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Motivation

Scalar fields play an important role in cosmological models
because, due to their simplicity and adaptability, they can account
for different interesting phenomena, e.g. inflation, DE.

There is an increasing interest to study F (X) models in
cosmology. Recent works have studied the possibility that dark
matter, dark energy, and inflation have a common origin.
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Scalar fields

Lagrangian of a canonical scalar field

L = X + V (φ)

with X = −1
2∂µφ∂

µφ

Generalized Lagrangian

L = P (X,φ)

Different particular forms of the Lagrangians has been studied for
different reasons.
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Generalized kinetic Lagrangian L = F (X) + V (φ)

The FRW equation are:

H2 =
1

3M2
Pl

(2XFX − F + V )

and
d

dt
(2XFX − F + V ) + 6HXFX = 0 ,

where H = ȧ/a is the Hubble parameter and M2
Pl ≡ 1/8πG. The

density and pressure of the effective ”fluid” given by:

ρ = 2XFX − F, P = F.
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Unified Lagrangian

One particular choice is made for the Lagrangian

F (X) =
1

(2α− 1)

[
(AX)α − 2αα0

√
AX

]
+M , (1)

V (φ) =
1

2
m2φ2 . (2)

This Lagrangian has the interesting properties to emulate the dark
matter, to yield dark energy, and in the very early Universe to drive
inflation under certain election of parameters.
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If the kinetic part is much larger than the potential

L ≈ F (X)

that allows the integration

ρ =
[
α0 +

c0
a3

]n
−M

with n = 2α/(2α− 1), we identify

αn0 −M = ρde0

nc0α
n−1
0

a30
= ρdm0
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Adjusting parameters

The energy density can be expanded as

ρ = αn0 −M︸ ︷︷ ︸
dark energy

+
nc0α

n−1
0

a3︸ ︷︷ ︸
darkmatter

+

n∑
k=2

(
n

k

)
αn−k0

( c0
a3

)k
.

The extra terms should be small.

If M = 0 entonces α� 1021

If α = 1 then α2
0 ∼M y M � 1024ρde0

If α = 3/4 then M � 1028ρde0

Additionally, one demands M < ρPlanck.
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Example of evolution

For the case α = 3/4
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kinetic potential

F (X) =
1

(2α− 1)

[
(AX)α − 2αα0

√
AX

]
+M
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Another kinetic model

Scherrer proposed the model

F (X) = Fm + F2(X −Xm)
2,

that for small deviations around the minimum it evolves as

ρ = −Fm + 4F2X
2
mε1(a/a1)

−3

with ε = (X −Xm)/Xm.
The transfer function of these models deviates from cold dark
matter (CDM) as T (k) = TQ(k)TCDM(k), TQ(k) should be close
to 1 and therefore ε0 must be less than 10−16 (Giannakis & Hu
2005).
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Transfer function

Around the minimum our model can be approximated as Scherrer’s
with a deviation ε0 = (X0 −Xm)/Xm less than 10−23 for n = 2
(blue line) and 10−26 for n = 3 (red line).
The transfer function do not deviate much from CDM’s.
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Inflation

At the beginning the potential term dominates over all F(X) terms
to achieve inflation, if one has slow roll conditions. The evolution
equations are:

3M2
plH

2 = 2XFX − F + V, (3)

(FX φ̇)˙+ 3HFX φ̇+ V ′ = 0, (4)

In slow roll they become

3M2
plH

2 = V (φ), (5)

3HFX φ̇+ V ′(φ) = 0, (6)
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Observables from inflation

The spectral index ns = 1− 0.3
√
n− 1

Ratio of scalar to tensorial perturbations r = 0.15
√
n− 1

Initial energy for inflation Vi = 5.9× 10−9M4
Pl

√
n− 1

At the end of inflation reheating could be produce via gravitational
particle production ρrf ∼ 0.01gH2

f

The system being dominated by the kinetic terms at the end of
inflation, the field decays as a−3n, whereas radiation decays as
a−4. Thus, the radiation begins to dominate over the kinetic terms
after 25/(3n− 4) e-folds. For n = 2, it needs 12 e-folds and for
n = 4, it needs 3 e-folds.
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Dynamical system, for α = 1

Performing a change of variable to z ≡ φ̇/
√
A, let us to arrive to a

system of first order autonomous equations

ż = −m
2φ√
A

+

√
3

2MP

(
−
√
2z + 2sign(z)

)√
z2 +m2φ2 − 2M ,(7)

φ̇ =
z√
A
. (8)

With the equation of state of the field written in terms of these
variables as

ωφ =
2M + z2 −

√
8|z| −m2φ2

−2M + z2 +m2φ2
. (9)
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Phase space
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Critical points

In general for the purely kinetic Lagrangian, we obtain the critical

values of the system as AX = 0 and AX = α
2/(2α−1)
0 , which

correspond to the equation of state −(2α− 1) and −1,
respectively. The first point is unstable and the second is stable.
This is important because the dynamical evolution of the system
will drive the field to a behaviour similar to a cosmological
constant at late times.



Introduction Kinetic part Inflation Dynamical system Conditions for UDM Conclusions

1 Introduction

2 Kinetic part

3 Inflation

4 Dynamical system

5 Conditions for UDM

6 Conclusions



Introduction Kinetic part Inflation Dynamical system Conditions for UDM Conclusions

Conditions for UDM

Now we study the conditions for a more general class of scalar
fields to reproduce the same dynamical features. If the Lagrangian
has a general form L = L(X,φ), its equation of state is

ω =
L

2XLX − L
, (10)

and the effective sound speed

c2s =
LX

2XLXX + LX
. (11)

A sufficient condition for the field to behave as dark matter is that
both quantities be close to zero, leaving the conditions

L
XLX

� 1 and
LX

XLXX
� 1 .
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Conditions for UDM...

There are several Lagrangians that accomplish the above
conditions and they have been proposed as models for unified dark
matter models (UDM) meaning that they can behave as dark
matter and, adding a constant to the Lagrangian, as a combination
of dark matter and dark energy.
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Eq. of state condition

An example proposed in the literature is Scherrer’s model (2004):

L = F (X) = F0 + Fm(X −X0)
2,

when the kinetic term is near the minimum X ∼ X0, it is known to
behave as dark matter plus dark energy.

In general, when the system is around a minimum, the Lagrangian can be
expanded as

L(X,φ) = L0 +
1

2
L2δ

2 +
1

3!
L3δ

3 · · ·

δ is the deviation from the minimum, δ = X −X0. The first condition is

δ

2X0
− 6L2 +X0L3

12X2
0L2

δ2 + · · · � 1 ,

that imposes the condition on δ/X0 to be small. For Scherrer’s model

δ/X0 has to be smaller than 10−16 at the present epoch to avoid

discrepancies in the structure formation and CMB power spectrum in

comparison with observations.
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Our model

For our Lagrangian with α = 1, the dynamics of the field after
inflation leaves it very close to the minimum. We have shown that
during the equality epoch the deviation δ/X0 is of order 10−13 and
at the present epoch of order 10−23, resulting in an identical model
to the standard model of cosmology.
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Sound speed condition

For the field around a minimum the condition is written as

δ

X0
− 2L2 + L3

2X2
0L2

δ2 + · · · � 1 .

This condition is similar to the previous and, except for very
particular Lagrangians, the accomplishment of the first equation
will be enough, that is, the deviation from the minimum δ/X0

must be small. This is achieved for the Scherrer’s model, as well as
for the model with α = 1.



Introduction Kinetic part Inflation Dynamical system Conditions for UDM Conclusions

Conclusions 1/2

We have presented a phase space analysis for a unified model
of dark matter, dark energy, and inflation. We have shown
that for a large set of the initial conditions (φ, φ̇) a viable
dynamics occurs in which inflation (ωφ = −1) happens first,
followed by a period of dark matter domination (ωφ = 0), to
finish with dark energy (ωφ = −1).

Once inflation ends, the model is fully described by the purely
kinetic Lagrangian. We have demonstrated that this system
possesses a late time stable solution in which ωφ = −1, that is
dark energy. There is a range of parameters to achieve a
successful cosmological model, and in the present work the
dynamical analysis clearly shows why the system is tenable.
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Conclusions 2/2

We also presented the general features that are necessary to
have a model that behaves as dark matter. If one adds a
cosmological constant to this model, one ends with a unified
dark matter and dark energy model, called generically UDM.
There are two conditions that these models should fulfill
playing the role of an effective fluid with small pressure and
small speed of sound.
We have analyzed some models studied in the literature that
fulfill these conditions. In particular, F (X) models that
possess a minimum, as Sherrer’s model or our model, when
they are close enough to the minimum, they behave as dark
matter. Departures from the minimum cause a change in the
transfer function and therefore to a different growth history in
comparison to the standard model of cosmology.
Look at the works: De-Santiago et al, arXiv:1102.1777,
arXiv:1204.3631.
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