# The Systematic Construction of Free Fermionic Heterotic String Gauge Models

#### PASCOS 2012

Douglas Moore

Baylor University Waco, TX 76798

# Contents

| FFHS Model Building 3                       |
|---------------------------------------------|
| FFHS Models 4                               |
| Basis Vectors - Boundary Conditions 5       |
| Sectors and Charges - Phases and "States" 6 |
| Masslessness and GSO Projection 7           |
| Supersymmetry                               |
| Layer 1 Survey                              |
| Systematic Layer 1 - Orders 2 to 22 10      |
| New Models Per Order 11                     |
| GUT Groups 12                               |
| Layer 2 Survey                              |
| Systematic, $D = 4$ , Layer 2 14            |
| <b>Conclusions</b>                          |
| What Comes Next? 16                         |
| Questions? 17                               |

# FFHS Model Building

## FFHS Models

- Heterotic Strings
  - Left- and Right- moving modes of a closed string are independent.
  - Left-movers are supersymmetric.
  - Right-movers are bosonic.
- Free-Fermionic Models
  - Free fermions "live" on the world sheet.
  - How do the fermions transform under parallel transport?
  - The boundary conditions (eventually) give us the particle states.
- What is needed to build a model?
  - A set of *L* basis vectors.
  - An  $L \times L$  GSO coefficient matrix.

#### **Basis Vectors - Boundary Conditions**

The first input is a set of boundary conditions:

$$\mathbf{A} = \left\{ \vec{\alpha_i} \mid \vec{\alpha_i} \in \mathbb{Q}^{32} \cap (-1, 1]^{32}, \ N_i \alpha_i^j = 0 \ (\text{mod } 2) \right\}.$$

A valid set of basis vectors satisfies the modular invariance constraints:

$$N_i \vec{\alpha}_i^2 = \begin{cases} 0 \pmod{8}, & \text{if } N_i \text{ even} \\ 0 \pmod{4}, & \text{if } N_i \text{ odd} \end{cases}$$
$$N_{ii} \vec{\alpha}_i \cdot \vec{\alpha}_i = 0 \pmod{4}$$

where  $N_{ij} \equiv LCM(N_i, N_j)$ .

#### Sectors and Charges - Phases and "States"

Within the Free-Fermionic formalism, we consider transport of fermions around non-contractable loops on the world-sheet.

Consistency requires:

$$\psi_j \to -e^{i\pi V_j^i}\psi_j$$

with  $V_j^i \in (-1, 1] \cap \mathbb{Q}$ . With 6 compactified dimensions, this is a 32 dimensional vector in the complex basis. We can write these sectors as linear combinations of basis vectors,

$$\vec{V}^i = \sum_{i=1}^L m^i_j \vec{\alpha}^j$$

with  $m_j^i \in [0, N_j)$ . We can then find the charges to be

$$\vec{Q}^i = \frac{1}{2}\vec{V}^i + \vec{F}^i$$

with  $F_j^i \in \{-1, 0, 1\}$ , the fermion number operator.

#### Masslessness and GSO Projection

First, we need the states to be massless at the string scale:

$$\left(\vec{Q}_{left}^{i}\right)^{2} = 1 \quad \left(\vec{Q}_{right}^{i}\right)^{2} = 2$$

Second, we need the states to fit into representations. Additionally, there is a problem with the bosonic ground state: it is tachyonic. Hence, the GSO projection:

$$\vec{\alpha}_i \cdot \vec{Q}^j = \sum_{n=1}^L m_n^j k_{in} + s_i \pmod{2}$$

The  $k_{ij}$  matrix must also satisfy modular invariance constraints.

$$k_{ij} + k_{ji} = \frac{1}{2}\vec{\alpha}_i \cdot \vec{\alpha}_j \pmod{2}$$
$$k_{ii} + k_{i1} = \frac{1}{4}\vec{\alpha}_i^2 + s_i \pmod{2}$$
$$N_j k_{ij} = 0 \pmod{2}$$

May 30, 2012

FFHS Model Building

### Supersymmetry

We assume an  $SU(2)^6$  worldsheet SUSY:

- $\mathcal{N} = \mathcal{N}_{max}$ 
  - Results when  $k_{2i} = 0$  for all i > 2.
  - The matter is completely determined by the gauge group.
  - The model is non-tachyonic.
- $\mathcal{N} = 0$ 
  - Results when  $k_{2i} = 1$  for any i > 2.
  - Not all of the matter falls into adjoint representations of the gauge group.
  - The model MAY contain tachyons.

# Layer 1 Survey

#### Systematic Layer 1 - Orders 2 to 22

- $L = 1 \Rightarrow L = 3$ .
  - All periodic basis vector.
  - SUSY generator.
- *N* ranged from 2 through 22, sequentially.
- Both  $\mathcal{N} = \mathcal{N}_{max}$  and  $\mathcal{N} = 0$  models were generated.
- "Unique" means unique gauge group and unique SUSY.

|                                   | <i>D</i> = 10 | <i>D</i> = 8 | <i>D</i> = 6 | <i>D</i> = 4 |
|-----------------------------------|---------------|--------------|--------------|--------------|
| $\mathcal{N} = \mathcal{N}_{max}$ | 2             | 13           | 18           | 68           |
| $\mathcal{N} = 0$                 | 6             | 50           | 73           | 502          |
| Total Number of Models            | 4,953,930     | 12, 493, 632 | 29,079,534   | 31, 863, 121 |

### New Models Per Order





Figureurey

# GUT Groups

|                    | $\mathcal{N} = \mathcal{N}_{max}$ |              |              | $\mathcal{N} = 0$ |               |              |              |              |
|--------------------|-----------------------------------|--------------|--------------|-------------------|---------------|--------------|--------------|--------------|
|                    | <i>D</i> = 10                     | <i>D</i> = 8 | <i>D</i> = 6 | <i>D</i> = 4      | <i>D</i> = 10 | <i>D</i> = 8 | <i>D</i> = 6 | <i>D</i> = 4 |
| $\mathcal{F}-SU_5$ | 0%                                | 0%           | 0%           | 5.9%              | 0%            | 0%           | 5.5%         | 20.9%        |
| $E_6$              | 0%                                | 7.6%         | 11.1%        | 8.8%              | 0%            | 8%           | 11.0%        | 9.6%         |
| $SO_{10}$          | 0%                                | 0%           | 11.1%        | 13.2%             | 0%            | 8%           | 13.7%        | 13.9%        |
| PS                 | 0%                                | 0%           | 0%           | 5.9%              | 0%            | 2%           | 8.2%         | 16.3%        |
| LRS                | 0%                                | 0%           | 0%           | 0%                | 0%            | 0%           | 0%           | 8.7%         |
| MSSM               | 0%                                | 0%           | 0%           | 0%                | 0%            | 0%           | 0%           | 14.7%        |

# Layer 2 Survey

## Systematic, D = 4, Layer 2

- $L = 2 \Rightarrow L = 4$ .
  - All periodic basis vector.
  - SUSY generator.
- Orders  $2, 2 \rightarrow 2, 6$
- Orders  $3, 3 \rightarrow 3, 6$
- Orders 4, 4
- Both  $\mathcal{N} = \mathcal{N}_{max}$  and  $\mathcal{N} = 0$  models were generated.

#### No new models have been found.

# Conclusions

## What Comes Next?

- High order (N > 22) surveys
- Higher layer surveys
- Redundancy reductions
- Left-Movers
- "Reverse" surveys
- ...
- Whatever else we can think of.

# Questions?

#### STRING THEORY SUMMARIZED:

I JUST HAD AN AWESOME IDEA. SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS."

OKAY. WHAT WOULD THAT IMPLY? 1 DUNNO.

Figure 2 http://xkcd.com/171

Conclusions