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Why consider compressed mass spectra?

Lets consider the case when the dark matter particle χ and the next to lightest
beyond the Standard Model particle η have a similar mass

∆m = mχ − mη . mχ.

Colliders
minimal transverse momentum pT is required to distinguish jet

pT ≈ ∆m

low sensitivity to compressed mass spectra
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Why consider compressed mass spectra?

Lets consider the case when the dark matter particle χ and the next to lightest
beyond the Standard Model particle η have a similar mass

∆m = mχ − mη . mχ.

Indirect Detection
compressed mass spectra exhibit very characteristic features

annihilation rates are enhanced for small ∆m

huge astrophysical uncertainties
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Why consider compressed mass spectra?

Lets consider the case when the dark matter particle χ and the next to lightest
beyond the Standard Model particle η have a similar mass

∆m = mχ − mη . mχ.

Direct Detection
scattering rates are enhanced for small ∆m

less astrophysical uncertainties than in Indirect Detection

good experimental limits

But: We need to specify the model in order to compare observab les.
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Particle Physics Framework

Begin with the SM and add news physics

Particles
Majorana fermion χ as dark matter

a scalar η as the next to lightest beyond the Standard Model particle

Assign charges
χ is a singlet under SU(3)× SU(2) × U(1)

η is a triplet under SU(3) and (for simplicity) a singlet under SU(2)

u,d,s or b flavor quantum number for η

Interactions
a Yukawa interaction with the quarks: Lint = f χ̄qRη
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Particle Physics Framework

Begin with the SM and add news physics

Particles
Majorana fermion χ as dark matter

a scalar η as the next to lightest beyond the Standard Model particle

Assign charges
χ is a singlet under SU(3)× SU(2) × U(1)

η is a triplet under SU(3) and (for simplicity) a singlet under SU(2)

u,d,s or b flavor quantum number for η

Interactions
a Yukawa interaction with the quarks: Lint = f χ̄qRη

Notice: similar to SUSY with light squarks
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thermal freeze out
all particles are in thermal equilibrium in the early Universe

when temperature T ≪ mχ dark matter can’t be produced anymore
→ dark matter freezes out
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Coannihilations

for ∆m
mχ

. 1.2 more particles need to be included in the Boltzmann
equation

we use MicrOMEGAS for the calculation of the relic density

specifying mχ and ∆m yields constraint on f

Example: Coupling to u and mχ/mη = 1.1
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for mχ smaller that a certain scale the relic density can not be obtained
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Majorana fermions annihilating into light quarks

thermally averaged cross section 〈σannv〉 can be expanded as

〈σannv〉 = a + bv2 +O(v4)

consider annihilations into quarks

s-wave annihilation is suppressed by chirality

〈σannv〉 ≈ a ≈
m2

f
m2

DM

p-wave suppressed by velocity

〈σannv〉 ≈ v2 ≈ 10−6
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Lifting the chirality suppression

the suppression can be lifted by the emission of a boson, i.e. γ, W±, Z or
a gluon
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the fragmentation of the gluon increases the production of antiprotons
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Constraints from Antiprotons

the p̄/p ratio measured by Pamela constrains σv

main uncertainty: halo model and cosmic ray propagation

Example: mη/mχ = 1.1
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Dark Matter Nucleon Scattering

dark matter nucleon scattering is induced microscopical by scattering of
quarks and gluons in the nucleus

χ

u

η
χ

u

interactions can be described in terms of effective Lagrangian

suppression scale Λ = m2
η
− (mχ + mq)

2

compressed spectrum → small Λ

recoil rate is enhanced

uncertainties: astrophysics (mainly neglected here) and composition of
the nucleon
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Putting everything together
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The Direct Detection Plane
u-coupling
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The Indirect Detection Plane
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Which constraint is strongest?
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Conclusions

compressed mass spectra lead to enhanced signals for dark matter
detection experiments

probes region of parameter space inaccessible at colliders

direct detection experiments are cutting into the parameter space allowed
by thermal production
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Backup
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