

On the dynamics of unified k-essence cosmologies

Josue De-Santiago and Jorge L. Cervantes-Cota ININ, Mexico

June 4, 2012

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

6 Conclusions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

Introduction	Kinetic part	Inflation	Dynamical system	Conditions for UDM	Conclusions

2 Kinetic part

- Oynamical system
- **5** Conditions for UDM

6 Conclusions

Scalar fields play an important role in cosmological models because, due to their simplicity and adaptability, they can account for different interesting phenomena, e.g. inflation, DE.

There is an increasing interest to study F(X) models in cosmology. Recent works have studied the possibility that dark matter, dark energy, and inflation have a common origin.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Lagrangian of a canonical scalar field

$$\mathcal{L} = X + V(\phi)$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

with $X=-\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

Lagrangian of a canonical scalar field

$$\mathcal{L} = X + V(\phi)$$

with
$$X = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$$

Generalized Lagrangian

$$\mathcal{L} = P(X, \phi)$$

Different particular forms of the Lagrangians has been studied for different reasons.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト - - ヨ - -

Sac

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Generalized kinetic Lagrangian $\mathcal{L} = F(X) + V(\phi)$

The FRW equation are:

$$H^2 = \frac{1}{3M_{\rm Pl}^2} (2XF_X - F + V)$$

and

$$\frac{d}{dt}(2XF_X - F + V) + 6HXF_X = 0,$$

where $H = \dot{a}/a$ is the Hubble parameter and $M_{\rm Pl}^2 \equiv 1/8\pi G$. The density and pressure of the effective "fluid" given by:

$$\rho = 2XF_X - F, \qquad P = F.$$

One particular choice is made for the Lagrangian

$$F(X) = \frac{1}{(2\alpha - 1)} \left[(AX)^{\alpha} - 2\alpha\alpha_0 \sqrt{AX} \right] + M, \quad (1)$$

$$V(\phi) = \frac{1}{2}m^2 \phi^2. \quad (2)$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

This Lagrangian has the interesting properties to emulate the dark matter, to yield dark energy, and in the very early Universe to drive inflation under certain election of parameters.

2 Kinetic part

5 Conditions for UDM

6 Conclusions

If the kinetic part is much larger than the potential

 $\mathcal{L}\approx F(X)$

that allows the integration

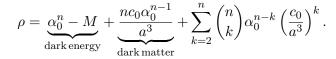
$$\rho = \left[\alpha_0 + \frac{c_0}{a^3}\right]^n - M$$

with $n=2\alpha/(2\alpha-1)$, we identify

$$\alpha_0^n - M = \rho_{de0}$$
$$\frac{nc_0\alpha_0^{n-1}}{a_0^3} = \rho_{dm0}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

The energy density can be expanded as



・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

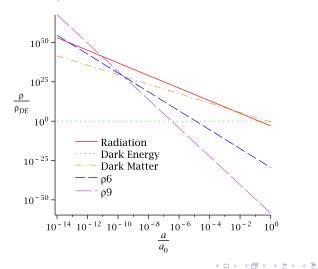
SQA

The extra terms should be small.

- If M = 0 entonces $\alpha \gg 10^{21}$
- If $\alpha=1$ then $\alpha_0^2\sim M$ y $M\gg 10^{24}\rho_{de0}$
- If $\alpha = 3/4$ then $M \gg 10^{28} \rho_{de0}$

Additionally, one demands $M < \rho_{\text{Planck}}$.

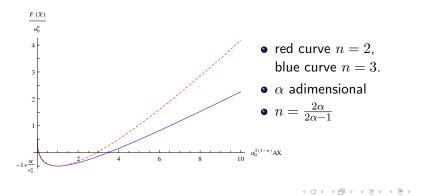
For the case $\alpha = 3/4$



$$F(X) = \frac{1}{(2\alpha - 1)} \left[(AX)^{\alpha} - 2\alpha\alpha_0 \sqrt{AX} \right] + M$$

æ

590



Scherrer proposed the model

$$F(X) = F_m + F_2(X - X_m)^2,$$

that for small deviations around the minimum it evolves as

$$\rho = -F_m + 4F_2 X_m^2 \epsilon_1 (a/a_1)^{-3}$$

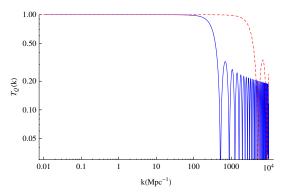
with $\epsilon = (X - X_m)/X_m$.

The transfer function of these models deviates from cold dark matter (CDM) as $T(k) = T_Q(k)T_{\rm CDM}(k)$, $T_Q(k)$ should be close to 1 and therefore ϵ_0 must be less than 10^{-16} (Giannakis & Hu 2005).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Around the minimum our model can be approximated as Scherrer's with a deviation $\epsilon_0 = (X_0 - X_m)/X_m$ less than 10^{-23} for n = 2 (blue line) and 10^{-26} for n = 3 (red line).

The transfer function do not deviate much from CDM's.



・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sac

Introduction	Kinetic part	Inflation	Dynamical system	Conditions for UDM	Conclusions

1 Introduction

2 Kinetic part

- 4 Dynamical system
- **5** Conditions for UDM

6 Conclusions

Introduction	Kinetic part	Inflation	Dynamical system	Conditions for UDM	Conclusions
Inflation					

At the beginning the potential term dominates over all F(X) terms to achieve inflation, if one has slow roll conditions. The evolution equations are:

$$3M_{\rm pl}^2 H^2 = 2XF_X - F + V, \tag{3}$$

$$(F_X\dot{\phi}) + 3HF_X\dot{\phi} + V' = 0, \qquad (4)$$

In slow roll they become

$$3M_{\rm pl}^2 H^2 = V(\phi),$$
 (5)
$$3HF_X \dot{\phi} + V'(\phi) = 0,$$
 (6)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Observables from inflation

The spectral index $n_s = 1 - 0.3\sqrt{n-1}$ Ratio of scalar to tensorial perturbations $r = 0.15\sqrt{n-1}$ Initial energy for inflation $V_i = 5.9 \times 10^{-9} M_{\rm Pl}^4 \sqrt{n-1}$ At the end of inflation reheating could be produce via gravitational particle production $\rho_{rf} \sim 0.01 g H_f^2$ The system being dominated by the kinetic terms at the end of inflation, the field decays as a^{-3n} , whereas radiation decays as a^{-4} . Thus, the radiation begins to dominate over the kinetic terms after 25/(3n-4) e-folds. For n=2, it needs 12 e-folds and for n = 4, it needs 3 e-folds.

Introduction	Kinetic part	Inflation	Dynamical system	Conditions for UDM	Conclusions

1 Introduction

2 Kinetic part

Inflation

Oynamical system

5 Conditions for UDM

6 Conclusions

< ロ > < 母 > < 臣 > < 臣 > 三 の < で</p>

Performing a change of variable to $z \equiv \dot{\phi}/\sqrt{A}$, let us to arrive to a system of first order autonomous equations

$$\dot{z} = -\frac{m^2\phi}{\sqrt{A}} + \frac{\sqrt{3}}{2M_P} \left(-\sqrt{2}z + 2sign(z)\right) \sqrt{z^2 + m^2\phi^2 - 2M_P},$$

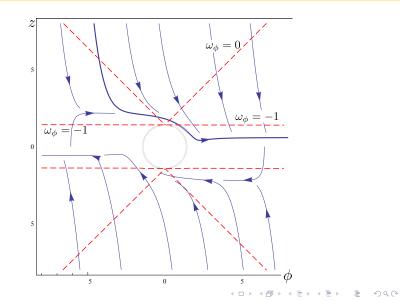
$$\dot{\phi} = \frac{z}{\sqrt{A}}.$$
(8)

With the equation of state of the field written in terms of these variables as

$$\omega_{\phi} = \frac{2M + z^2 - \sqrt{8}|z| - m^2\phi^2}{-2M + z^2 + m^2\phi^2} \,. \tag{9}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Introduction	Kinetic part	Inflation	Dynamical system	Conditions for UDM	Conclusions
Dhaaa					
Phase s	bace				



In general for the purely kinetic Lagrangian, we obtain the critical values of the system as AX = 0 and $AX = \alpha_0^{2/(2\alpha-1)}$, which correspond to the equation of state $-(2\alpha - 1)$ and -1, respectively. The first point is unstable and the second is stable. This is important because the dynamical evolution of the system will drive the field to a behaviour similar to a cosmological constant at late times.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Introduction	Kinetic part	Inflation	Dynamical system	Conditions for UDM	Conclusions

1 Introduction

2 Kinetic part

Inflation

4 Dynamical system

6 Conditions for UDM

6 Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Conditions for UDM

Now we study the conditions for a more general class of scalar fields to reproduce the same dynamical features. If the Lagrangian has a general form $\mathcal{L} = \mathcal{L}(X, \phi)$, its equation of state is

$$\omega = \frac{\mathcal{L}}{2X\mathcal{L}_X - \mathcal{L}},\tag{10}$$

and the effective sound speed

$$c_s^2 = \frac{\mathcal{L}_X}{2X\mathcal{L}_{XX} + \mathcal{L}_X}.$$
 (11)

A sufficient condition for the field to behave as dark matter is that both quantities be close to zero, leaving the conditions

$$\frac{\mathcal{L}}{X\mathcal{L}_X} \ll 1$$
 and $\frac{\mathcal{L}_X}{X\mathcal{L}_{XX}} \ll 1$.

There are several Lagrangians that accomplish the above conditions and they have been proposed as models for unified dark matter models (UDM) meaning that they can behave as dark matter and, adding a constant to the Lagrangian, as a combination of dark matter and dark energy.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

An example proposed in the literature is Scherrer's model (2004):

$$\mathcal{L} = F(X) = F_0 + F_m (X - X_0)^2,$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

when the kinetic term is near the minimum $X \sim X_0$, it is known to behave as dark matter plus dark energy.

Eq. of state condition

An example proposed in the literature is Scherrer's model (2004):

$$\mathcal{L} = F(X) = F_0 + F_m (X - X_0)^2,$$

when the kinetic term is near the minimum $X \sim X_0$, it is known to behave as dark matter plus dark energy.

In general, when the system is around a minimum, the Lagrangian can be expanded as

$$\mathcal{L}(X,\phi) = \mathcal{L}_0 + \frac{1}{2}\mathcal{L}_2\delta^2 + \frac{1}{3!}\mathcal{L}_3\delta^3 \cdots$$

 δ is the deviation from the minimum, $\delta = X - X_0$. The first condition is

$$\frac{\delta}{2X_0} - \frac{6\mathcal{L}_2 + X_0\mathcal{L}_3}{12X_0^2\mathcal{L}_2}\delta^2 + \dots \ll 1\,,$$

that imposes the condition on δ/X_0 to be small. For Scherrer's model δ/X_0 has to be smaller than 10^{-16} at the present epoch to avoid discrepancies in the structure formation and CMB power spectrum in comparison with observations.

For our Lagrangian with $\alpha = 1$, the dynamics of the field after inflation leaves it very close to the minimum. We have shown that during the equality epoch the deviation δ/X_0 is of order 10^{-13} and at the present epoch of order 10^{-23} , resulting in an identical model to the standard model of cosmology.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Sound speed condition

For the field around a minimum the condition is written as

$$\frac{\delta}{X_0} - \frac{2\mathcal{L}_2 + \mathcal{L}_3}{2X_0^2\mathcal{L}_2}\delta^2 + \dots \ll 1.$$

This condition is similar to the previous and, except for very particular Lagrangians, the accomplishment of the first equation will be enough, that is, the deviation from the minimum δ/X_0 must be small. This is achieved for the Scherrer's model. as well as for the model with $\alpha = 1$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- We have presented a phase space analysis for a unified model of dark matter, dark energy, and inflation. We have shown that for a large set of the initial conditions $(\phi, \dot{\phi})$ a viable dynamics occurs in which inflation $(\omega_{\phi} = -1)$ happens first, followed by a period of dark matter domination $(\omega_{\phi} = 0)$, to finish with dark energy $(\omega_{\phi} = -1)$.
- Once inflation ends, the model is fully described by the purely kinetic Lagrangian. We have demonstrated that this system possesses a late time stable solution in which $\omega_{\phi} = -1$, that is dark energy. There is a range of parameters to achieve a successful cosmological model, and in the present work the dynamical analysis clearly shows why the system is tenable.

- We also presented the general features that are necessary to have a model that behaves as dark matter. If one adds a cosmological constant to this model, one ends with a unified dark matter and dark energy model, called generically UDM. There are two conditions that these models should fulfill playing the role of an effective fluid with small pressure and small speed of sound.
- We have analyzed some models studied in the literature that fulfill these conditions. In particular, F(X) models that possess a minimum, as Sherrer's model or our model, when they are close enough to the minimum, they behave as dark matter. Departures from the minimum cause a change in the transfer function and therefore to a different growth history in comparison to the standard model of cosmology.