Initial Systematic Investigations of the Weakly Coupled Free Fermionic Heterotic String Landscape Statistics

> Timothy Renner, Jared Greenwald, Douglas Moore, Yanbin Deng and Gerald Cleaver Baylor University PASCOS, Merida, Mexico, June 5, 2012

Outline

- Introduction
- NAHE-Based Statistics
- NAHE Variation-Based Statistics
- Conclusions and Future Work

Weakly Coupled Free Fermionic Heterotic Strings

- Independent left and right moving modes,
 - left moving modes being supersymmetric (D=10),
 - right moving modes bosonic (D=26).
- Each of the bosonic modes of both left and right part is exchanged for two fermionic modes.
- Boundary conditions on the fermionic modes give rise to physical states.
- The boundary conditions are encoded using L (layer) basis vectors.
- Each basis vector is associated with an order, N, specifying the number of allowed boundary conditions.

WCFFHS Construction Process

- Starting with a basis vector set and GSO (Gliozzi, Scherk, Olive) matrix
 - Both the basis vector set and the GSO matrix must be modularly invariant to be quantum mechanically consistent
- Build sectors as linear combinations of basis vectors;
- Build particle states from sectors;
- Keep only massless states (at string scale);
- Apply GSO projection to filter out the unphysical states;
- Identify gauge group;
- Identify matter representations;

Systematic Survey

- Systematic searches examine all possible basis vectors and k_{ii} matrices.
- The searches are parameterized by the number of basis vectors used in constructing the models.

There are several challenges to performing systematic searches

- The parameter space is very large.
- Mass-producing models makes cross-checking difficult.

The Original NAHE Results

QTY	SU(4)	SU(4)	SU(4)	SO(10)	E ₈	NAHE: Nanopoulos,
2	4	1	1	16	1	Antoniadis, Hagelin,
2	1	4	1	16	1	Ellis.
2	1	1	4	16	1	
2	1	1	4	16	1	5 hasis vectors
1	1	1	6	10	1	used therein
2	1	4	1	16	1	used merein.
1	1	6	1	10	1	
1	1	6	6	1	1	It has <i>N</i> =1
2	4	1	1	16	1	Spacetime SUSY.
1	6	1	1	10	1	
1	6	1	6	1	1	Potentially good
1	6	6	1	1	1	. eterniany geedi

Extend NAHE Results, Order 2, Layer 1

Number of Distinct Models

80

60

40

20

0

6

8

10

12

14

0

- There were 439 distinct models out of 1,945,088 total models.
- ▶ In addition, 9.5% of the models without rank-cuts and 13% of the models with rank-cuts were

then runn e		Number of Gauge Group Factors
removed as	duplicates.	223 215
GUT Group	% of Models	
E_6	0.2278%	150 -
SO(10)	36.45%	100 -
$SU(5)\otimes U(1)$	0%	jag 50 -
PS	55.35%	
LR	0%	0 1 2 3
MSSM	0%	Number of ST SUSYs

Extened NAHE Results, Order 3, Layer 1

600

- There were 3,036 distinct models out of 373,152.
- Based on the estimates from the O2L1 models without rank-cuts, the systematic uncertainty for these models is 10%.

GUT Group

 E_6

SO(10)

 $SU(5) \otimes U(1)$

ΡS

LR

MSSM

Summary of NAHE-based GUT Searches

GUT	Chiral Generations?	3 Generations?
O2L1 <i>SO</i> (10)	Yes	No
O2L1 Pati-Salam	No	No
O3L1 <i>E</i> ₆	Yes	No
O3L1 <i>SO</i> (10)	Yes	No
O3L1 $SU(5)\otimes U(1)$	Yes	Yes
O3L1 Pati-Salam	Yes	No
O3L1 L-R Symmetric	Yes	Yes
O3L1 MSSM	Yes	Yes

One Example: A Three-Generation Flipped-SU(5) Model

QTY	<i>SU</i> (3)	<i>SU</i> (3)	SU(4)	SU(5)	SU(7)
2	1	3	1	5	1
1	1	1	4	5	1
2	1	1	1	5	1
3	1	1	1	5	1
1	1	1	4	5	1
2	1	3	1	5	1
1	3	1	1	10	1
2	3	1	1	5	1

- This model also has five U(1) gauge groups, and N=1 ST SUSY.
- ▶ There are 14 extra 5's and 8 extra 5's.

Spacetime SUSY Distributions, O2L1

Spacetime SUSY Distributions, O3L1

Original NAHE Variation Results

QTY	<i>SO</i> (22)	E_6
30	22	1
15	1	27
90	1	1
15	1	27

- The NAHE variation also has five U(1)'s and N = 1 ST SUSY.
- It also allows for models with "mirroring."

Original NAHE Variation Results

2 of the 5 orignial NAHE basis vectors are

ירי ו

QTY	<i>SO</i> (22)	E_6
30	22	1
15	1	27
90	1	1
15	1	27

- The NAHE variation also has five U(1)'s and N = 1 ST SUSY.
- It also allows for models with "mirroring."

Order 2, Layer 1 Extensions

Number of Distinct Models

100

80

60

40

20

0

5

157

6

7

Number of Gauge Group Factors

8

10

0

- There were 309 unique models out of 1,315,328 total consistent models.
- ▶ 2% of the models without rank-cuts were duplicates, while none of the models with rank-cuts were duplicates.

duplicates.			157	151
GUT Group	% of Models	- s 150 Vodels	-	
E ₆	32.69%	 100	-	
SO(10)	40.45%	of Dist		
$SU(5)\otimes U(1)$	0%	50 page	-	
PS	0%	0 Nur		1
LR	0%		0	1 2 3
MSSM	0%			Number of ST SUSYs

Order 3, Layer 1 Extensions

NAHE Variation-based GUT Searches

GUT	Chiral Generations?	3 Generations?
02L1 <i>E</i> ₆	Yes	No
O2L1 <i>SO</i> (10)	Yes	No
O3L1 <i>E</i> ₆	No	No
O3L1 <i>SO</i> (10)	No	No
O3L1 $SU(5) \otimes U(1)$	No	No
03L1 Pati-Salam	No	No
O3L1 L-R Symmetric	No	No
O3L1 MSSM	No	No

An Example: A Model with Mirrored Matter Content

QTY	<i>SO</i> (14)	E_6	E_6
12	14	1	1
6	1	27	1
6	1	1	27
6	1	1	27
6	1	27	1

- This model has three U(1) gauge groups and N=2 ST SUSY.
- There were no models which had completely mirrored matter representations.

Spacetime SUSY Distributions, O2L1

Spacetime SUSY Distributions, O3L1

Spacetime SUSY Distributions, O3L1

Conclusions

- Some theoretical work is still needed to proceed with large-scale searches.
- Even with a limited sample set, interesting classes of models not previously examined have been found.

Future Works

- Higher layer and higher order studies of NAHE & NAHE variation extension might put us closer to more phenomenologically realistic models.
- Perform flat direction analysis on quasi-realistic models.

Acknowledgements

- Recent and current members of Baylor University String Theory group: Timothy Renner, Kristen Pechan, Jared Greenwald, Douglas Moore, Yanbin Deng and Dr. Gerald Cleaver (Adviser).
- This talk is based on Timothy Renner's doctoral dissertation.
- For more details, refer to papers: arXiv: 1111.1917, arXiv:1111.1263.