The Dark Energy Survey Project

Brian Nord [University of Michigan]

for the Dark Energy Survey Collaboration

Science Prospects and Current Status

at PASCOS 2012 03.06.2012 Merida, Mexico

Overview: the Dark Energy Survey (DES)

- DE Task Force and broader context
- DES at a glance
- The components of DES
 - Observations and Hardware
 - Simulations
 - Theory
- DES in context with other surveys
- Timeline and Status

2

Dark Energy: the discovery

Results:

- SN1e are further away than expected.
- The geometry of space-time is flat.
- The universe is matter under-dense.

<u>Assumptions:</u> GR with Vacuum Energy Homogeneity/Isotropy

Dark Energy: implications

Implications:

• The universe's expansion is accelerating. • Our descendants will live in islanduniverse mega-galaxies.

Dark Energy: implications

Implications:

- Nobel Prize (2011)

Photo: Roy Kaltschmidt. Courtesy: Lawrence Berkeley National Laboratory

Saul Perlmutter

• The universe's expansion is accelerating. Our descendants will live in islanduniverse mega-galaxies.

Photo: Belinda Pratten, Australian National University

Brian P. Schmidt

Adam G. Riess

Dark Energy: the strategy for cosmological surveys

Test the underpinnings:

Search for deviations from General Relativity.

Discern the basic nature of DE:

Cosmological Constant or evolving equation of state?

of DE t or ate?

Dark Energy: the goal

Dark Energy Task Force [June 2005]

Eqn. of State: $w(a) = P(a)/\rho(a)$ **Parametrization:** $w(a) = w_0 + (1 - a)w_a$

Dark Energy: the goal

Dark Energy Task Force [June 2005]

Eqn. of State: $w(a) = P(a)/\rho(a)$ w_0 Parametrization: $w(a) = w_0 + (1-a)w_a$

Т

Dark Energy: the goal

Dark Energy Task Force [June 2005]

Eqn. of State: $w(a) = P(a)/\rho(a)$ w_0 Parametrization: $w(a) = w_0 + (1-a)w_a$

Figure of Merit:

Reciprocal of the error ellipse enclosing 95% confidence limit in the **w**₀-**w**_a plane.

FOM $\propto [\sigma(w_0)\sigma(w_a)]^{-1}$

Dark energy: the multi-stage survey approach

<u>Stage III</u>

Stage IV

Dark energy: the multi-stage survey approach

<u>Stage III</u>

Stage IV

Dark energy: the multi-stage survey approach

Stage III	<u>Stage IV</u>
Near-term, medium-cost projects [+5yrs]	Far-term, large-scale projects [+10yrs]
Dark Energy Survey	LSST
Planck	SKA
<i>3-5</i> over baseline	<i>9-18</i> over baseline

The Dark Energy Survey (DES) Project at a glance

Who is **DES**?

Fermi National Accelerator Laboratory U. of Chicago

The National Optical Astronomy Observatory United Kingdom

Ohio State U.

Texas A&M U.

University Observatory Munich

The University of Illinois at Urbana-Champaign National Center for Supercomputing Applications Lawrence Berkeley National Laboratory

U. Michigan

U. Pennsylvania

Argonne National Laboratory

Santa Cruz, SLAC, Stanford

Associate Members:

Brookhaven National Lab, U. North Dakota, Paris,

Principal Funding

U.S.: DOE, NSF UK: STFC, SRIF Spain: Ministry of Science Brazil: FINEP, Ministry of Science, FAPERJ; Germany: Excellence Cluster All collaborating institutions

What will **DES** deliver?

Photometric/Imaging galaxy survey + Supernovae timedomain survey

technical and methodological infrastructure to inform next-gen/Stage IV surveys.

Constrain ...

- dark energy equation of state to 6% and
- its evolution to 20%.

What will DES do?

Expose the tug of war:

growth vs. expansion + rulers vs. candles

What will DES do?

Expose the tug of war:

growth vs. expansion + rulers vs. candles

Tracer models

Four Probes

Galaxy Clusters

~100,000 clusters to z>1

Weak Lensing

• Shape measurements of 300 M gals

Baryon Acoustic Oscillations

300M gals to z>1

Supernovae

- 30 sq. deg. time-domain survey
- ~4000 well-sampled SNe Ia to z ~1

What will DES do?

Expose the tug of war:

growth vs. expansion + rulers vs. candles

Tracer models

Four Probes

Galaxy Clusters

~100,000 clusters to z>1

Weak Lensing

• Shape measurements of 300 M gals

Baryon Acoustic Oscillations

300M gals to z>1

Supernovae

- 30 sq. deg. time-domain survey
- ~4000 well-sampled SNe Ia to z ~1

Factor **3-5** improvement over Stage II Figure of Merit.

DES: the components

Observations

Simulations

Observing Strategy

The Dark Energy Camera (DECam)

<u>Design</u> [2003]

<u>CCDs:</u>

- 62 @ 2kx4k pixels
- 12 2kx2k for guide/ focus
- 520 Megapixels
- 250 micron thick
- 15-micron (0.27") pixel size
- Excellent red sensitivity

Testing [2010]

[Full-scale simulator at FNAL]

Installation [2012]

Galaxy Simulations

from cosmology ...

Dark Matter Light cone

Simulation Properties:

- N-body lightcone to z~6
- ~10¹² particles
- full DES footprint (5k sq. deg.)
- run on US national computing resources (Xsede)

Galaxy properties: photometry, lensing, shapes, masking, stellar contamination, galaxy deblending, and more

... to sky image

Blind Cosmology Challenge (BCC)

Science working groups [one for each probe] will compete to recover cosmological parameters.

Limited assumptions: WMAP7-consistent, LCDM cosmology

Simulation Properties

- Full DES Sky coverage to z ~2
- 500M Galaxies to full depth
- Will eventually have 50-100 cosmologies.

Theory Group

Principle Tasks

- develop models and reconstruct eqn of state w(z)
- Test modified gravity
- Combine probes
 - cross-correlation
 - general covariance matrix
- Other
 - inhomogeneity
 - non-Gaussianity
 - DE clustering, ISW

Current Global Constraints on w(z)

Covariance among probes

	<δδ>	<δκ>	<кк>	
1)	Cov (<δδ>, N)	Cov (<δκ>, /		
, N)	Cov (<δδ>, <δδ>)	Cov (<δδ>, <		
, N)	Cov (<δκ>, <δδ>)	Cov (<δκ>, <		
•, N)	Cov (<κκ>, <δδ>)	Cov (<кк>, <		
			>	

DES in context: surveys in multiple wavebands

DES has substantial overlap with many past and future surveys.

South Pole Telescope; SZ (radio) [2k sq. deg.]: **Cluster mass calibration**

60°

Vista Hemisphere Survey; deep and high-redshift [all-sky]: **Clusters, BAO, weak lensing**

160° 90° 120° **Connector** region (800 sq deg)

DES in context: past, current and future optical surveys

<u>SDSS</u>

[Stage I/II] op.'s: 2000-2008 cost: \$85M Northern Hemisphere 2.5-meter mirror

1M Galaxies 8.5K sq. deg. sky area data rate: 200Gb/Night DES [Stage III] 2012-2017 \$45M Southern 4-meter 100M Galaxies

500 Gb/Night

LSST [Stage IV] 2017-2027 \$500M Southern 8.4 -meter **10,000M Galaxies** 30K sq. deg. 1,500 Gb/Night

Timeline: Operations and Science Analysis

***Project initiated 2003 DECam R&D 2004-9 Instrument construction 2008-11 Final testing, integration now on-going Ship components to Chile: Sept. 2010-Sept. 2011 Installation: Jan.-July. 2011-12 Imager first light on telescope: Sept. 2012 Commissioning/Sci Verification: Sept.-Nov 2012 Survey Starts: Nov. 2012 raw/reduced data released to public after 1 year

[on-site installation nearly complete]

DES is poised to take the next step in understanding the nature of dark energy, with installation, commissioning, and survey operations commencing in the coming months.