angular power spectra from the SDSS-III 
DR8 sample photometric galaxy sample CMASS to set 
constraints on the sum of neutrino masses. We have considered 
a flat ΛCDM scenario plus three active massive neutrino species.

• Combining the CMASS data with CMB data we find an upper 
bound                         at 95% CL in the model with free bias 
parameter. Adding HST we find                        at 95% CL.

• Considering a conservative galaxy bias model containing 
additional shot noise parameters the bounds are            
weakened,                        at 95% CL for CMB+CMASS             
and                        at 95% CL for CMB+HST+CMASS.

Conclusions
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95% CL
∑

mν [eV] prior only prior+CMASS,!max = 150 prior+C

WMAP7 + HST prior 0.40 0.31 (0.41)

Σmν < 0.55 eV
Σmν < 0.27 eV
Σmν < 0.91 eV
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