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Abstract

Motivated by the rephasing invariance of the CKM observables we consider the
general phase invariant monomials built out of the CKM matrix elements and
their conjugates. We show, that there exist 30 fundamental phase invariant
monomials and 18 of them are a product of 4 CKM matrix elements and 12 are
a product of 6 CKM matrix elements. In our Main Theorem we show that all
rephasing invariant monomials can be expressed as a product of at most

5 factors: 4 of them are fundamental phase invariant monomials and the fifth
factor consists of powers of squares of absolute values of the CKM matrix
elements.

The discussion of the rephasing invariants depends on the number of
generations and we will discuss these invariants for 3 generations.
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The Yukawa Coupling and the CKM Matrix

Within the Standard Model and its extensions the Lagrangian for the Yukawa
interactions associated with quarks has the generic structure

The Lagrangian for the Yukawa interactions

2Ly = yuqr®1 (qu)g +yadrL P2 (94)g +h-c.,

where @1 and @, are the two Higgs doublets. The factors y, and y,; are 3x 3
matrices containing the coupling constants for up quarks g, and down quarks
qa, respectively. In the case of the Standard Model @, = ® and ®; = ¢®* (¢ is
the 2 x 2 antisymmetric tensor), the left handed terms (g, 4); are doublets and
the right handed terms (g, 4)r are singlets.
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The Yukawa Coupling and the CKM Matrix

The Yukawa couplings can be diagonalized through biunitary transformations

Yu=UjYUr,  yq=D}Y;Dg, J

here Uy, Ug, Dy, Dg are unitary matrices, ¥, and Y; are diagonal matrices.

The CKM matrix for the electroweak charged currents is the result of the
product

There are two important bases. One
where the masses are diagonal, called
the mass basis, and the other where
the W¥ interactions are diagonal,
called the interaction basis. The
CKM matrix is the matrix that
rotates between these two bases.

V=U.D],
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Figure 1: Sketch of the unitarity
triangle.

The unitarity of the CKM matrix imposes ¥;V;;V;; = 8% and ¥ ; Viij*j = -
The six vanishing combinations can be represented as triangles in a complex
plane and the areas of all triangles are the same, half of the Jarlskog invariant,
J, which is a phase-convention-independent measure of CP violation, defined by

Im (V,]Vklv Vkl) = JZm n EikmEjln-

Rephasing invariant functions of the CKM matrix



Rephasing invariants

The quark fields are defined up to a phase, therefore it is possible to introduce

, ’ . ’ .
the states ug = "% u and di = €'%d, so that the elements of the CKM matrix
become

Var = ¢ PV,

The rephasing invariants are defined in the following way

Rephasing Invariants

Woi = ‘Vai|27 (1a)

Ouipj = VaiVﬁjVa*jVEp aFp i#j (1b)
VaivﬁjVYkVa*jVEkV;i

Kopyijn = aFfEB#y y iFjFk (1c)

ViV iViVarVpiVyj

In order to avoid Qqipj = WaiWs the conditions o # 8 and i # j must be
satisfied.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix
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Rephasing invariants

Rephasing Invariants

Woi = ‘Vai|27
Quipj = VaiVﬁjV;jV§i> aFp i#j
VOCiVﬁjV}’kVéjVEkV;i
KoByijk = afBFy y i#Fjtk

ViV VoV eaVi Vs

It is easy to show that the rephasing invariant defined by
ViIVEV3 VaaViy Vs <V132V233 Vi 1) -

cannot be factored into the square of the CKM matrix elements and other
rephasing invariants.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix
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The Jarlskog’s invariant

The most important property of Q4;s; that follows from the unitarity of the
CKM Matrix is:

Im(Qgp;) = 7, o#B  and i#j,

where J is the Jarlskog’s invariant 1.

1C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.
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Rephasing invariants and the Jarlskog’s invariant

Is there a relation between the rephasing invariants and the Jarlskog's
invariant?

Rephasing invariants and the Jarlskog’s invariant

Im(Wy) = O,

Im (Qgip;) TY. €apmijn:

I matrix
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Why are the rephasing invariants important in the standard model?

All the observables that contain the CKM matrix are invariant under rephasing
of the quarks fields . This is the reason why the rephasing functions of the
elements of the CKM matrix play an important role in the Standard Model.

2The only functions of V that can be measured are precisely the rephasing invariants.

Rephasing invariant functions of the CKM matrix
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A new form to construct rephasing
invariants
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A new form to construct rephasing invariants

We denote by P(m,n) the most general monomial constructed from the CKM
matrix elements and its conjugates:

P(m,n) = [J(Viy)™ [ T(vip)"™
ij kj
where m and n are the 3 x 3 matrices with integer non negative matrix

elements 2 and [m];; = mij, [n]; = nu. The mapping between the monomial
P(m,n) and the matrices m and n is one to one.

The products P(m,n) fulfills the following properties

o P(my,ny) -P(ma,nz) =P(my +my,ny +ny).
@ P(m,n)* =P(n,m).
e P(m,m) = Hij(|‘/ij\2)mij.

From the definition of P(m,n) it is clear that it is not necessarily a rephasing
invariant (Examples 1 and 2).

2The condition that the elements of the matrices m and n are integers may be relaxed, but
the CKM observables are monomials that contain only integer powers.
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Example 1.- If the monomial P(my,n;) is equal to Vi1V V5 V5,

P(my,n) = Vi1 VaaVi5Vs1, (4)
the matrices my, n; are:
1 0 0 0 1 0
m=0 101, m=|10 0 (5)
0 0 O 0 0 O
Example 2.- If
P(my,ny) = ViV Va3 Via Vi Vi, (6)

we have
2 0 0 1 1 0
m=0 10|, m=|100]. ()
0 0 1 0 0 O
The example 1 P(my,n;) is a rephasing invariant and the example 2 P(mj,n;) is
not.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants

If we want to know the conditions under which P(m,n) represents a rephasing
invariant we make the following phase transformation of the CKM matrix:

Vexm — diag(e?', 1,1)Vex, (8)
then the monomial P(m,n) is transformed in the following way
P(m,n) — !9 (mtmotms=nn=m2=ms) p(m p),
so we see that P(m,n) is invariant under the transformation in Eq. (8) only if
myy +myz +m3 =ny +niz+n3,

i.e., if the sum of the elements of the first row of the matrices m and n are
equal. From this follows the next theorem.

Theorem 1

The monomial P(m,n) is rephasing invariant if the sums of the elements of the
corresponding rows and columns of the matrices m and n are equal. It means
that for the rephasing invariant monomial P(m,n) the matrices m and n fulfill
the following conditions
3 3 3 3
Yo=Y mj, Y omi=Y ny, i=123. 9)
J=1 j=1 =1 J=1

Jj=

Rephasing invariant functions of the CKM matrix
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Pure rephasing invariants

The rephasing invariant monomial of the CKM matrix which cannot be
factored out into the product of the absolute values of the elements of the
CKM matrix and other invariant is called the pure rephasing invariant (PRI).

The PRIs can be represented by two matrices m and n but it can also be
represented by

pij=>0 P <0

where p is a 3 x 3 matrix with the following properties:

@ The matrix elements of p are integers (positive, negative or 0).

@ The sum of the elements of p in each row and column is equal to 0.

o A permutation of the rows and columns of the p matrix is reversible and
the resulting matrix is also the p matrix of pure rephasing invariant.

Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants
0e000

Pure rephasing invariants

B(p)= [T vip)™ TT Vi)™

pij=>0 Pu<0

It is easy to show that B(p) constructed in such a way is rephasing invariant
and that it cannot be factored out into the squares of the CKM matrix
elements and other rephasing invariant, so it is indeed the PRI.

The one to one mapping between the p matrix and PRI B(p) has the following
additional properties

(p1+p2) = B(p1+p2) =B(p1)-B(p2), n-p— (B(p))", ninteger,

if p— B(p). then (—p) — (B(p))". (10)
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A new form to construct rephasing invariants
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Example 3.- For the no pure rephasing invariant

P(m3,n3) = Vi (VoVV5V5 Vs (11)
= |[VPViiVaVisVs

the matrices m3, n3 are:

1 0 0 0 1 0
my=| 0 1 0 |, m3=( 1 0 0 (12)
0 0 1 0 0 1
And
B(p) =Vi1Va2 V5 V5 (13)
represent a pure rephasing invariant,
1 0 0 01 0 1 -1 0
p=m-m3=| 0 1 0 |- 1 0 O ]=| -1 1 O (14)
0 0 1 0 0 1 0 0 O

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants

[e]e]e] e}

Example 4.- If p is equal to

,_.
|

w

)

p= 2 1 -3 1,

The PRI defined by it is:

*
B(p) = Vi1V5V3 VaaVip Vs (V132V233V331) .

It is easy to show that B(p) is rephasing invariant and it cannot be factored
into the square of the CKM matrix elements and other rephasing invariants so
it is PRI.

Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants

[e]e]ele] }

The matrix p can be decomposed into the sum of matrices, all of them with
the same properties that p, for example

1 -1 0 0 -1 1 0 0 O 0 -1 1
p=l 0 oo |+|0o 1 =1 |+[ 1 0o-1]+[ 1 0o —1],q@5
-1 1 0 0 0 O -1 0 1 -1 1 0
another possible decomposition for p is the following one 3
1 -1 O 0 —1 1
p=| 0 1 —1]+2( 1 0 —1]. (16)
-1 0 1 -1 1 0

The egs. (20) and (21) indicate us that exist a subgroup within the pure
rephasing invariants from which all pure rephasing invariants can be
constructed. It takes us to the following definition.

3there is no unique way for the decomposition of p.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants
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Fundamental rephasing invariant

The fundamental rephasing invariant (FRI) is such a pure rephasing invariant
monomial that is the product of 4 or 6 CKM matrix elements and its complex
conjugates.

there are 30 fundamental rephasing invariants, 18 of them are the products of 4
CKM matrix elements and their complex conjugates

Set 1: 4-th order FRIs (J1,J2,...,J18)

J1=VuVaViaVsr,  Js = VinVasVisva),
b =ViVsVi3Vs1,  Jo = ViaVaaVi3Vay,
J3 =ViaV3Vi5Vay,  J7 = Va1VaaVaoVs),
Ja=VuVaVi Vs, Js =VaVaVasVa,
Jo = VaV33V53V5,

Joyi= (J,‘)*, i=1,...,9.

(17)

Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants

0e00

Fundamental rephasing invariant

and 12 are the products of 6 of the CKM matrix elements and their complex
conjugates

Set 2: 6-th order FRIs (1,1

I = Vi VaaVasVi5Vs1 Vi, Ia = Vi1VasVaaVisVas Vs,
L =V 1VV33 V1*2V2*3 V3*1, Is =ViaVo3 V31V1*3 V2*1 V3*2’

(18)
L=ViiVaaVaaVis V51 Vss,  Is = ViaVar VasVisVa Vsg
16+i:(1i)*7 l:1336
For each FRI in Egs. (17) and (18) there corresponds a p matrix, e.g.,
1 -1 0 1 0o -1
J1—=py = —1 1 0 . I —=py= —1 1 0 , etc. (19)
0 0 0 0 -1 1

All the matrices py, and p;, corresponding to the invariants in Egs. (17)

and (18) can be obtained by the permutations of the rows and columns the p
matrices of J; and I; that are given in Eq. (19). This means that an arbitrary
permutation of the rows and columns of a p; matrix maps it into another p;
matrix. The same applies to the p; matrices.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants
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Any pure rephasing invariant can be expressed in a unique way as the product
of positive powers of at most 4 fundamental rephasing invariants. Not more
than one of these invariants can be from the 6-th order FRIs (/},b,...,I;2) and
the remaining are from the 4-th order FRIs (J1,J3,...,J13).

There are two important conditions in theorem 2:

@ The powers of the invariants are positive.

@ In the decomposition there may be no more than 1 fundamental rephasing
invariant of the 6-th order.

Without these conditions the decomposition of a pure rephasing invariant into
the fundamental invariants is not unique. The proof of this theorem is given in
the Appendix®.

4The inverse theorem is not true, the product of two or more FRIs has to be rephasing invariant but
it does not have to be PRI.

Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants

[e]ele] ]

The matrix p can be decomposed into the sum of FRIs

1 -10 0 —1 1 000 0 —1 1
p= 0 oo)+{O0 1 —1|+{ 1 O-1 |+ 1 0 —1],(20)
-1 10 00 0 -10 1 -1 1 0

another possible decomposition for p is the following one.
1 -1 0 0 —1 1

p={( 0 1 —1]+2[ 1 0o -1 |. (21)
“1 0 1 “1 1 0

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



A new form to construct rephasing invariants
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The Main Theorem for the RI

Any rephasing invariant monomial of the CKM matrix for 3 generations is the
product of no more than 5 factors: 4 fundamental rephasing invariants with
positive powers and the product of the squares of the absolute values of the
CKM matrix elements also with positive powers. Only one fundamental
invariant is from 6-th order FRIs (11,5, ...,112).

Rephasing invariant functio fthe CKM matrix
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The unitary of the CKM matrix
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The unitary of the CKM matrix

From the unitarity of the CKM matrix it follows that the 6-th order FRIs in
Eq. (18) can be expressed by the 4-th order FRIs from Eq. (17) and the squares
of the CKM matrix elements®. We have for example,

I = Vi VaaVasVi5 Vs Vs = Vo PViaVas Vi3V — [Via | Vaa Vaa Vi Vi = (Vi |2 — Vi o
(22)
and there are analogous formulas for the remaining I's.

From this and The Main Theorem follows immediately that the imaginary part
of any rephasing invariant monomial is proportional to the Jarlskog invariant or
equal to 0.

51t should be emphasized that without the unitarity of the CKM matrix there are no simple
relations between the invariants of the 4-th and 6-th order. Thus relation (22) is also a test of
the unitarity of the CKM matrix.
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The unitary of the CKM matrix

From the unitary of the CKM matrix it follows that the 6 FRIs can be
expressed by the 9 FRIs and the squares of the CKM matrix elements. We have
for example that

ViilVasVVia V3 Vas = VinVaa Vs Vs (VasVis)
= —VuVaViVs (VaVs) +VaaVs,)
= — Vo PV VaVia Vs — VPV Vaa VisVay. (23)

VisVaiVaaVihVasVal = VarVaaVis Vi) (VisVss)
= —VuVaViVs (VinVa; +VinVa)
= —[VaPViVaaVisVa) — [Via Vo Vi Vaa Vi (24)

Rephasing invariant functions of the CKM matrix



The unitary of the CKM matrix

VisVaiVaViaVas Vs = VisVaVasVsy (Vaa Vi)
= Vi3V Vs (VaiVi +VasVis)

= —|Va1[PVi3Va Vi Vo — Vi3 Var Vs Vi Vi)

VisVa VRV Vs Va1 = VisVnVihVas (Va1 Vi)
= —Vi3VuV3Vss (VaaVs) + VasVss)

= [V VaVisVaViy — [Vas|*ViaVaa Vs Vis.

From the Eqgs. 24, 25 and 26, we conclude that:
Im (V13V21 V32 Vo Va3 Vsy) = <|V21\2 - |V12\2> J,
<|V32\2 - |V23\2> J,

<|V|3\2*|V31\2>J7

therefore

Var |2 = Va2 ? = [Vaa * = [V |* = Vi3 > — [V .

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix
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The unitary of the CKM matrix

The unitarity of the CKM matrix gives us the next two theorems:

Theorem 3

The imaginary part of any monomial P(m,n) rephasing invariant is proportional
to J or zero.

Theorem 4

The imaginary part of any polynomial constructed from the rephasing
invariants P(m,n) with real coefficients, is proportional to J or zero

N

Rephasing invariant functions of the CKM matrix
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Conclusions

w
.

In this presentation, we presented a recursive construction technique that
extends any Rl in terms of the FRIs and the absolute values of the CKM
matrix elements (the main theorem).

The most important result is stated in The Main Theorem and it is
mathematically a strong result. It tells that any rephasing invariant
monomial of the CKM matrix can be expressed as the product of 5 factors
which are functions of a finite, small number of the FRI monomials.

The unitarity of the CKM matrix allows to express the 6-th order
rephasing invariant monomials by the 4-th monomials.
From this fact and the main theorem follows that:

The imaginary part of any monomial P(m,n) rephasing invariant is
proportional to J or zero.

The imaginary part of any polynomial constructed from the rephasing
invariants P(m,n) with real coefficients, is proportional to J or zero

Rephasing invariant functions of the CKM matrix
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Parametrizations of the CKM Matrix
°

Introductory remarks

The CKM matrix is unitary but the rephasing freedom of the quarks fields
reduces the number of physically significant parameters. The n X n unitary
matrix is described by n? parameters. The up and down quarks rephasing
freedom reduces the numbers of the parameters by 2n— 1, so the CKM matrix
for n quark families is described by (n—1)? parameters. These (n—1)2
parameters are divided into two classes: angles and phases. Angles are the
parameters of the n x n real unitary matrix (orthogonal matrix) and there are
@ angles. The remaining % parameters are phases. One can
observe that if the number of generations is increased from (n—1) to n-then the
number of angles increases by (n— 1) and the number of the phases by (n—2).
We want to present the recursive construction of the parametrization of the
nxn CKM matrix V(" from the (n—1) x (n—1) CKM matrix V"~ We
introduce such a notation of the CKM matrix where the parameters (angles an
phases) are labeled according to the generation to which they belong.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



Parametrizations of the CKM Matrix
(e]e]

Wolfenstein Parametrization of the CKM Matrix

The CKM matrix has 9 complex matrix elements, which are parameterized by
4 real parameters. The choice of the parameters is not unique. There exist
various equivalent parameterizations, which were chosen to fulfill various needs.
Let us start with the standard parameterization of the PDG © This
parameterization is exact and uses 3 angles and 1 phase and can be represented
as the product of 3 real rotation matrices and the diagonal matrices with phase

terms.
_‘5
C12€13 512€13 s13e” '8
N B s s
VerkM = | —512023 —€12523513€° 12003 — 512523513€8 $23€13 ,
iS5 id
512823 —C€12023513€'%  —C12803 —§12023513€'7% 3013

For phenomenological applications, it would be useful to have a
parametrization of the CKM matrix that makes the hierarchy arising. In order
to derive such a parametrization, one introduces a set of new parameters, 1, A,
p and 1, by imposing the following relations:

Sp=A=022, 53 =AA%, 53¢ 00 =AA3(p—in). (29)

6K. Nakamura and P.D. Group, Journal of Physics G: Nuclear and Particle Physics 37,
075021 (2010)
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Another widely used parameterization is the one proposed by Wolfenstein 7.
Initially it was considered to be an approximate representation of the CKM
matrix, because it was chosen in such a way as to reproduce the suppression for
the weak transitions of quarks between the generations. Later, it was made
exact 8.

The famous “Wolfenstein parametrization”:

—Ia? A AM3(p—in)
Vekm = ) 1-422 AA2 +0(0Y),
AV (1—p—in) —AA? 1

Using the exact standard parametrization one can calculate straightforwardly
each CKM element to the desired accuracy in A

7Phys. Rev. Lett.51, 1945 (1983)
8A.J. Buras, Phys. Rev. D50 34336 (1994)
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The Jarlskog Invariant

2 0
J = 6‘12C23C135‘12823S13SIH5 5

The Jarlskog Invariant

J =425+ 6(A8).




Parametrizati

Recursive construction of the CKM matrix

Angles and Phases

We will present here the recursive construction of the (n x n) CKM matrix V),
assuming that the (n—1) x (n— 1) CKM matrix V*=1 is known.

Rephasing invariant functions of the CKM matrix



Parametrization of the

Recursive construction of the CKM matrix

Let us introduce the notation, where the parameters of the CKM matrix
(angle-like and phases) are labeled according to the generation number to

which they belong:

Angles and Phases

01k 62455 Ok k=2,3,...
6],]{762,](7“‘761(—27]( k:3,47

where 6;_; s and &_1 4 are angles and phase, respectively

7'6
c12¢13 512€13 s13e” o0

— id 2 (9
V=1 —sipcs—ciasssi3el® cioe3 —sios3size’® sses |

i, (]
512823 —C12€23513€'%%  —C12803 —S12023513€°%  ¢p3¢13

C,'J':COSGU7 S,'j:SiIleij,

the CKM matrix
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Recursive construction of the CKM matrix

In such a way we form the hierarchy of the parameters

les and Phases

n-Generations | Parameters

2 61>
3 013, 63, 013
4 014, 024, 634,014,624

in the table above the parameters labelling the n-th family are those listed up
to the line with n generations.

Rephasing invariant functio fthe CKM matrix



Recursive construction of the CKM matrix

In this section we will show how to construct the n x n CKM matrix V) if we
know the matrix V»=1) Let us first introduce notation of the columns of the

CKM matrix

vy — ( g”)

here V(") is the CKM matrix and v<1"),,..7v£,"> are the columns, e.g.
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Recursive construction of the CKM matrix

The recursive construction of the CKM matrix is done in two steps:

a) Construction of n real column vectors

€1y €n, J

that depend on (n— 1) parameters

e,--ej:S,-j, J

Rephasing invariant functions of the CKM matrix
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Recursive construction of the CKM matrix

b) The columns of the matrix V(") are then constructed from the vectors ey
(n—1)

and the elements of the matrix Vij

n—1 .

vWo— v e 1 Y Ve Bone,  k=1,..,n—1
=2

Vgln) = €

The matrix V(® is thus equal
v = (V1,V2y.eV)

The matrix V(" constructed in such a way has the following properties:
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Recursive construction of the CKM matrix

o It is unitary. This follows from the unitarity of the matrix V*=1) and the
orthogonality of the vectors {ey,...e,}.

o The resulting parametrization of the matrix V(") depends on the
parametrization of V("~1) and of the vectors (ey,...e,).

o It depends on "("51) angles and w

phases.

As an example we will show how one can obtain the standard parameterization
of the CKM matrix for 3 generations and we will obtain the analogue of the
standard parametrization for 4 generations.
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Example 1. Standard Parametrization for 3-generations

The matrix V(® depends on one angle 0, as it is 2 x 2 rotation matrix

V(z):( c12 Slz)
—s12 c2 )’

The vector (ej,e;,e3) are choose in the following way.

13 0 513
€ = —513523 ) € = €23 ) €3 = C13523 ,
—513€23 —823 €13€23
C,']':COSGU7 s,'j:Sineij,

The vectors in the equation above are orthonormal.
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Example 1. Standard Parametrization

The columns of the matrix V) are equal

VSS) = Vl(lz)e] +V2<12)e_i5‘3e2,

3 2 2) —;
V(2 ) = V1(2>e] +V2<2)e 161382,
(3)
V3 =¢€3,
€12€13 $12€13
V(3) N _ i813 G _ | _ + -
1 = 12513523 — $12€23€ Vy | = 512513523 +C1223€"
—C12513€23 Jrslzszat?ls‘3 —512513€23 — C12523€
513
v(3)— c
3 - 13523 )
€13€23

the CKM matrix
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c12¢13 512€13 513
3 % s
VO = [ —cras13503 —512023€™3  —s12513503 +craeze 08 iz |

i6 —is
—C12513€23 +512523€°%  —s12513¢23 —c128523€ P C13023

The form of the matrix in not exactly the same as that of the standard
parametrization. However due to the rephasing freedom they are equivalent.
Multiplying the first and second column by €13 on the first row by =93 one
obtains exactly the standard parametrization PDG.

Standard parametrization of the CKM matrix

C12€13 $12€13 sy3e” 0
_ i5 i
V=1 —s12023 —c12523513¢'”"  c1ac23 —512523513€"" $23C13 9
§ ) § ) o
512523 —C12€23513€"%  —C12523 —§12€23513€'°3 c23€13
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Example 2. Standard Parametrization for 4-generations

For 4 generations one obtains the V(*) from the standard V() in on analogous
way. First we construct the vectors

Cl4 0 0 514
e = —514524 o= 24 ey 0 o= C14524
—514€24534 —524534 €34 C14€24534
—514€24C34 —524C4 534 €14€24C34
CijZCOSGij7 S,’j:Sil’leij,

The vectors in equation above are orthonormal. Then we construct the vectors

v§4) and the matrix V(*), which may be called the standard parametrization of
the CKM matrix for 4 generations. The explicit form of this matrix is the

following:
v§4> = V](13>e1 +V2<13)e_i5‘4e2 +V3<13)e_i52“e3,
W= Ve + Ve e, 4V e ey,
vg4> = V](§>e1 +V2<33)e_i6‘4e2 +V§33)e_i524e3,
0 = e
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Example 2. Standard Parametrization for 4-generations

W= v+ Ve e, 4 Ve ey,
Vg4) _ V](§>el +V2(23)e—i614e2 +V3(23)e—i824e37
W= Ve + Ve e, 4 Ve ey,
V4<14> = €4,

If the vectors e; fulfill the conditions

1 ifi=j k=1,....n—1
e)iln _o— e 30
(’)J|gf':;8 {0 otherwise I=1,...,n—2. (30
then one obtains
(n=1) ¢ k=1 -1
) (Vv .}
|4 gfig ( 0 1) I=1,....,n—2. (31)

(1)

o—co
~

o

£

I
—
—ooco
~—

coo—

|
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Example 3. Wolfenstein Parametrization for 4 generations

The Wolfenstein parametrization has the form

1-122 A A3 (p—in)
Vekm = -A 1122 AA? +O0(AY),
AV (1—p—in) —AA? 1

Now we will generalise this parametrization to 4 generations using the method
outlined earlier.

First we have to construct the vectors ;. We express them in the spirit of the
Wolfenstein parametrization in terms of powers of A.
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Example 3. Wolfenstein Parametrization

The vectors e; are real and are chosen in the following way.

1+x% —|—x§ 0 0 X1
2
—X1X 1+x 0 X
=N 12 62 =0N M ,63=N3 ea=Ny | 2
—X1X3 —X2X3 1 X3
—X1 —X) —X3 1
Here x; = ( >7Lk ~ 1 k; > 1 are integers and N; are the normalizations

factors. It i |s easy to show that the vectors e; satisfy

ei-ej=5ij

The columns of the CKM matrix for 4 generations are then equal

V(14) - V1(13> e +V2<12) Oie, +‘/3(12) PLIPN
v§4) = Vl(g)el + V2<22)ei5‘4ez + V(z)e"‘324 e3
V§4) - 1(3>e1+V< ) 1514e2+v( ) oi®ey
vf) = e

Rephasing invariant functions of the CKM matrix
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Example 3. Wolfenstein Parametrization

and
4
VW = (v, v2,v3,v4,) (32)
5 V§3l)(1+_x% tx%) \ vg)(l +x3+13)
v o _V(l‘l)x1x2 +e'§'4";‘1)(1 +13) v — N, _V(u)xlxz +e’5'4v( )(1 +x3)
! 7v<|31)x1x3 L v(231)x2JC3 + e Vg) 2 7v§32)x1x3 L vg)xzﬁg + e vg)
AN St N AN
B3
s viz (1+x3 +3x;) X1
@ N 7v53>x1x2+e’5‘4v( )(1 +x§) @ N *
Vi =0 3) i814,(3) PONONN KAt I
—Vi3X1X3 — ey xox3 + e 24 vyg h
,v(i)x iéMvg)xz _ e"‘;“vg))q

The matrix V*# is described by 9 parameters: A, A, p 1 of the matrix v3) and A§4),

A;4), A§4), 014, 64, of the 4-th generation, Not all these parameters can be determined

from the experimental data.
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On the other hand we can derive some restriction on the powers k; that
determine the suppression in V#). We have the following information

[Via| ~ A, [Var| ~ A,
[Va3| ~ A2, V3| ~ A2,
[Vis| ~ A3, [Vay| ~ A3,

(IViz| = [Var]) ~ A%,
([Vas| = [V3a]) ~ A%,

If one uses the unitarity of the 3 x 3 CKM matrix then one has

(V12| = [Va1]) ~ A3, but the element |V5| is not measured whith such a
precision and experimentally (|Vi2| — |Va1]) ~ A3 holds as in eq. above.

Now using the information in the explicit form of the 4 x4 CKM matrix we
obtain the following restrictions on the powers k;

ki>1, ky+ky >3, ky+ks >4 L ki+k3 >3,
which can be resolved and give

ki >1, ko >2, k3 > 2.
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The vector v4 for minimal values of k; in Eq. (21) has the following form
A
W A2
A§4)}Lz
1

This result is rather surprising because in the case of the 3 generations this
suppression has totally different structure . We would like to note that the real
suppression may be different, because we have only obtained the lower limits of
the suppression powers. To conclude this section we will compare the values of
two Jarlskog invariants of the 3 x 3 sub-matrix

Ja =1Im (V1aVa3Vi5Vs5),
Jp =1Im (V21V33V53V3)),

that describe the CP violations effects in the strange and bottom sectors.
In 3 dimensions we have from the unitarity of the CKM matrix

Ja+Jg=0
In 4 dimensions, if we keep the only the terms of the highest order we obtain

Ja+p =1m (e @y IVIVEIVY ) vy, ~ 28

9The full analysis of the 4 x 4 CKM matrix based on Eq. (32) will bespublished elsewhere:
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which is of the same order A® as J4 and Jz themselves. If means that for
supperession described by Eq.(21) the CP violation in the K and B sector have
diferent phases. This result follows from the condition

ki + k3 =3,

If k; +k3 =4 then J4 +Jg ~ A7 and for k; +k3 =5 we would have J4 +Jg ~ A8
and the CP violation in K and B sector for four vectors would differ at the level
of 5 %.
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Conclusions

To conclude this section let us note that the presence of the 4-th generation in
the CKM matrix V) can be observed through the violation of the unitarity of
VB). This can be done by experimental verification of the asymmetry of the
CKM matrix

Vil = [Var|* = Va3 = |Vaal? (33)

or by observation of different CP violating phases in K and B decays.
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La matriz Vegm

La matriz Vegy

Vud Vuus Vub
V= Vea Ves Ve )
Via Vis Vi

A

El tringulo unitario

VudVup +VeaVep +ViaVip = 0,

A,

of the CKM matrix
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There are two important bases. One where the masses are diagonal, called the
mass basis, and the other where the W+ interactions are diagonal, called the
interaction basis. The CKM matrix is the matrix that rotates between these
two bases.

Since most measurements are done in the mass basis, we write the interactions
in that basis. Upon the replacement Re (¢°) — (v4 H®)/v/2, we decompose the
SU(2)L. quark doublets into their components:

Ul
QI‘ = ( L ) )
=\ o

and then the Yukawa interactions, , give rise to mass terms:

o
V2
The mass basis corresponds, by definition, to diagonal mass matrices. We can
always find unitary matrices Uy and Ug such that

— L = (My)i;DL Dy + (My)ijULUR +he., M, Ye, (34

UMU = M3, UMD} = M3, (35)

with ijﬁag diagonal and real. The quark mass eigenstates are then identified as
ur; = (UL)[ju’Lj, Ugj = (UR)[jM;gj, (36)

dii=(Dp)ijdp;,  dri=(Dg)ijdg;, (37)
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The charged current interactions for quarks are the interactions of the Wﬁt,
which in the interaction basis are described by

J— +
,fg/i = EMUYH(VMLVdL)Udijj +h.c.. (38)
It has a more complicated form in the mass basis:

The unitary 3 x 3 matrix,

V=VaVi, vvi=1), (39)

is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks. As a
result of the fact that V is not diagonal, the W* gauge bosons couple to mass
eigenstates quarks of different generations. Within the SM, this is the only
source of flavor changing quark interactions.

The form of the CKM matrix is not unique. We already counted and concluded
that only one of the phases is physical. This implies that we can find bases
where V has a single phase. This physical phase is the Kobayashi-Maskawa
phase that is usually denoted by Jiu.

Hilario Pérez Ramirez Rephasing invariant functions of the CKM matrix



	Introduction
	The Yukawa Coupling and the CKM Matrix
	Rephasing invariants
	The Jarlskog's invariant 

	A new form to construct rephasing invariants
	Pure rephasing invariants
	Fundamental rephasing invariant
	The Main Theorem

	The unitary of the CKM matrix
	Conclusions
	Parametrizations of the CKM Matrix
	Introductory remarks
	Parametrizations of the CKM Matrix

	Parametrization of the Cabibbo-Kobayashi-Maskawa Matrix (CKM)
	Recursive construction of the CKM matrix
	Example 1. Standard Parametrization for 3-generations
	Example 2. Standard Parametrization for 4-generations
	Example 3. Wolfenstein Parametrization for 4 generations


