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Why consider compressed mass spectra?

Lets consider the case when the dark matter particle y and the next to lightest
beyond the Standard Model particle n have a similar mass

Am=m, —m, Sm,.

Colliders

@ minimal transverse momentum p+ is required to distinguish jet
9 pr = Am

@ low sensitivity to compressed mass spectra

S. Vogl (TU Miinchen) PASCOS 2012

8 June 2012 3/15



Why consider compressed mass spectra?

Lets consider the case when the dark matter particle y and the next to lightest
beyond the Standard Model particle n have a similar mass

Am=m, —m, Sm,.

thermal production

o for o ~ 1.2 coannihilations become important J
X
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Why consider compressed mass spectra?

Lets consider the case when the dark matter particle y and the next to lightest
beyond the Standard Model particle n have a similar mass

Am=m, —m, Sm,.

Indirect Detection

@ compressed mass spectra exhibit very characteristic features
@ annihilation rates are enhanced for small Am
@ huge astrophysical uncertainties
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Why consider compressed mass spectra?

Lets consider the case when the dark matter particle y and the next to lightest
beyond the Standard Model particle n have a similar mass
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Direct Detection

@ scattering rates are enhanced for small Am

@ less astrophysical uncertainties than in Indirect Detection
@ good experimental limits

S. Vogl (TU Miinchen) PASCOS 2012

8 June 2012 3/15



Why consider compressed mass spectra?

Lets consider the case when the dark matter particle y and the next to lightest
beyond the Standard Model particle n have a similar mass

Am=m, —m, <m,.

Direct Detection

@ scattering rates are enhanced for small Am

@ less astrophysical uncertainties than in Indirect Detection
@ good experimental limits

But: We need to specify the model in order to compare observab les.
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Particle Physics Framework

Begin with the SM and add news physics

Particles
@ Majorana fermion x as dark matter
@ a scalar n as the next to lightest beyond the Standard Model particle

Assign charges
@ x is a singlet under SU(3) x SU(2) x U(1)
@ 7 is a triplet under SU(3) and (for simplicity) a singlet under SU(2)
@ u,d,s or b flavor quantum number for n

Interactions
@ a Yukawa interaction with the quarks: L,y = fxarn
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Particle Physics Framework

Begin with the SM and add news physics

Particles
@ Majorana fermion x as dark matter
@ a scalar n as the next to lightest beyond the Standard Model particle

Assign charges
@ y is a singlet under SU(3) x SU(2) x U(1)
@ 7 is a triplet under SU(3) and (for simplicity) a singlet under SU(2)
@ u,d,s or b flavor quantum number for n

Interactions
@ a Yukawa interaction with the quarks: Liyx = fxgrn

Notice: similar to SUSY with light squarks
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thermal freeze out

@ all particles are in thermal equilibrium in the early Universe

@ when temperature T <« m,, dark matter can’t be produced anymore
— dark matter freezes out
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Coannihilations
o for fn—f: < 1.2 more particles need to be included in the Boltzmann

equation
@ we use MicrOMEGAS for the calculation of the relic density

@ specifying m, and Am yields constraint on f
@ Example: Coupling to u and m, /m, = 1.1
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@ for m, smaller that a certain scale the relic density can not be obtained
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Majorana fermions annihilating into light quarks

@ thermally averaged cross section (oannV) can be expanded as
<O'annv> =a-+ bV2 + O(V4)

@ consider annihilations into quarks |

@ s-wave annihilation is suppressed by chirality
m2
V)ra~r ——
<Uann > mE)M
@ p-wave suppressed by velocity

<Uannv> ~ V2 ~ 10_6
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Lifting the chirality suppression

@ the suppression can be lifted by the emission of a boson, i.e. ~, W=, Z or

a gluon
X1 +u
ny
~ANNG
ny
X(1) —u

@ the fragmentation of the gluon increases the production of antiprotons
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Constraints from Antiprotons

@ the p/p ratio measured by Pamela constrains ov
@ main uncertainty: halo model and cosmic ray propagation
@ Example: m,/m, =1.1
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Dark Matter Nucleon Scattering

@ dark matter nucleon scattering is induced microscopical by scattering of
quarks and gluons in the nucleus

X X
> - <
SO TN
u u

@ interactions can be described in terms of effective Lagrangian
@ suppression scale A = mZ — (m, +mg)?

@ compressed spectrum — small A

@ recoil rate is enhanced

@ uncertainties: astrophysics (mainly neglected here) and composition of
the nucleon
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Putting everything together
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The Direct Detection Plane
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The Indirect Detection Plane
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Which constraint is strongest?
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Conclusions

@ compressed mass spectra lead to enhanced signals for dark matter
detection experiments

@ probes region of parameter space inaccessible at colliders

@ direct detection experiments are cutting into the parameter space allowed
by thermal production
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Backup
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Backup
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