Automated Systematic Generation of Flat Directions in Free Fermionic Heterotic Strings

Jared Greenwald Baylor University

Early Universe Cosmology and Strings

- (Very) brief look at WCFFH, NAHE
- EFT's
- Scalar Potential, D-terms and F-terms
- Flatness
- D- and F-flatness
- Computational Difficulties \& Solutions
- D- \& F-flat
- SVD, Linear Programming
- Conclusion

WCPFH
 (Weakly-coupled Free Fermionic Heterotic string

- $E 8_{\text {obs }}$ X $E 8_{\text {hidden }}$
- EFT:

Rich Phenomenology

- NAHE (Nanopoulos, Antoniadis, Hagelin and Ellis)
- E8 obs -> SO(10) (in $D=4$)
- $\mathrm{SO}(6) \times \mathrm{SO}(4)$
- $\operatorname{SU}(5) \times \mathrm{U}(1)$
- SM
- Remain unbroken
- SUSY: N=1
- 3 generation
- Tachyon-free

EFT: string model viability

- Given a string model, how do we test for phenomenological viability?
- Construct EFT: Gauge group and matter analysis
- The Lagrangian scalar potential for a supersymmetric model:

$$
\begin{array}{r}
\varphi=\text { (scalar) bosonic fields } \\
\alpha=\{\text { groups }\} \\
a=\{\text { generators (mediators })\}
\end{array}
$$

EFT: Scalar Potential

- Supersymmetry exists if: $\langle V(\phi)\rangle=0$
- Want SUSY above TeV scale
- VEV's of D- \& F-terms must be zero

field $V E V^{\prime} \mathrm{s} \in\{$ moduli $\}$

- D- \& F-flatness

Essential part of moduli stabilization

EFT: Scalar Potential

o Flat direction:

- Locus of VEV'ed fields
- Points, curves, regions in the $<\phi_{i}>$ planes
- $<\mathrm{V}(\phi)>=0$

$$
V(\varphi)=\frac{1}{2} \sum_{\alpha} g_{\alpha}^{2}\left(\sum_{a=1}^{\operatorname{dim}\left(G_{a}\right)} D_{a}^{\alpha} D_{a}^{\alpha}\right)+\sum_{i}\left|F_{\varphi_{i}}\right|^{2}
$$

EFT: D-terms

- Two main types:
- Charged under U(1)i (type I)

$$
D^{i} \equiv \sum_{m} Q_{m}^{0}\left|\varphi_{m}\right|^{2}
$$

- NA fields (type II)

$$
D_{a}^{\alpha} \equiv \sum_{m} \varphi_{m}^{\dagger} T_{a}^{\alpha} \varphi_{m}
$$

- T: matrix generators
o F-terms:

$$
F_{\Phi_{m}} \equiv \frac{\partial W}{\partial \Phi_{m}}
$$

- $\mathrm{W}=$ superpotential $=\sum \ldots \Phi_{i}^{r_{i}} \Phi_{j}^{r_{j}} \Phi_{k}^{r_{k}} \Phi_{l}^{r_{i}} \ldots$
order $\equiv \sum r_{i}$

	Order(W)	$3^{\text {rd }}-5^{\text {th }}$	$17^{\text {th }}$
	SUSY broken	string scale *(1 to $1 / 10$) [$10^{\wedge} 16 \mathrm{TeV}$]	1 TeV

F-flatness usually tested: $3^{\text {rd }}-5^{\text {th }}$ order

- Less expensive computationally
- More models discounted in lower orders than higher
- more constraining

Systematic Flatness Overview

1. Find D-flat solution
a) Must cancel FI-term
2. Check for F-flatness
a) All-order flat: SUSY is not broken
b) Fails at given order: SUSY broken at some scale
3. Rinse, wash and repeat

D-flatness: FI-Term and the $\mathrm{U}(1)_{\text {ィ }}$

- Build a D-flat direction to cancel FI-term
- Need anomalous U(1) VEV with opposite sign than ξ
- FI-term breaks U(1)A which arises:
- Compactifications - up to 6 (one from each)
- 'freed' from breaking a gauge symmetry

$$
\xi=\frac{g^{2}\left(\operatorname{Tr} Q_{A}\right)}{192 \pi^{2}} M_{\mathrm{Pl}}^{2}
$$

o Find \{VEV's\} that satisfy D-flatness

- Restores SUSY

$$
\left\langle D_{A}\right\rangle=\left\langle D_{\alpha}\right\rangle=0
$$

$$
D_{a}^{\alpha} \equiv \sum_{m} \varphi_{m}^{\dagger} T_{a}^{\alpha} \varphi_{m}
$$

$$
D^{(A)} \equiv \sum_{m^{\prime}} Q_{m^{\prime}}^{(A)}\left|\varphi_{m}\right|^{2}+\xi
$$

F-flatness

o (Generally) Construct W to given order

- Calculate F-terms

```
W
    + \mp@subsup{\Phi}{45}{}(\mp@subsup{\overline{\Phi}}{46}{}\mp@subsup{\overline{\Phi}}{56}{\prime}+\mp@subsup{\overline{\Phi}}{46}{\prime}\mp@subsup{\overline{\Phi}}{56}{})+\mp@subsup{\overline{\Phi}}{45}{}(\mp@subsup{\Phi}{46}{}\mp@subsup{\Phi}{56}{\prime}+\mp@subsup{\Phi}{46}{\prime}\mp@subsup{\Phi}{56}{})
```

o F-flatness

- Calculate F-terms
- Multiple terms
- Cancelling between
- Complicated
- Might lose flatness at next order

$$
\left\langle F_{\Phi_{m}}\right\rangle=\langle W\rangle=0
$$

Stringent F-Flatness

o Stringent F-flatness

- Each term individually zero
- All-order analysis
- Look at potential 'dangerous' terms:
- At most 1 unVEV'ed field in a term

$$
F_{\Phi_{45}}=\bar{\Phi}_{46} \bar{\Phi}_{56}^{\prime}+\bar{\Phi}_{46}^{\prime} \bar{\Phi}_{56}
$$

- When appearing, an unVEV'ed field is only to $1^{\text {st }}$ power
- Too constraining?
- Stringent flat directions appear to be 'roots' of other flat directions
- Not rigorously proved
- General pattern

Computational Problems

- WCFFHS
- Previously: F77
- Input: prebuilt models
- Utilizes group theory program/results
- Calculates superpotential (to any finite order)
- Looks for flat directions (not without some "help")
- Goal: C++

Completely automated

- Expandable
- Allows various types of searches
- Systematic, large-scale searches
- Beyond strings
- Any EFT
- D-flatness
- Matrix Solver
- Infinite Solutions??
- F-flatness
- All-order flatness
- Creating superpotential
- Check for potentially bad terms

Computational: D-flat

○D-flat

- Matrix equation
- Singular matrix?
- SVD Solver
- Infinite Solutions?

- Constraints
- Rescaling

$$
Q \vec{x}=\binom{1}{\overrightarrow{0}}
$$

Computational: D-flat [SVD]

- Singular Value Decomposition
- Decomposes matrix into
- U, V unitary
- Diagonal with singular values
- A basis for the range of $\mathbf{Q}:\left\{u_{1}, \cdots, u_{l}\right\}$
- A basis for the nullspace of $\mathbf{Q}:\left\{v_{l+1}, \cdots, v_{n}\right\}$
- Decomposition
- Easily invertible

Pseudoinverse

- Qx=b

SVD Solver

o A nonsingular

- Image, Domain: same dimension
- Q will be singular
- Q maps to lower dimension

SVD Solver

- SVD solutions: Least square if c^{\prime} is not in Range(Q)
- All solutions: Qx=c,d

$$
\vec{x}=a_{0} \vec{x}_{s v d}+\sum a_{i} N S(Q)_{i}
$$

Accessible: Xsvd + Nullspace Basis Vectors

D-flat Constraints

$$
x=X \vec{a} \equiv\left(\vec{x}_{\text {svd }}, \vec{x}_{\text {null }}^{1}, \ldots, \vec{x}_{\text {null }}^{p}\right) \vec{a} \quad x_{\text {null }}^{i} \in N S(Q)
$$

- VEV Ratio Rescaling: $\quad\left\{X_{i j} a_{j}\right.$, relatively prime $\left.\forall i\right\}$
o *Other possible constraints:

$$
\text { l.b. } \leq\left|X_{i j} a_{j}\right| \leq u . b . \quad \forall i \in[1, n]_{\text {(sumimplied) }}
$$

$$
\| X_{i j} a_{j}\left|-\left|X_{l j} a_{j}\right|\right| \leq \alpha \quad \forall i, l \in[1, n]
$$

*applied if needed

D-flat Conjecture

o Conjecture:

- The rescaling constraint can yield a minimal bounding surface in coefficient space
- If not, then apply another
- How to test?
o Linear Programming
- Used in Operations research, Microeconomics, Cost/profit - Optimization over objectives and constraints
- Uses Matrix (tableau) language
- Many numerical solvers exist
- Integer programming
- Goal Programming

Multi-objective

Why Linear Programming?

o Systematic searches - We want to find every (reasonable) solution

- Determines whether coefficient space is:
- Bounded
- Bounding surface yields full coefficient set
- Unbounded
- 'rough-tuning' to calculate and specify bounding surface
oIP can help determine interesting regions
- Varying objective functions
- D-flat constraints
- Gather statistics for unbounded spaces

F-flatness

-LP + Recursive Loop $\vec{x}=a_{0} \vec{x}_{s v d}+\sum a_{i} N S(Q)_{i}$

- D-flat solution
- Given a D-flat solution
- Stringent F-flatness
- 'Dangerous' superpotential terms
- Investigate gauge-invariant monomials

F-flatness: Dangerous terms

- Dangerous: $\begin{aligned} & \sum_{\{ } r_{i} \leq 1 \\ & \left\{\left|\mid \Phi_{i},\right\}_{i}=0\right\}\end{aligned}$
- Why:

$$
\begin{gathered}
W_{\alpha}=\ldots \Phi_{j}^{r_{j}} \Phi_{k}^{r_{k}} \Phi_{l}^{\eta_{1}} \Phi_{m}^{r_{m}} \ldots \\
F_{\Phi_{m}} \equiv \frac{\partial W}{\partial \Phi_{m}}
\end{gathered}
$$

$$
\left\langle F_{\Phi_{m}}\right\rangle=\langle W\rangle=0
$$

- Construct:

$$
Q \vec{r}=\overrightarrow{0}
$$

F-flatness: Dangerous Case I

- Case I: $\left\langle F_{\omega_{o_{0}}}\right) \neq 0$
- Taking a derivative requires $r_{i}>1$
- Investigate coefficient space for matrix B :

$$
\operatorname{NS}(Q)_{r e d} B=I \quad B \equiv\left(\ldots, \vec{\beta}_{i}, \ldots\right),\left\{| |\left\langle\Phi_{i}\right\rangle^{2}=0\right\}
$$

- Requires matrix solver

SVD readily provides a useful solution

F-flatness: Dangerous Case II

- Case II: $\langle W\rangle \neq 0 \quad N S(Q)_{\text {red }} \vec{b}=\overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$
- Investigate Nullspace coefficient space for vector b
- Since $N S\left[N S(Q)_{\text {red }}\right] \neq N S(Q)$
- SVD approach
- Generate allowed coefficients:
- Stringy models won't allow less than 3
- Anything above 17 breaks SUSY lower than 1 TeV

Future searches can soften this

- Kinetic Mixing etc...

F-flatness Result

o If no solutions can be found for either case:

- All-order flat
- Otherwise

	Order(W)	$3^{\text {rd }}-5^{\text {th }}$	$17^{\text {th }}$
$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \stackrel{\rightharpoonup}{4} \\ \stackrel{\rightharpoonup}{4} \end{gathered}$	SUSY broken	string scale *(l to 1/10) [$10^{\wedge} 16 \mathrm{TeV}$]	1 TeV

- Find the order at which SUSY is broken
- Sum the elements of the shortest surviving 'power' vector, r,

$$
\operatorname{Min}\left[\sum_{i} N S(Q)_{i j} \chi_{j}\right], \vec{\chi} \in\left\{\vec{b}, \vec{\beta}_{i}\right\},\left\{i \|\left.\left\langle\Phi_{i}\right\rangle\right|^{2}=0\right\}
$$

Conclusion

o Challenges for WCFFHS systematic D- \& F-flat direction searches:

- Bad
- Complicated IP techniques are required
- Difficulties with D-flat objective function determination
- Maybe be computationally intensive to find coefficient bounds
- Good
- SVD is fast, reliable and more extensible than previously thought
- Fully automated searches seems to be achievable
- Dynamically using LP and/or 'rough-tuning' (forcing certain VEV ranges onto the system)
- Some LP systems are parallelized already
- Unbounded coefficient space for D-flat models can still be investigated
- Population uncertainties can be estimated

Acknowledgments

-Dr. Gerald Cleaver
-Doug Moore (chief coder)

Early Universe Cosmology and Strings

