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Introduction 
 
The Standard Model (SM) in high energy physics has been 
remarkably successful in : describing the properties of elementary 
particles, predicting the existence of the quarks c, t and b, and the 
third generation of leptons ,  , the existence of the eight gluons, 
and the bosons W , Z before their discovery, predicting parity 
violation neutral-weak-currents, and in being consistent with all the 
experimental results. 
 
However, the SM falls short of being a complete theory of the 
fundamental interactions because of its lack of explanation of the 
probable unification of the fundamental interactions, the pattern 
and disparity of the particles masses (mass hierarchy), the origin of 
the CP violation in nature, the matter-antimatter asymmetry, the 
pattern of quark mixing, lepton mixing and the reason why there 
are 3 generation. 



Potential 2HDM  

This model is studied mainly for three reasons 

• The firts one is that the 2HDM has a much richer Higgs spectrum (3 
neutral and 2 charge Higgses) and a different high energy behavior. 
This makes that a lower mass than in the SM Higgs is permitted. 

 

• Another reason may be that a different pattern of hierarchy of the 
Yukawa couplings is possible, because of the presence of two 
independent vacuum expectation values of the Higgs fields. 

 

• The third reason, is that the Higgs sector of the Minimal 
Supersymmetric Standard Model (MSSM) contains two Higgs 
doublets, so the Higgs sectors of the MSSM and the 2HDM are 
similar and the study of the 2HDM model may give important 
information on the properties of the Higgs sector in the MSSM. 



Two Higgs Doublet Models  
Reference: Mahmoudi, Stal, Phys. Rev. D 81 

• Higgs Fields 

 

 

 

• The Higgs potential 

 

 

 

 

 

 

• Z2  symmetry 

 

CP symmetry conservation 

Reduces the number of  parameters in the potential ( λ6 = λ7 = µ²12 = 0 ) 
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Mass eigenstates and mass spectrum 

 

 

• Where                  𝜙3 =
𝑣1

2
+ ℎ1,    𝜙4 = 𝜂1,    𝜙7 =

𝑣2

2
+ ℎ2,    𝜙8 = 𝜂2 

 

 

 
After the complete diagonalization, we obtain the following relations  

• The mass eigenvalues for (𝐻0, ℎ0) are 

 

 

• The eigenvalues for the mass eigenstates (𝐻 , 𝐺 ) are 

 

 

• Finally, the mass eigenvalues for (𝐺0, 𝐴0)  
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Example 



Constraints from vacuum stability 

As the values of the quartic interactions between the scalar doublets 
are not theoretically determined, it is of great interest to explore and 
constraint their values, therefore we analize the bounds from the 
vacuum stability  

• Mass formulas 

 

 

• Lagrange multipliers method 
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• Constraint equation 

 

 

• The quartic potential 

 

• Where 
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• The necessary conditions (karush-Kuhn-Tucker)  
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• We obtain the following restrictions (stable vacuum 
requirements) 
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Extreme stability conditions 

• In the extreme case, the condition to be satisfied is V4 = 0, then 

 

 
• In this case the Higgs masses become 

 

 

 
• In another interesting case, which is the semi-extreme case, the 

𝑉4 = ( 𝜆1  𝑥1 − 𝜆2 𝑥2)2> 0, and 

 

• The masses become 

 

 

• In both cases 
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Constraints from triviality 

• RGE  
The RGE determine the dependence of the coupling constants and other 
parameters of the Lagrangian on t, defined as t = ln (𝐸/𝑚𝑡), where E is the 
renormalization point energy. The RGE for the gauge couplings g1, g2, g3  
with  (b1, b2, b3) = (21/5,-3,-7) are 
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Constraints from triviality 

•  The RGE for the Yukawa couplings of the top and bottom quarks 
are 

 

 

 

 

 

• And for the vacuum expectation values 
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• In the equations for the quartic couplings we include the quark 
Yukawa contributions of both sectors 
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• We evaluate the Higgs masses under different conditions for 
the quartic couplings in the energy scale E=Mt 

• Several cases are discussed 
A. Extreme case 
 
B1. Semi-extreme case 
 
B2. Semi-extreme case 
 
C. Lagrange inequality condition 
 
 
D. Yukawa- Unification condition 
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Numerical solution to the RGE 

• Limit of validity of the model 

 

 

 173.2 292, 0 0.52E GeV t   

The energy dependence of the quartic coupling and Higgs masses, 
case B2, with tan 𝛽 = 1.41  



  7173.2 1.45612 10 , 0 12E GeV t    

The energy dependence of the quartic coupling and the Higgs masses, 
case A with tan 𝛽 = 1 



Case: low energy unification 

  13173.2 1.234 10 , 0 25E GeV t    



Case: unification at high energies  



Conclusions: 

• Through the former results one can establish the region 
of validity of the model under several circunstances 
considered in the literature. 

• We have obtained new restrictions to be  satisfied by  the 
quartic couplings through the Lagrange multipliers 
method. 

• We have considered different cases under the RGE. 
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