

Search for Dark Matter at CMS in Monophoton and Monojet Events

Tia Miceli For the CMS Collaboration

More at: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11096</u> <u>http://arxiv.org/abs/1204.0821</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11059Winter2012</u> <u>http://cdsweb.cern.ch/record/1376675/files/EXO-11-059-pas.pdf</u> <u>http://indico.in2p3.fr/getFile.py/access?contribId=100&sessionId=6&resId=0&materialId=slides&confId=6001</u>

> PASCOS 2012 June 3 - June 8

> > Tia Miceli UCDAVIS

The Large Hadron Collider and the Compact Muon Solenoid

- We used 5.0 fb⁻¹ (4.7 fb⁻¹) of integrated luminosity from p-p collisions at the LHC running at 7 TeV for a dark matter search in monophoton (monojet) events.
- The data was collected with CMS, a layered detector that identifies particles coming from these proton collisions.

Dark Matter (x) Production at the LHC

- Dark matter passes through CMS undetected, giving rise to "missing transverse energy", E_T^{miss}.
- * To make this process visible, radiation of a photon or gluon is required. Searches in the final states of $\gamma + E_T^{miss}$ and jet $+ E_T^{miss}$ are presented.

3

Phenomenology 1

Bai, Fox, and Harnik [JHEP 1012:048(2010)] have cast this process as a contact interaction with the effective operators:

 $O_{V} = \frac{(\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)}{\Lambda^{2}}$ Vector $O_{A} = \frac{(\overline{\chi}\gamma_{\mu}\gamma^{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$ Axial-Vector

Vector Operator ⇒ Spin Independent

Axial-Vector Operator ⇒ **Spin Dependent**

- The observed upper limit on the $\chi \bar{\chi}$ production cross section, $\sigma_{meas.,}^{\chi \bar{\chi}}$ is transformed into a lower limit on the cut-off scale Λ (=M_{moderator}/ $\sqrt{g_{\chi}g_{q}}$) taking advantage of the fact that $\sigma \propto \Lambda^{-4}$.
 - * $\Lambda_{th} \equiv 10 \text{ TeV} (40 \text{ TeV}) \text{ for monophoton (monojet)}$
 - * $\sigma_{th.}^{\chi\bar{\chi}}$ is computed using Madgraph-4 and Pythia-6, for a given phase space

$$\Lambda = \Lambda_{th.} \left(\frac{\sigma_{th.}^{\chi \bar{\chi}}}{\sigma_{meas.}^{\chi \bar{\chi}}} \right)^{1/4}$$

Phenomenology 2

• With this lower limit on Λ , the upper limits on χ -N cross-sections for the spinindependent and spin-dependent interactions can be computed for various dark matter masses, m_{DM} .

$$\sigma_{SI}^{\chi-N} = \frac{9}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2$$

Spin-Independent

$$\sigma_{SD}^{\chi\text{-}N} = \frac{0.33}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2$$

Spin-Dependent

$$\mu = \left(\frac{m_{DM} \ m_p}{m_{DM} + m_p}\right)$$

Monophoton - Candidate Selection

6

Monophoton - Highest p_T^Y Event

Monophoton - Backgrounds

- Backgrounds are estimated using data-driven (DD) and Monte Carlo (MC) techniques.
 - * $pp \rightarrow Z\gamma \rightarrow \nu\nu\gamma$
 - * $pp \rightarrow W \rightarrow ev$
 - * $pp \rightarrow Njets \rightarrow "\gamma" + E_T^{miss}$
 - $pp \rightarrow \gamma + jet$
 - * $pp \rightarrow \bigvee lv\gamma$ * $pp \rightarrow \gamma\gamma$

irreducible background, estimated to NLO (MC)

electron misidentifies as γ (DD)

one jet mimics γ , E_T^{miss} from jet energy mismeasurement. Appreciable due to the high rate of Njets. (DD)

E_T^{miss} due to mismeasurement of jet (MC)

charged lepton escape

one photon mismeasured to create E_T^{miss} (MC)

Monophoton - Search Results

Source	Estimate	
Jource	Estimate	
Jet Mimics Photon	11.2 ± 2.8	
Beam Halo	11.1 ± 5.6	
Electron Mimics Photon	3.5 ± 1.5	
Wγ	3.0 ± 1.0	
γ +jet	0.5 ± 0.2	
$\gamma\gamma$	0.6 ± 0.3	
$Z(\nu\bar{\nu})\gamma$	45.3 ± 6.9	
Total Background	75.1 ± 9.5	
Total Observed Candidates	73	

No excess observed. Background describes data well.

Monophoton - Acceptance, Efficiency, and Uncertainties

- * A x ε_{MC} is stable over the range m_{χ} =1-1000 GeV because the signal is an ISR γ
 - Vector χ (spin independent): 30.5%-31.0%
 - Axial-Vector χ (spin dependent): 29.2%-31.4%
- * Uncertainties in A x ε_{MC} total to +4.8% -4.9% from:
 - photon energy scale
 - missing transverse energy scale and resolution
 - jet energy scale and resolution
 - photon vertex assignment
 - overlapping events (pile up)
 - parton distribution function
- * The scale factor between this MC A x ε and data is estimated

Source	Estimate for SF		
Trigger	1.00 ± 0.02		
Consistent Cluster Timing	0.98 ± 0.01		
Photon ID Efficiency	0.96 ± 0.02		
Jet and Track Veto	1.00 ± 0.10		
Cosmic Muon Veto	0.95 ± 0.01		
Total	0.90 ± 0.11		

Tia Miceli UCDAVIS

Monophoton - Limit Setting

- * Use the Modified Frequentist CLs approach [J. Phys. G37(2010) 075021]
- For integrated luminosity 5fb⁻¹, null hypothesis expected 75.1 ± 9.5 events and observed 73 events.
- * 90% CL limits are shown compared to the expected limit in parentheses.

MICall	Vector		Axial-Vector	
M _χ [Gev]	σ [fb]	Λ [GeV]	σ [fb]	Λ [GeV]
1	14.3 (14.7)	572 (568)	14.9 (15.4)	565 (561)
10	14.3 (14.7)	571 (567)	14.1 (14.5)	573 (569)
100	15.4 (15.3)	558 (558)	13.9 (14.3)	554 (550)
200	14.3 (14.7)	549 (545)	14.0 (14.5)	508 (504)
500	13.6 (14.0)	442 (439)	13.7 (14.1)	358 (356)
1000	14.1 (14.5)	246 (244)	13.9 (14.3)	172 (171)
$-\chi\bar{\chi}$				1
	^O meas.			

The measured cross section upper limit is translated into a lower limit on Λ .

$$\Lambda = \Lambda_{th.} \left(\frac{\sigma_{th.}^{\chi \bar{\chi}}}{\sigma_{meas.}^{\chi \bar{\chi}}} \right)^{1/4}$$

$$\Lambda_{th.} \equiv 10 \text{ TeV}$$

$$\sigma_{th.}^{\chi\bar{\chi}} \text{ from MC}$$
Tia Miceli

Monophoton - Spin Independent Limits

Monophoton - Spin Dependent Limits

Monojet - Candidate Selection

- * Basic Topological Selection → reject prolific multijet events
 - * $n_{jets} = 1 \text{ or } 2, E_T^{miss} > 200$ GeV later tightened to 350
 - particle flow jets clustered using anti-k_T with R = 0.5
 - $p_T^{\text{lead jet}} > 110 \text{ GeV}, |\eta| < 2.4$
 - $p_T^{\text{second jet}} > 30 \text{ GeV}$
 - $\Delta \varphi(\text{jet1}, \text{jet2}) < 2.5$
- Lepton removal
 - * Reject events with isolated e or μ ($\Delta R_{isolation}=0.3$).
 - Reject events with isolated tracks (ΔR_{isolation}=0.3).
- Optimize E_T^{miss} cut for DM search: $E_T^{miss} > 350$ GeV.

Monojet - Backgrounds & Search Results

 Some backgrounds estimated with data-driven techniques, while others use Monte Carlo simulations

Events
900 ± 94
312 ± 35
8 ± 8
2 ± 2
1 ± 1
1 ± 1
1224 ± 101
1142

No excess observed. Background describes data well.

- * Estimated Zvv from a $Z(\rightarrow \mu\mu)$ +jet control sample
- ★ Estimated W(→lv)+jet using Wµv control sample and detector acceptance and reconstruction efficiencies
- Remainder are from simulation

Monojet - Uncertainties and Limit Setting

* Limit setting as before, but with a Λ_{th} set to 40 GeV instead.

$\Lambda = \Lambda_{th.} \left(\frac{\sigma_{th.}^{\chi\bar{\chi}}}{\sigma_{meas.}^{\chi\bar{\chi}}} \right)^{1/4} \left[\right]$			$\Lambda_{th.} \equiv 40 \text{ Te}$ $\sigma_{th.}^{\chi \bar{\chi}}$ from M	eV C	
-		Spin-dependent		Spin-indep	endent
	M_{χ} (GeV/ c^2)	$\sigma(cm^2)$	$\Lambda(\text{GeV})$	$\sigma(\text{cm}^2)$	$\Lambda(\text{GeV})$
-	1	$3.37 imes 10^{-41}$	730	$7.20 imes 10^{-40}$	776
	10	$9.83 imes 10^{-41}$	744	2.12×10^{-39}	789
	100	$1.33 imes10^{-40}$	718	$2.65 imes 10^{-39}$	776
	400	$5.14 imes 10^{-40}$	514	6.66×10^{-39}	619
	700	2.95×10^{-39}	332	$2.62 imes 10^{-38}$	440
	1000	$2.15 imes 10^{-38}$	202	1.57×10^{-37}	281
	400 700 1000	5.14×10^{-40} 2.95×10^{-39} 2.15×10^{-38}	514 332 202	6.66×10^{-39} 2.62×10^{-38} 1.57×10^{-37}	619 440 281

Borrowed from S. Worm Moriond 2012

Monojet - Spin Independent Limits

Monojet - Spin Dependent Limits

Conclusions

- A search was performed for dark matter production in the monophoton and monojet final states using 5.0 fb⁻¹ and 4.7fb⁻¹ of integrated luminosity produced by the LHC at 7 TeV and collected by the CMS experiment.
- * Results are consistent with the Standard Model.
- The N-χ cross section limits on the spin-independent and spin-dependent moderator masses were extended.
 - $\sigma^{N-\chi_{SI}}$ extended for $m_{\chi} < 3.5 \text{ GeV}$
 - * $\sigma^{N-\chi_{SD}}$ extended for m_{χ} 1-100 GeV
- Now exploring 8 TeV!

Tia Miceli

20