


 (Very) brief look at WCFFH, NAHE 
 

 EFT’s 
• Scalar Potential, D-terms and F-terms 

 
 Flatness 

• D- and F-flatness 
 

 Computational Difficulties & Solutions 
• D- & F-flat 

• SVD, Linear Programming 

 
 Conclusion 

 



E8obs  x E8hidden 

• EFT: 
 Rich Phenomenology 

 NAHE (Nanopoulos, Antoniadis, Hagelin and Ellis) 

 E8obs   ->  SO(10) (in D=4) 

 SO(6)  x SO(4) 

 SU(5) x U(1) 

 SM 

 Remain unbroken 

 SUSY:  N=1 

 3 generation 

 Tachyon-free 

 

 

 

 



 Given a string model, how do we test for 

phenomenological viability?   

 

• Construct EFT: Gauge group and matter analysis 

• The Lagrangian scalar potential for a supersymmetric model: 

 

 

 

 

φ  =  (scalar) bosonic fields 

 α  =  {groups}        

 a  =  {generators (mediators)} 

 

 

 



Supersymmetry exists if:  <V(ϕ)> = 0 

• Want SUSY above TeV scale 

 VEV’s of D- & F-terms  must be zero 

 

 

 D- & F-flatness 

 Essential part of moduli stabilization 
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Flat direction: 
• Locus of VEV’ed fields 

 Points, curves, regions in the <ϕi> planes 

 <V(ϕ)>=0 
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<V(ϕ)> 

<ϕi> 

<ϕj> 



Two main types: 
• Charged under U(1)i (type I) 

 

 

 

• NA fields (type II) 

 

 
 

 T: matrix generators 

 



 F-terms: 
 

 

 

• W = superpotential =   
 

 

 

 

 
 

 

 

 F-flatness  usually tested: 3rd - 5th order 

 Less expensive computationally 

 More models discounted in lower orders than higher  

 more constraining 
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1. Find D-flat solution 
a) Must cancel FI-term 

2. Check for F-flatness 
a) All-order flat: SUSY is not broken 

b) Fails at given order: SUSY broken at 

some scale 

3. Rinse, wash and repeat 

 



Build a D-flat direction to cancel FI-term 

• Need anomalous  U(1) VEV with opposite sign than ξ 
 FI-term breaks U(1)A which arises: 

 Compactifications - up to 6 (one from each) 

 ‘freed’ from breaking a gauge symmetry 

Find {VEV’s} that satisfy D-flatness 

• Restores SUSY 



 (Generally) Construct W to given order 

• Calculate F-terms 

 

 

 F-flatness 
• Calculate F-terms 

• Multiple terms 

 Cancelling between 

 Complicated 

 Might lose flatness at next order 
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 Stringent F-flatness 

• Each term individually zero 

• All-order analysis 

 Look at potential ‘dangerous’ terms: 

 At most 1 unVEV’ed field in a term 

 When appearing, an unVEV’ed field is 

only to 1st power 

• Too constraining? 

 Stringent flat directions appear to be ‘roots’ 

of other flat directions 

 Not rigorously proved  

 General pattern 

 

<V(φ)> 

< φ i> 

< φ j> 

<V(φ)> 

< φ j> 

< φ i> 



 WCFFHS  
• Previously: F77 

 Input: prebuilt models 

 Utilizes group theory program/results 

 Calculates superpotential (to any finite order) 

 Looks for flat directions (not without some “help”) 

• Goal: C++ 

 Completely automated 

 Expandable 

 Allows various types of searches 

 Systematic, large-scale searches 

 Beyond strings 

 Any EFT 

 
 D-flatness 

• Matrix Solver 

 Infinite Solutions?? 

 

 F-flatness 
• All-order flatness 

 Creating superpotential 

 Check for potentially bad terms 
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D-flat 
• Matrix equation 

 Singular matrix? 

 SVD Solver 

 

 Infinite Solutions? 

 Constraints 

 Rescaling 



Singular Value Decomposition 
• Decomposes matrix into 
 U, V unitary 

 Diagonal with singular values 

• A basis for the range of Q: 
 

• A basis for the nullspace of Q: 

• Decomposition 
 Easily invertible 
 Pseudoinverse 

 Qx=b 
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A 
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b 

A nonsingular 
• Image, Domain: same dimension 

Q will be singular 
• Q maps to lower dimension 

 

 



 SVD solutions: Least square if c’ is not in 
Range(Q) 
• All solutions: Qx=c,d  
 Accessible: xsvd + Nullspace Basis Vectors 

 

 

Range of Q 

Qx = c 

d 

Qx = d 
Qx = 0 

c 

c' 

Qx = c’ (SVD) 
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VEV Ratio 

Rescaling: 

 

*Other possible 

constraints: 

 
 

*applied if needed 
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 Conjecture: 
• The rescaling constraint can yield a minimal bounding surface 

in coefficient space 
 If not, then apply another 

 How to test? 

 

 Linear Programming 
• Used in Operations research, Microeconomics, Cost/profit 
 Optimization over objectives and constraints 

• Uses Matrix (tableau) language 

• Many numerical solvers exist 

• Integer programming 

• Goal Programming 
 Multi-objective 

 

 



Systematic searches - We want to find 
every (reasonable) solution 
• Determines whether coefficient space is: 
 Bounded 
 Bounding surface yields full coefficient set 

 Unbounded 
 ‘rough-tuning’ to calculate and specify bounding surface 

LP can help determine interesting 
regions 
• Varying objective functions  
 D-flat constraints 

• Gather statistics for unbounded spaces 
 



LP + Recursive Loop 
• D-flat solution 

Given a D-flat solution 
• Stringent F-flatness 

 ‘Dangerous’ superpotential terms 

 Investigate gauge-invariant monomials 
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Dangerous: 
 

• Why: 

 

 

 

• Construct: 
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Case I: 
• Taking a derivative requires 

• Investigate coefficient space for matrix B: 

 

 

 Requires matrix solver  

 SVD readily provides a useful solution 
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Case II: 
• Investigate Nullspace coefficient space for 

vector b 

 Since  

• SVD approach 

 Generate allowed coefficients: 

 Stringy models won’t allow less than 3 

 Anything above 17 breaks SUSY lower than 1 TeV 

 Future searches can soften this 

 Kinetic Mixing etc… 
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 If no solutions can be found for either 

case: 
• All-order flat 

Otherwise 
• Find the order at which SUSY is broken 

 Sum the elements of the shortest surviving ‘power’ 

vector, r, 
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 Challenges for WCFFHS systematic D- & F-flat direction 
searches: 

 
• Bad 
 Complicated LP techniques are required 
 Difficulties with D-flat objective function determination 

 Maybe be computationally intensive to find coefficient bounds 

 

• Good 
 SVD is fast, reliable and more extensible than previously thought 

 Fully automated searches seems to be achievable 
 Dynamically using LP and/or ‘rough-tuning’ (forcing certain VEV ranges onto the 

system) 

 Some LP systems are parallelized already 

 Unbounded coefficient space for D-flat models can still be investigated  
 Population uncertainties can be estimated 



Dr. Gerald Cleaver 

Doug Moore (chief coder) 
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