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N-Problem
« WMAP data, constraints the€ & 1 parameter to be <107
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» They are a measure of flatness of the potential.

» One should protect the potential and its flatness against the classical corrections of
non-inflationary sector and also quantum gravity corrections.

* In top-down approaches: classical interference of moduli stabilization process with the
inflaton moduli causes the p-problem.
In presence of vacuum energy, V ==>soft masses, including the inflaton’s, receives

Am* = V2 = 3H *===1)-problem McAllister (2005)
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« n-problem can also arise due to the mixing of the inflaton and graviton at

one-loop level > Sakharov (1968)
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11 -problem from loop correction to the h — @ — @ vertex

* Einstein-Hilbert Gravity+matter: a non-renormalizable theory, but one can still use the
EFT Wilsonian techniques.

 Consider the action of /Vscalar fields minimally coupled to gravity
L=— i‘\[lle — é(ﬁ’)ﬂ(:}a(ﬁ’)“‘(;‘)a — i..\[ 3‘()(‘3 — V(o,) —> realizes slow-roll inflation
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* One or some of these scalars play the role of inflaton(s).

» The rest exhibit fields other than inflaton direction or also possible remnants of the

underlying quantum gravity theory. A
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* Performing the one loop analysis: we have to find the propagators and vertices.
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» The gravitational part of the action:

172 Goldberg (1958)
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g;u/ = Nup T h;u/: where
g =" — W 4 O(i22).
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» Perturbing the action up to third order in %, one obtains
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One Loop Analysis:
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» Only the last three diagrams are the one that has N-dependence.

 Diagram (ll) and (lll), even though proportional to N, has only quartic divergences.

* The leading order divergent term is A*S,,,8,,; which is the cosmological constant term.
* The next-to-leading order divergent part of diagrams (l) is proportional to
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* Quantum gravity effects become important when

\[2 Dvali (2007,2008)
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One loop graviton-scalar vertex

We would like to calculate the correction to scalar-gra\{iton three vertex at one loop
level and from that calculate the coefficient of R¢g. or Y; (0°m)¢* at one loop level
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* No N-dependence appears in any of the above diagrams.

* The coeﬁ{cient of these one-loop diagrams is suppressed with respect to tree-level
result =7, by a factor of ( A )2
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« This means that the coefficient in front of the generated R¢” is suppressed by the
above factor. So if Ais suppressed with number of species lighter than the cutoff, the
coefficient of conformal breaking term, R¢; , will be suppressed too.
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R’ term in inflationary background and resolution to the M-problem

» We have to extend our analysis to dS background.

* The relevant observation is that the modes contributing to N are the quantum modes.

« EOM of massive scalar field in an inflationary background is
2
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balkit) + 3Hoy(k:t) + ( + M?)do(k;t) =0,

a(t)?

« Ignoring the %*/a(t)? the solution takes the form:

da(kit) = ) eHot w=—3/24+/9/4 — M2/H?

Requiring w to be imaginary implies A7, > 3H /2.

* Inclusion of #2/a(t)* will slightly changes this result:

- Modes with M, > 3H/2always remain quantum mechanical.

k  3H
- Modes with ;- 3H/2are quantum mechanical, as long as they are sub-horizon %>7



* Interested only in the UV behavior ==>sub- & super-Hubble modes both contribute.
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With slow-roll parameter ), = \[2 ‘ab . Where 1, = aazéd,b
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To have a successful inflationary scenario, n = 0.01.If ¢ =0.01 one can suppress the
quantum correction by havingy > few x 1000

Examples:
* N-flation: S. Dimopoulos, S. Kachru et. al. (2005)
- O(N) symmetric model, V' = E(p
* Few thousand fields will solve the quantumn problem.

* However this comes at the price of having “super- A .~ excursions for the

individual field.
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%/ 10-d IIB supergrawty background
. ds® =2dx"dx™ - (x)(dx")” + dx.dx
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D3
— i, j =1,2,3 parameterize 3 out
6 dim _go the D3-branes and
x X denotes 3 spatial dim along
and five transverse to the D3-branes.
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Matrix Inflation from String Theory
272
With 7% = 4gﬁ’{the above background with constant dilaton is solution to the SUGRA
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From the brane-theory perspective, it is necessary to choose #2 and K such that
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In the stringy picture, we have N D3-branes that are blown up into a single giant
D5-brane under the influence of RR 6-form. The inflaton corresponds to the
radius of this two sphere.
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Truncation to the SU(2) Sector:

®. are N X N matrices and therefore we have 3N* scalars. It makes the analysis very

difficult (B

However from the specific form of the potential and since we have three @, it is possible

to show that one can consistently restrict the classical dynamics to a sector with single

scalar field: R
D =¢(1)J,, i=1,273

J; are N dim. irreducible representation of the SU(2) algebra:
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Plugging these to the action, we have:
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Definingg = (Tr J? )/2(/3 to make the kinetic term canonical, the potential takes the form

A, 2K, m’ 22 8 ” 2
Vo(@) = ff¢4 - ff¢3 +_¢2 7LeffE ) = T K= = ,
4 3 2 TrJ* N(N*-1) VTeJ? | N(N?-1)



Analysis of the Gauged M-flation around the Single-Block Vacuum

Aee .2 5 _ V2m Hill-top or Symmetry-Breaking
Vig) = 4 ¢ (p-w) #= [A inflation, Linde (1992)
Lyth & Boubekeur (2005)

(@) ¢ > u
¢ ~43.57 M, ¢, ~27.07 M, u=26M,

)Leffz4.91><10‘14 m=4.07x10" M,

(b) wu/2<¢ <p
$ =~235M, 9, ~35.03M, u=36M,
Aoy=T-18x107" m=6.82x10" M,
(c) O<g¢<ul/2
Due to symmetry ¢ = -¢ + u this inflationary region has the same
properties as u/2<¢, <u
o A=l == N=5x10" == Ap=<10"M,




Mass Spectrum of Spectators

(a) (N — 1)2 -1 <«-modes leZ 0s<[/<N-2 Degeneracy of each
1 /-modeis 27 +1
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(b) (V + 1)2 -1 ﬁ-modes €7 1<[/<N Degeneracy of each

1 Lmodeis 27 + 1
M3, =2 Al =D =09 + 26 (1 =1 +

(c) N*-1 zero modes 2 2 I
M2 =2, * 2K, fp+m -

These are infinitesimal gauge transformation @, —®, +ig[®,,A] where Alis an arbitrary hermitian
matrix. They are replaced by the following massive vector modes:

(d) 3N? -1 vector modes

A
M3, = Z Lol +1)

v =102 1 Va1 BV 1] =58 -1

o —modes f-modes  vector- field modes




*The ultra-light zero modes are replaced with massive vector modes that have a
hierarchical mass structure.

« Number of contributing species to the cutoff varies between 3x10°*and10°. Thus
1()_3;\[1)1“ 5 Adressed 5 5 X 10_3.“1131
« Recall that field excursion, A¢ =10~ M_which is much smaller than A,

« Thus conformal breaking term is suppressed by a factor of ~10~ and could be
safely ignored.



Cascade Inflation M. Becken i Besker, A Krause (2005)
Starting point: M-theory in the presence of N parallel M5-branes distributed
along the orbifold and compactified on a CY; preserving N=1 supersymmetry
in 4D. Each M5-brane has wrapped the same 2-cycle 2, on the CY; only
once and fill the 4D space-time.
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At the end, we have a cascade of power-law inflations during which the scale
factor evolves as:
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am(t)=amtpm’ ZLm—lleSl‘m’ m=1'K

Where the continuity of the scale factor at transition times determine ¢, s.
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Here for the 7% drop in the
potential the oscillations
last for three decades in k.
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Summary and Conclusions

* The loop corrections that arise from interactions of the graviton with the scalar field
create the quadratically divergent conformal mass type term which leads to the
"I-problem, if the UV cutoff of the theory is of order Planck mass.

* The problem seems to be commonplace in all inflationary models that use a scalar field
to realize inflation.

» We suggest a resolution to this kind of - problem in the context of many fields models.

* One example is N-flation which solves the problem at the price of super-species-cutoff
excursion.

» Another example is M-flation which is qualitatively new third venue within string theory
inflationary model-building, using the internal matrix degrees of freedom.

* Due to hierarchical mass spectrum of the isocurvature modes, one can avoid the
“super-species-cutoff’” problem.

» There are other bonuses like isocuravture perturbations, GWs, and embedded
preheating.

* The other case is cascade inflation where again one has sub-species-cutoff excursion.
The features of the model are power spectrum features and observable GWs.
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