Thermalisation of Light Sterile Neutrinos

Thomas Tram

Aarhus University

Paper: arXiv:1204.5861 Colaborators: Irene Tamborra and Steen Hannestad

What is a sterile neutrino?

- No Standard Model interaction
- Non-zero mixing angle with an active neutrino
- Mass?

How to thermalise a sterile neutrino?

Propagation and measurement!

• Rate:
$$\Gamma_{\nu_s} = \frac{1}{2} \sin^2(2\theta_s) \left(\frac{\Delta_0}{\Delta_m}\right)^2 \Gamma_{\nu}$$

• Resonances in the medium: $\Delta_m \rightarrow 0 \left(IH \frac{and}{or} L \neq 0 \right)$

TIME EVOLUTION OF THE 95% BOUND ON $N_{\rm v}$

(Remember LEP: 3 active light neutrinos.)

ESTIMATED PLANCK SENSITIVITY

Credit: Steen Hannestad

Motivation: Neutrino anomalies

Experiment	What do they measure?	Estimate of significance
Nuclear reactors (ILL, Bugey, Gösgen)	A small deficit in the $\bar{\nu}_e$ flux from ²³⁵ U, ²³⁸ U, ²³⁹ Pu and ²⁴¹ Pu fission.	2.5σ (Mention et. al.: 1101.2755)
Galium detectors (SAGE and GALLEX)	A small deficit in the the v_e -flux from ⁵¹ Cr and ³⁷ Ar decay.	3.0σ (Giunti and Laveder: 1006.3244)
Short baseline oscillation experiments (LSND and MiniBooNE)	$\bar{\nu}_{\mu} - \bar{\nu}_{e}$ and $\nu_{\mu} - \nu_{e}$ oscillations.	3.8σ + 0σ + 3.0σ+? σ (1007.1150 +)
Big Bang Nucleosynthesis (BBN)	Amount of radiation at T=1 MeV	Consistent with 0 or 1 fully thermalised neutrino.
Cosmic Microwave Background (WMAP + ACT/SPT + BAO + H _o)	Amount of radiation at recombination	1.5σ – 2.5σ (1009.0866 +)

Motivation: Neutrino anomalies

Experiment	What do they measure?	Estimate of significance
Nuclear reactors (ILL, Bugey, Gösgen)	A small deficit in the $\bar{\nu}_e$ flux from ²³⁵ U, ²³⁸ U, ²³⁹ Pu and ²⁴¹ Pu fission.	2.5σ (Mention et. al.: 1101.2755)
Galium detectors (SAGE and GALLEX)	A small deficit in the the v_e -flux from ⁵¹ Cr and ³⁷ Ar decay.	3.0σ (Giunti and Laveder: 1006.3244)
Short baseline oscillation experiments (LSND and MiniBooNE)	$\bar{m}_s^2 \sim 1e^{1}$	$32\sigma + 0\sigma + 3.0\sigma + ?\sigma$ 1007.1150 +)
Big Bang Nucleosynthesis (BBN)	Amount of radiation at T=1 MeV	Consistent with 0 or 1 fully thermalised neutrino.
Cosmic Microwave Background (WMAP + ACT/SPT + BAO + H ₀)	Amount of radiation at recombination	1.5σ – 2.5σ (1009.0866 +)

1+1 approximation

- 2 level system: 2x2 density matrix
- Hermitian and unitary: Expand in Pauli matrices..

 $\rho = \begin{bmatrix} \text{active} & (\text{entanglement}) \\ (\text{entanglement}) & \text{sterile} \end{bmatrix}$

Quantum Kinetic Equations

• Density matrices using Bloch-vectors:

$$\rho = \frac{1}{2} f_0 (P_0 + \boldsymbol{P} \cdot \boldsymbol{\sigma})$$
$$\bar{\rho} = \frac{1}{2} f_0 (\overline{P_0} + \overline{\boldsymbol{P}} \cdot \boldsymbol{\sigma})$$

• Equations of motion:

$$\dot{\boldsymbol{P}} = \boldsymbol{V} \times \boldsymbol{P} - D\boldsymbol{P}_{T} + \dot{P}_{0}\hat{\boldsymbol{z}}$$
$$\dot{P}_{0} = \Gamma \left[\frac{f_{eq}}{f_{0}} - \frac{1}{2}(P_{0} + P_{z})\right]$$

Sigl & Raffelt 1993

Numerics (!)

- Vastly separated time scales: Hubble expansion, relaxation, oscillations... → Stiffness
- 8 × res~10³ equations → sparse methods needed
- Parameter space spans several order of magnitudes
- ndf15 and RADAU5: state of the art
- LASAGNA: Lepton Asymmetric Sterile-Active Grid Neutrino Analyser

δN_{eff} for $\delta m_s^2 > 0, L = 0$

δN_{eff} for $\delta m_s^2 < 0, L = 0$

δN_{eff} for $\delta m_s^2 > 0, L = 10^{-2}$

δN_{eff} for $\delta m_s^2 < 0, L = 10^{-2}$

Open questions/future

- Effect of v_e distribution function distortion on BBN
- Make LASAGNA public
- Chaotic lepton number in inverted hierarchy? (in progress)

Information loss in QRE

Credit: Rasmus Sloth

The End

Thank you for your attention!