New signals in dark matter detectors

Joachim Kopp

PASCOS 2012, June 3-8, 2012, Mérida, Mexico

‡Fermilab

based on arXiv:1202.6073 (with Roni Harnik, Pedro Machado) and work in progress with Wolfgang Altmannshofer, Felix Yu

Outline

Outline

Direct dark matter detection

Search for feeble nuclear recoil from dark matter scattering.

The name of the game: Background rejection!

ATLAS 7TeV, 1fb⁻¹ VeryHighPt

compilation from Fox Harnik JK Tsai 1109.4398

Thick lines:

Collider bounds from monojet + MET search

Assumptions here:

- Elastic DM scattering < target mass</p>
- For collider limits: Effective field theory valid, flavor-universal couplings

Direct dark matter detection

Search for feeble nuclear recoil from dark matter scattering.

The name of the game: Background rejection!

- Veto cosmic rays
- Fiducial volume cuts
- Attempt to distinguish electron recoils from nuclear recoils
- Reject multi-hit events
- Look for annual modulation

ATLAS 7TeV, 1fb⁻¹ VeryHighPt

compilation from Fox Harnik JK Tsai 1109.4398

Thick lines:

Collider bounds from monojet + MET search

Assumptions here:

- Elastic DM scattering \propto target mass
- For collider limits: Effective field theory valid, flavor-universal couplings

Outline

2 New ν signals in dark matter detectors

Neutrinos and direct dark matter detection

Solar neutrinos are a well-known background to future direct DM searches: see e.g. Gütlein et al. arXiv:1003.5530

$$\frac{d\sigma_{\rm SM}(\nu N \to \nu N)}{dE_r} = \frac{G_F^2 m_N F^2(E_r)}{2\pi E_\nu^2} \Big[A^2 E_\nu^2 + 2AZ(2E_\nu^2(s_w^2 - 1) - E_r m_N s_w^2) \\ + 4Z^2(E_\nu^2 + s_w^4(2E_\nu^2 + E_r^2 - E_r(2E_\nu + m_N)) + s_w^2(E_r m_N - 2E_\nu^2)) \Big],$$

Joachim Kopp

Neutrinos and direct dark matter detection

Solar neutrinos are a well-known background to future direct DM searches: see e.g. Gütlein et al. arXiv:1003.5530

$$\frac{d\sigma_{\rm SM}(\nu N \to \nu N)}{dE_r} = \frac{G_F^2 m_N F^2(E_r)}{2\pi E_\nu^2} \Big[A^2 E_\nu^2 + 2AZ(2E_\nu^2(s_w^2 - 1) - E_r m_N s_w^2) \\ + 4Z^2(E_\nu^2 + s_w^4(2E_\nu^2 + E_r^2 - E_r(2E_\nu + m_N)) + s_w^2(E_r m_N - 2E_\nu^2)) \Big] \,,$$

SM signal will only become sizeable in multi-ton detectors But: New physics can enhance the rate \Rightarrow DM detectors can search for new physics in the ν sector \Rightarrow New ν physics can be confused with a dark matter signal

Example 1: Neutrino magnetic moments

Assume neutrinos carry an enhanced magnetic moment

 $\mathcal{L}_{\mu_{\nu}} \supset \mu_{\nu} \, \bar{\nu} \sigma^{lpha eta} \partial_{eta} A_{lpha}
u \,, \qquad \mu_{
u} \gg \mu_{
u, \mathrm{SM}} = 3.2 \times 10^{-19} \mu_B$

Cross section large at low energies due to photon propagator $\propto q^{-2}$

$$rac{d\sigma_{\mu}(
um{e}
ightarrow
um{e})}{dE_{r}}=\mu_{
u}^{2}lphaiggl(rac{1}{E_{r}}-rac{1}{E_{
u}}iggr)\,,$$

Joachim Kopp

Example 2: A not-so-sterile 4th neutrino

Introduce a new U(1)' gauge boson A' (hidden photon) and a light sterile neutrino ν_s

Related model with gauged $U(1)_B$ first discussed in Pospelov 1103.3261 detailed studies in Harnik JK Machado 1202:6073 and Pospelov Pradler 1203.0545

- ν_s charged under $U(1)' \rightarrow$ direct coupling to A'
- SM particles couple to A' only through kinetic mixing

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}\epsilon F'_{\mu\nu}F^{\mu\nu} + \bar{\nu}_{s}i\partial\!\!\!/\nu_{s} + g'\bar{\nu}_{s}\gamma^{\mu}\nu_{s}A'_{\mu} - \overline{(\nu_{L})^{c}}m_{\nu_{L}}\nu_{L} - \overline{(\nu_{s})^{c}}m_{\nu_{s}}\nu_{s} - \overline{(\nu_{L})^{c}}m_{\mathrm{mix}}\nu_{s}$$

A small fraction of solar neutrinos can oscillate into ν_s

 ν_s scattering cross section in the detector given by

$$\frac{d\sigma_{A'}(\nu_{s}e \to \nu_{s}e)}{dE_{r}} = \frac{\epsilon^{2}e^{2}g'^{2}m_{e}}{4\pi p_{\nu}^{2}(M_{A'}^{2} + 2E_{r}m_{e})^{2}} \left[2E_{\nu}^{2} + E_{r}^{2} - 2E_{r}E_{\nu} - E_{r}m_{e} - m_{\nu}^{2}\right]$$

Example 2: A not-so-sterile 4th neutrino

v magnetic moment A: B, C, D: kinetically mixed A' + sterile ν_s

- A: ν magnetic moment B: $U(1)_{B-L}$ boson C: kinetically mixed U(1)' + sterile ν D: $U(1)_B$ + sterile ν charged under $U(1)_B$
- proposed in Pospelov 1103.3261, details in Pospelov Pradler 1203.0545
- Enhanced scattering at low E_r for light A' • Negligible compared to SM scattering ($\sim g^4 m_T / M_W^4$) at energies probed in dedicated neutrino experiments

Joachim Kopp

Signals of new light force mediators and/or sterile neutrinos can show seasonal modulation:

• The Earth–Sun distance: Solar neutrino flux peaks in winter.

Signals of new light force mediators and/or sterile neutrinos can show seasonal modulation:

- The Earth–Sun distance: Solar neutrino flux peaks in winter.
- Active–sterile neutrino oscillations: For oscillation lengths ≤ 1 AU, sterile neutrino appearance depends on the time of year.

Signals of new light force mediators and/or sterile neutrinos can show seasonal modulation:

- The Earth–Sun distance: Solar neutrino flux peaks in winter.
- Active-sterile neutrino oscillations: For oscillation lengths << 1 AU, sterile neutrino appearance depends on the time of year.
- Sterile neutrino absorption: For strong $\nu_s A'$ couplings and not-too-weak A'-SM couplings, sterile neutrino cannot traverse the Earth.
 - \rightarrow lower flux at night. And nights are longer in winter.

Signals of new light force mediators and/or sterile neutrinos can show seasonal modulation:

- The Earth–Sun distance: Solar neutrino flux peaks in winter.
- Active-sterile neutrino oscillations: For oscillation lengths \lesssim 1 AU, sterile neutrino appearance depends on the time of year.
- Sterile neutrino absorption: For strong $\nu_s A'$ couplings and not-too-weak A'-SM couplings, sterile neutrino cannot traverse the Earth.
 - \rightarrow lower flux at night. And nights are longer in winter.
- Earth matter effects: An MSW-type resonance can lead to modified flux of certain neutrino flavors at night. And nights are longer in winter.

Hidden photons

Constraints from Jaeckel Ringwald 1002.0329, Redondo 0801.1527, Bjorken Essig Schuster Toro 0906.0580, Dent Ferrer Krauss 1201.2683, Harnik JK Machado 1202.6073

Outline

The generic signature for dark matter in a direct detection experiment is a single nuclear recoil. Multi-Hit events are rejected as background.

The generic signature for dark matter in a direct detection experiment is a single nuclear recoil. Multi-Hit events are rejected as background.

However, consider the following toy model (complete models: ask offline)

- Two dark sector particles χ^0 and χ^+
- χ^+ charged under U(1)' gauge group
- U(1)' gauge boson A' is light (≪ 1 GeV)
- Coupling to the SM via kinetic mixing of U(1)['] and U(1)_{em}
- U(1)' breaking leads to small mixing of χ^0 and χ^+ .

$$\begin{split} \mathcal{L} \supset &-\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \epsilon F_{\mu\nu} F'^{\mu\nu} + i \bar{\chi}^+ \not{\!\!\!D}'_{\mu} \chi^+ + i \bar{\chi}^0 \not{\!\!\!\partial}_{\mu} \chi^0 \\ &- (\chi^0, \chi^+) \begin{pmatrix} m_{00} & m_{0+} \\ m_{+0} & m_{++} \end{pmatrix} \begin{pmatrix} \chi^0 \\ \chi^+ \end{pmatrix} \,. \end{split}$$

The generic signature for dark matter in a direct detection experiment is a single nuclear recoil. Multi-Hit events are rejected as background.

However, consider the following toy model (complete models: ask offline)

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \epsilon F_{\mu\nu} F'^{\mu\nu} + i \bar{\chi}^+ \not{D}'_{\mu} \chi^+ + i \bar{\chi}^0 \not{\partial}_{\mu} \chi^0 - (\chi^0, \chi^+) \begin{pmatrix} m_{00} & m_{0+} \\ m_{+0} & m_{++} \end{pmatrix} \begin{pmatrix} \chi^0 \\ \chi^+ \end{pmatrix} .$$

Phenomenology:

- Primary interaction leads to excitation $\chi^0 \rightarrow \chi^+$
- Suppressed by small U(1)' breaking, (which leads to mixing $\propto \sin \theta$ of χ^0, χ^+)

The generic signature for dark matter in a direct detection experiment is a single nuclear recoil. Multi-Hit events are rejected as background.

However, consider the following toy model (complete models: ask offline)

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \epsilon F_{\mu\nu} F'^{\mu\nu} + i \bar{\chi}^{+} \mathcal{D}'_{\mu} \chi^{+} + i \bar{\chi}^{0} \partial_{\mu} \chi^{0} - (\chi^{0}, \chi^{+}) \begin{pmatrix} m_{00} & m_{0+} \\ m_{+0} & m_{++} \end{pmatrix} \begin{pmatrix} \chi^{0} \\ \chi^{+} \end{pmatrix} .$$

Phenomenology:

- Primary interaction leads to excitation $\chi^0 \rightarrow \chi^+$
- Suppressed by small U(1)' breaking, (which leads to mixing ∝ sin θ of χ⁰, χ⁺)
- Subsequent interactions of χ⁺ only suppressed by kinetic mixing parameter ε
 - ⇒ Signature is multi-hit events

Outline

Conclusions

Many interesting, unexplored signals possible in direct dark matter searches

- Neutrino-electron scattering and neutrino-nucleus scattering can be enhanced by several orders of magnitude at low energy ...
- ... for instance by
 - Magnetic moments
 - A 4th neutrino interacting through a new gauge force
- In some DM models, the only signal in direct detection is multi-hit events
 - The primary interaction can excite the DM to a more strongly interacting state
 - Multi-hit signatures don't have to be background

Thank you!

Bonus material

Heavier sterile neutrinos

Sterile neutrinos with mass close to a kinematic threshold in the Sun lead to different recoil spectra

Example: $m_{\nu_s} \sim 861 \text{ keV}$ (energy of solar Be-7 line: ${}^7\text{Be} + e^- \rightarrow {}^7\text{Li} + \nu$)

Anomalous energy loss in stars and supernovae

 A' bosons can be produced by plasmon oscillations in stars + supernovae see e.g. Redondo 0801.1527 and references therein

$$\begin{split} \mathcal{L} \supset & -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + A_{\mu} j^{\mu} \\ &= -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} - \epsilon m_{A'}^2 A'_{\mu} A^{\mu} + \frac{1}{2} \epsilon^2 m_{A'}^2 A_{\mu} A^{\mu} + A_{\mu} j^{\mu} \end{split}$$

Equations of motion:

$$(k^2 g^{\mu
u} - \Pi^{\mu
u}(k) - \epsilon^2 m_{A'}^2) A_
u + \epsilon m_{A'}^2 A'^\mu = 0$$

 $(k^2 g^{\mu
u} - m_{A'}^2) A'^\mu + \epsilon m_{A'}^2 A^\mu = 0$

 $(\Pi^{\mu\nu}(k) = \text{polarization tensor, depends on plasma frequency } \omega_P$ and on the inverse bremsstrahlung and Compton scattering rates)

Three regimes

- Low $m_{A'}$: A' production suppressed by small mixing $\sim m_{A'}^4 / \omega_P^4$
- $m_{A'} \sim \omega_P$: Resonant A' production
- High m_{A'}: Thermal A' production

Anomalous energy loss in stars and supernovae

A' bosons can be produced by plasmon oscillations in stars + supernovae

see e.g. Redondo 0801.1527 and references therein

- Interesting features:
 - Resonant enhancement when $M_{A'} \sim \text{plasmon mass}$
 - In general: Non-resonant A' production everywhere in the star (not just in the outer photosphere)
 - But: For very large ε, small optical depth even for A'
 - \rightarrow reduced production, weaker limit
- Require *P*_{invisible} < *P*_{visible} to set limit

Anomalous energy loss in stars and supernovae

A' bosons can be produced by plasmon oscillations in stars + supernovae

see e.g. Redondo 0801.1527 and references therein

- Interesting features:
 - Resonant enhancement when $M_{A'} \sim \text{plasmon mass}$
 - In general: Non-resonant A' production everywhere in the star (not just in the outer photosphere)

Other constraints (1)

- Muon and electron g 2
- Atomic physics: Test 1/r² scaling of electromagnetic force
- Light shining through walls
- Fixed target experiments: A' production in beam dump, decay to SM
 - Expect significant improvement from APEX

Other constraints (2)

- CMB: Distortions to the black body spectrum
- Axion telescopes (e.g. CAST): Look for A' from the Sun oscillating to A
- *B*-factories: $e^+e^- \rightarrow A'$ + something,
 - A' detected as Ë or via its decay products
- In models with light sterile neutrinos:
 - v_s production in stars + supernovae
 - vse scattering in Borexino