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Direct dark matter detection ATLAS7TeV, 1fb™* VeryHighPt

1097 Solid : Observed 90% C.L./

Search for feeble nuclear recoil from
dark matter scattering.

X X

WIMP-nucleon cross section oy [cm?]

The name of the game:

Spin—independent
. . —46 L L L
Background rejection! 10701 0° 0 102 10°

WIMP mass m, [GeV]

compilation from Fox Harnik JK Tsai 1109.4398

Thick lines:
Collider bounds from monojet + MET search

Assumptions here:

@ Elastic DM scattering « target mass

@ For collider limits: Effective field theory
valid, flavor-universal couplings
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Direct dark matter detection

Search for feeble nuclear recoil from
dark matter scattering.

X X

f f

The name of the game:
Background rejection!

@ Veto cosmic rays
@ Fiducial volume cuts

@ Attempt to distinguish electron
recoils from nuclear recoils

@ Reject multi-hit events
@ Look for annual modulation
o ...

ATLAS7TeV, 1fb~! VeryHighPt

1097 Solid : Observed 90% C.L./

WIMP-nucleon cross section oy [cm?]

Spin—independent
10t 10° 10 107 10°
WIMP mass m, [GeV]

compilation from Fox Harnik JK Tsai 1109.4398

Thick lines:
Collider bounds from monojet + MET search

Assumptions here:

@ Elastic DM scattering  target mass

@ For collider limits: Effective field theory
valid, flavor-universal couplings
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Neutrinos and direct dark matter detection

Solar neutrinos are a well-known background to future direct DM searches:

see e.g. Gutlein et al. arXiv:1003.5530
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Neutrinos and direct dark matter detection

Solar neutrinos are a well-known background to future direct DM searches:

see e.g. Gutlein et al. arXiv:1003.5530
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SM signal will only become sizeable in multi-ton detectors
But: New physics can enhance the rate
= DM detectors can search for new physics in the v sector
= New v physics can be confused with a dark matter signal
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Example 1: Neutrino magnetic moments

Assume neutrinos carry an enhanced magnetic moment
L., D, 70*PozA, fhy > psm = 3.2 x 107 p
Cross section large at low energies due to photon propagator o« g—2
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Example 2: A not-so-sterile 4th neutrino

Introduce a new U(1)’ gauge boson A’ (hidden photon) and a
light sterile neutrino v

Related model with gauged U(1) g first discussed in Pospelov 1103.3261
detailed studies in Harnik JK Machado 1202:6073 and Pospelov Pradler 1203.0545

@ v, charged under U(1)" — direct coupling to A’
@ SM particles couple to A" only through kinetic mixing

N2

1 1 1 ) _
LD ——F Fm — ZFWFW — éeF/ F* 4+ Dsidvg + g'us'y“VsA/H

4 H

- (VL)CmVLVL - (VS)CmVSVS - (VL)Cmmisz

A small fraction of solar neutrinos can oscillate into v

vs scattering cross section in the detector given by

doa(vse — vse) €2€%9"2me

= [2E7 + EZ — 2E.E, — E;mg — m?]

dE,  4np2(ME, + 2E,m,)?
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Example 2: A not-so-sterile 4th neutrino
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A: v magnetic moment A: v magnetic moment

B, C, D: kinetically mixed A’ + sterile vs

@ Enhanced scattering at low E; for light A’

B: U(1)g_, boson
C: kinetically mixed U(1)’ + sterile v
D: U(1)p + sterile v charged under U(1)p

proposed in Pospelov 1103.3261, details in Pospelov Pradler 1203.0545

@ Negligible compared to SM scattering (~ g4mT/M3V) at energies probed in dedicated
neutrino experiments
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Temporal modulation of neutrino signals

Signals of new light force mediators and/or sterile neutrinos can show
seasonal modulation:

@ The Earth—Sun distance: Solar neutrino flux peaks in winter.
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Temporal modulation of neutrino signals

Signals of new light force mediators and/or sterile neutrinos can show
seasonal modulation:
@ The Earth—Sun distance: Solar neutrino flux peaks in winter.
@ Active—sterile neutrino oscillations: For oscillation lengths < 1 AU, sterile
neutrino appearance depends on the time of year.
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Temporal modulation of neutrino signals

Signals of new light force mediators and/or sterile neutrinos can show
seasonal modulation:

@ The Earth—Sun distance: Solar neutrino flux peaks in winter.

@ Active—sterile neutrino oscillations: For oscillation lengths < 1 AU, sterile
neutrino appearance depends on the time of year.

@ Sterile neutrino absorption: For strong vs—A’ couplings and not-too-weak
A'—=SM couplings, sterile neutrino cannot traverse the Earth.
— lower flux at night. And nights are longer in winter.

Joachim Kopp New signals in dark matter detectors



Temporal modulation of neutrino signals

Signals of new light force mediators and/or sterile neutrinos can show
seasonal modulation:

@ The Earth—Sun distance: Solar neutrino flux peaks in winter.

@ Active—sterile neutrino oscillations: For oscillation lengths < 1 AU, sterile
neutrino appearance depends on the time of year.

@ Sterile neutrino absorption: For strong vs—A’ couplings and not-too-weak
A'—=SM couplings, sterile neutrino cannot traverse the Earth.
— lower flux at night. And nights are longer in winter.

@ Earth matter effects: An MSW-type resonance can lead to modified flux
of certain neutrino flavors at night. And nights are longer in winter.
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Hidden photons
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e Multi-Hit signals from dark matter
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Multi-hit signatures from dark matter

The generic signature for dark matter in a direct detection experiment
is a single nuclear recoil. Multi-Hit events are rejected as background.
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Multi-hit signatures from dark matter

The generic signature for dark matter in a direct detection experiment
is a single nuclear recoil. Multi-Hit events are rejected as background.

However, consider the following toy model (complete models: ask offline)

@ Two dark sector particles x° and x*

@ * charged under U(1)" gauge group

@ U(1) gauge boson A’ is light (< 1 GeV)

@ Coupling to the SM via kinetic mixing of U(1)" and U(1)em
@ U(1) breaking leads to small mixing of \° and y*.
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Multi-hit signatures from dark matter

The generic signature for dark matter in a direct detection experiment
is a single nuclear recoil. Multi-Hit events are rejected as background.

However, consider the following toy model (complete models: ask offline)

1 1 1 - -
£ — oFl B — 2P PR — SR P st e + X9,

0
_ (0 o+ [ Moo Moy X
(O x )<m+o m++> (X+) '

Phenomenology:
@ Primary interaction leads to
excitation \ —
@ Suppressed by small U(1)’ breaking,
(which leads to mixing o sin 6 of \?, x*)
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Multi-hit signatures from dark matter

The generic signature for dark matter in a direct detection experiment
is a single nuclear recoil. Multi-Hit events are rejected as background.

However, consider the following toy model (complete models: ask offline)

1 1 1 . . 0.
£ — ZFZLV F//ul _ ZF;J,V Frv _ §6,:IMI,://LV + IX+ D;X-F + IXO(}HXO

0
_ (0 o+ [ Moo Moy X
(O x )(m+o m++> (X+) '

Phenomenology:

@ Primary interaction leads to
excitation \ —

@ Suppressed by small U(1)’ breaking,
(which leads to mixing o sin 6 of \?, x*)

@ Subsequent interactions of x™ only
suppressed by kinetic mixing parameter
= Signature is multi-hit events
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Conclusions

Many interesting, unexplored signals possible in direct dark matter searches
@ Neutrino—electron scattering and neutrino—nucleus scattering can be
enhanced by several orders of magnitude at low energy ...
@ ...for instance by

» Magnetic moments
» A 4th neutrino interacting through a new gauge force

@ In some DM models, the only signal in direct detection is multi-hit events

» The primary interaction can excite the DM
to a more strongly interacting state
» Multi-hit signatures don’t have to be background
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Heavier sterile neutrinos

Sterile neutrinos with mass close to a kinematic threshold in the Sun lead to
different recoil spectra

Example: m,, ~ 861 keV (energy of solar Be-7 line: "Be + e~ — "Li +v)
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Anomalous energy loss in stars and supernovae

@ A’ bosons can be produced by plasmon oscillations in stars + supernovae

see e.g. Redondo 0801.1527 and references therein

1 1 1

Lo 4F;“,F/W - —F Fv — 5P PR 4 S A AY + A
— _Z FZWF/I“/ _ ZFMV Frv
+ ;mA/A’ A~ emf, ALAY + %ezmﬁ,AuA“ + AL

Equations of motion:
(kzg’“’ — " (k) — ezmi/)AV + emi,A/“ =0
(K2g" — mG ) A" + ez A =0
(M» (k) = polarization tensor, depends on plasma frequency wp
and on the inverse bremsstrahlung and Compton scattering rates)

Three regimes
» Low my: A production suppressed by small mixing ~ m’, /wp
» mu ~ wp: Resonant A" production
» High ms: Thermal A" production
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Anomalous energy loss in stars and supernovae

@ A’ bosons can be produced by plasmon oscillations in stars + supernovae

see e.g. Redondo 0801.1527 and references therein
@ Interesting features:
» Resonant enhancement when M, ~ plasmon mass
» In general: Non-resonant A’ production everywhere in the star
(not just in the outer photosphere)
» But: For very large ¢, small optical depth even for A’
— reduced production, weaker limit
@ Require Piyisible < Phisible t0 set limit

24 21 18 -15 12
1 01.9 10 10 10 10 .

Atomic Physics
107 104
1079 10
w
g’ CMB
2 10°® 108
E Borexino (in models with U(1y —charged
B 101 1071
g E E
10-2F Sun/Globular Clusters, energy loss via v H10-22
E (in models with < 10 keV sterile neutrinos) 4
1074E J1014
£ Kinetically Mixed Gauge Boson E|
10716 " " L L L L L L " " " " L L L L L L " " " " 10716
10 102 1078 107 1012 10-° 10 108
Dark Photon Mass Ma(GeV)

Joachim Kopp New signals in dark matter detectors



Anomalous energy loss in stars and supernovae

@ A’ bosons can be produced by plasmon oscillations in stars + supernovae

see e.g. Redondo 0801.1527 and references therein

@ Interesting features:
» Resonant enhancement when M, ~ plasmon mass

» In general: Non-resonant A’ production everywhere in the star

(not just in the outer photosphdl™

» But: For very large ¢, small op

— reduced production, weake
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Other constraints (1)

10 Sun/Globular Clusters, energy loss viave 1012

(in models with < 10 keV sterile neutrinos)
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@ Muon and electron g — 2
@ Atomic physics: Test 1/r? scaling of electromagnetic force
@ Light shining through walls

@ Fixed target experiments: A’ production in beam dump, decay to SM
» Expect significant improvement from APEX
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Other constraints (2)

10-24 102 10-18 1015
10’9

Atomic Physics

10E g2 104
10-°F H10°®
v |
5 E
% 10°%F 410
E 4 ‘Borexino (in models with U(1)'~charget) 4
B 10% H10°%°
'Q |- |
10712 Sun/Globular Clusters, energy loss via v 4102
L (in modelswith < 10 keV' sterile neutrinos) B
10°4E J10-14
£ Kinetically Mixed Gauge Boson 3
10»16 m m \ \ \ L L L m m m m \ \ \ L L L m m m m 10716
10 102 108 1075 1012 10°° 10°¢ 102

Dark Photon Mass Ma(GeV)

@ CMB: Distortions to the black body spectrum
@ Axion telescopes (e.g. CAST): Look for A’ from the Sun oscillating to A
@ B-factories: ete~ — A’ + something,
A’ detected as £ or via its decay products
@ In models with light sterile neutrinos:

» vs production in stars + supernovae
» vse scattering in Borexino
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