Leptogenesis on an S3 model

Arturo Álvarez Cruz, Myriam Mondragón

IFUNAM

Outline

1 Problem

2 The Model

- S3 Model
- Neutrinos
(3) Leptogenesis
- Renormalization Group
- Leptogenesis
(4) Conclusions

Introduction

- Dirac predicted the existence of antimatter in the year 1928.
- The positron was first seen in the year 1932.
- The baryon asymmetry is $Y_{B}=\frac{\eta_{B}-\eta_{\bar{B}}}{s}$.

Introduction

- Exploring probes have not found antimatter in the solar system.
- The ratio of protons and anti-protons is $\frac{\bar{p}}{p} \approx 10^{-4}$.
- If large areas of the Universe were mainly constituted of antimatter, the interface between this areas would produce gamma ray radiation and distortions on the Microwave Background Radiation.
- $Y_{B}=(8.75 \pm 0.23) \times 10^{-11}$.
- There is more matter than antimatter!!!

Cosmological Importance

- The baryon asymmetry is very important for Cosmology.
- Nucleosynthesis is very sensitive to matter and antimatter values, if the baryon asymmetry would have been different, the formation of galaxies and stars would be different also.

S3 Model

- The Standard Model doesn't explain the baryon asymmetry.
- How to extend the Standard Model?
- The Standard Model is created by symmetries.
- We add a new flavour symmetry.
- The smallest non-abelian group is the S3.
- S3 is the permutational group of three objects.

S3 Symmetry

- The usual representation is the three dimensional one, it can be taken apart in two irreductible representations.
- Of dimension one.
- Of dimension two.

S3 Model

- The particles of the Standard Model are,

$$
Q^{T}=\left(u_{L}, d_{L}\right), u_{R}, d_{R}, L^{T}=\left(\nu_{L}, e_{L}\right), e_{R}, \nu_{R}, H
$$

It is shown the $\mathrm{SU}(2)$ doublets explicitly.

- We add I, J indices for the doublets and 3 for the singlets.
- We add two Higgs doublets H_{D}.
- In order to guarantee the right values of Z, W bosons, the condition $<H_{s}>^{2}+<H_{1}>^{2}+<H_{2}>^{2}=(246 \mathrm{GeV})^{2} / 2$ is needed.

Modelo S3

- The most general Lagrangian is,

$$
L_{Y}=L_{Y_{D}}+L_{Y_{U}}+L_{Y_{E}}+L_{Y_{\nu}}
$$

$$
\begin{aligned}
L_{Y_{D}}= & -Y_{l}^{d} \overline{Q_{I}} H_{S} d_{I R}-Y_{3}^{d} \overline{Q_{3}} H_{S} d_{3 r} \\
& -Y_{2}^{d}\left[\bar{Q}_{I} \kappa_{I J} H_{l} d_{J R}-\overline{Q_{I}} \eta_{I J} H_{2} d_{J R}\right] \\
& -Y_{4}^{d} \overline{Q_{3}} H_{l} d_{I R}-Y_{5}^{d} \bar{Q}_{I} H_{l} D_{3 R}+\text { h.c. } \\
L_{Y_{U}}= & -Y_{1}^{u} \overline{Q_{I}}\left(i \sigma_{2} H_{S}^{*} u_{I R}\right)-Y_{3}^{u} \overline{Q_{3}}\left(i \sigma_{2} H_{S}^{*} u_{3 R}\right) \\
& -Y_{2}^{u}\left[\overline{Q_{I}} \kappa_{I J}\left(i \sigma_{2} H_{1}^{*} u_{J R}\right)-\overline{Q_{I}} \eta_{I J}\left(i \sigma_{2} H_{2}^{*} u_{J R}\right)\right] \\
& -Y_{4}^{u} \overline{Q_{3}}\left(i \sigma_{2} H_{l}^{*} u_{I R}\right)-Y_{5}^{u} \overline{Q_{I}}\left(i \sigma_{2} H_{l}^{*} u_{3} R\right)+\text { h.c. }
\end{aligned}
$$

S3 Model

$$
\begin{aligned}
L_{Y_{E}}= & \left.\left.-Y_{1}^{e} \overline{L_{l}} H_{S} e_{I R}\right)-Y_{3}^{e} \overline{L_{3}} H_{S} e_{3 R}\right) \\
& \left.-Y_{2}^{e}\left[\overline{L_{I}} \kappa_{I J} H_{1} e_{J R}-\overline{L_{1}} \eta_{I J} H_{2} e_{J R}\right)\right] \\
& -Y_{4}^{e} \overline{\bar{L}_{3}} H_{I} e_{I R}-Y_{5}^{e} \overline{L_{I}} H_{I} D_{3 R}+\text { h.c. } \\
L_{Y_{\nu}}= & -Y_{1}^{\nu} \overline{L_{I}}\left(i \sigma_{2} H_{S}^{*} \nu_{I R}\right)-Y_{3}^{\nu} \overline{L_{3}}\left(i \sigma_{2} H_{S}^{*} \nu_{3 R}\right) \\
& -Y_{2}^{\nu}\left[\overline{L_{I}} \kappa_{I J}\left(i \sigma_{2} H_{1}^{*} \nu_{J R}\right)-\overline{L_{1}} \eta_{I J}\left(i \sigma_{2} H_{2}^{*} \nu_{J R}\right)\right] \\
& -Y_{4}^{\nu} \overline{L_{3}}\left(i \sigma_{2} H_{l}^{*} \nu_{I R}\right)-Y_{5}^{\nu} \overline{L_{I}}\left(i \sigma_{2} H_{I}^{*} \nu_{3} R\right)+\text { h.c., }
\end{aligned}
$$

where σ are the Pauli matrices

$$
\kappa=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \eta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

S3 Model

- We are going to add a Majorana mass term for the right handed neutrinos,

$$
\begin{equation*}
L_{M}=-M_{1} \nu_{I R}^{T} C \nu_{I R}-M_{3} \nu_{3 R}^{T} C \nu_{3 R} . \tag{1}
\end{equation*}
$$

- The model includes a Z2 symmetry.
- The Z2 symmetry vanishes some elements of the Lagrangian. some of them $Y_{1}^{\nu}=Y_{5}^{\nu}=0$

S3 Model

- The S3 model is a good extension of the SM.
- The model predicts a non-zero mixing angle θ_{13}.
- The model explains the interactions of the Standard Model with less parameters.
- It has been added two Higgs doublets.

See-Saw Mechanism

- The neutrinos mass is:

$$
\frac{m_{D_{1}}^{2}}{M_{1}}, \quad \frac{m_{D_{2}}^{2}}{M_{2}}, \quad \frac{m_{D_{3}}^{2}}{M_{3}}, \quad M_{1}, \quad M_{2}, \quad M_{3}
$$

where $m_{D_{i}}$ and M_{i} are values of the matrices M_{D} and M_{R}.

- This mechanism explains why the neutrino's masses are so low.

Neutrinos

- The Dirac mass is:

$$
L_{D}=m_{D} \bar{\nu} \nu=M_{D} \bar{\nu}_{L} N_{R}+\text { h.c. }
$$

- The Majorana mass is:

$$
L_{M}=-M_{1} \nu_{l R}^{T} C \nu_{I R}-M_{3} \nu_{3 R}^{T} C \nu_{3 R} .
$$

- The two mass terms can be combined in to the Lagrangian

$$
L_{\nu \text { mass }}=\frac{1}{2} \omega_{L}^{T} C^{-1} M_{D+M} \omega_{L}+\text { h.c.. }
$$

with

$$
M_{D+M}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \quad \omega_{L}=\binom{\nu_{L}}{C\left(\bar{\nu}_{R}\right)^{T}}
$$

Neutrinos

- From the Lagrangian of the S3 model we can read the neutrino matrix.

$$
M_{D}=\left(\begin{array}{ccc}
\mu_{2}^{\nu} & \mu_{2}^{\nu} & 0 \\
\mu_{2}^{\nu} & -\mu_{2}^{\nu} & 0 \\
\mu_{4}^{\nu} & \mu_{4}^{\nu} & \mu_{3}^{\nu}
\end{array}\right) .
$$

enforcing $M_{1}=M_{2}$

- The M_{ν}

$$
M_{\nu}=\left(\begin{array}{ccc}
2\left(\rho_{2}^{\nu}\right)^{2} & 0 & 2 \rho_{2}^{\nu} \rho_{4}^{\nu} \\
0 & 2\left(\rho_{2}^{\nu}\right)^{2} & 0 \\
2 \rho_{2}^{\nu} \rho_{2}^{\nu} & 0 & 2\left(\rho_{4}^{\nu}\right)^{2}+2\left(\rho_{3}^{\nu}\right)^{2}
\end{array}\right)
$$

where $\rho_{2}^{\nu}=\left(\mu_{2}^{\nu}\right) / M_{1}^{1 / 2}, \rho_{4}^{\nu}=\left(\mu_{4}^{\nu}\right) / M_{1}^{1 / 2}, \rho_{3}^{\nu}=\left(\mu_{3}^{\nu}\right) / M_{3}^{1 / 2}$,

Neutrinos On The S3 Model

- The mass matrix M_{ν} can be taken to diagonal form through the bi-unitary transformation U

$$
U_{\nu}^{T} M_{\nu} U_{\nu}=\operatorname{diag}\left(\left|m_{\nu 1}\right| e^{i \phi_{1}},\left|m_{\nu 2}\right| e^{i \phi_{2}},\left|m_{\nu 3}\right| e^{i \phi_{3}},\right)
$$

where

$$
\left|m_{\nu 1}\right| \operatorname{Sin} \phi_{1}=\left|m_{\nu 2}\right| \operatorname{Sin} \phi_{2}=\left|m_{\nu 3}\right| \operatorname{Sin} \phi_{3} .
$$

is required to ensure the unitary of U.

Neutrinos On The S3 Model

- For U to diagonalize the mass matrix

$$
\begin{aligned}
M_{\nu}= & \left(\begin{array}{ccc}
m_{\nu 3} & 0 & z \\
0 & m_{\nu 3} & 0 \\
z & 0 & \left(m_{\nu 1}+m_{\nu 2}-m_{\nu 3}\right) e^{-2 i \delta_{\nu}}
\end{array}\right) \\
& \text { where } z=\sqrt{\left(m_{\nu 3}-m_{\nu 1}\right)\left(m_{\nu 2}-m_{\nu 3}\right)} e^{-i \delta_{\nu}} .
\end{aligned}
$$

Md Matrix

- We can calculate the md matrix in terms of the neutrinos masses
$M_{d}=\left(\begin{array}{ccc}\sqrt{\frac{m_{3} M_{2}}{2}} & \sqrt{\frac{m_{3} M_{2}}{2}} & 0 \\ \frac{\sqrt{\frac{m_{3} M_{2}}{2}}}{\sqrt{M_{2}\left(m_{3}-m_{1}\right)\left(m_{2}-m_{3}\right) e^{i \delta}}} & \frac{\sqrt{M_{2}\left(m_{3}-m_{1}\right)\left(m_{2}-m_{3}\right) e^{i \delta}}}{\sqrt{2 m_{3}}} & 0\end{array}\right)$.
With
$a=\sqrt{M_{3}\left(e^{-2 i \delta}\left(m_{1}+m_{2}-m_{3}\right)-\frac{e^{-2 i \delta}\left(m_{2}-m_{3}\right)\left(-m_{1}+m_{3}\right)}{m_{3}}\right)}$.

Baryogenesis

- Baryogenesis is the term for processes in the early universe that lead to an asymmetry between baryons and antibaryons.

Renormalization Group

- Leptogenesis occurs at high energy, that is why it is important to take in account the renormalization group effect.
- The renormalization Group Equations are different than those for the SM due to the three Higgs doublets.
$16 \pi^{2} \frac{d Y_{i}}{d t}=\sum_{k=1}^{n_{h}}\left(T_{i k} Y_{k}+Y_{k} Y_{k}^{\dagger} Y_{i}+\frac{1}{2} Y_{i} Y_{k}^{\dagger} Y_{k}\right)-\frac{9 g^{2}+15 g^{\prime}}{4} Y_{i}$
where $T_{i j}$ is

$$
T_{i j}=\operatorname{tr}\left(Y_{i} Y_{j}^{\dagger}\right)
$$

Leptogenesis

- Is there any way to generate lepton asymmetry?
- The S3 Lagrangian has terms like

$$
\begin{equation*}
L=\ldots \quad-Y_{1}^{\nu} \overline{L_{I}}\left(i \sigma_{2} H_{S}^{*} \nu_{I R}\right) \quad \ldots \tag{2}
\end{equation*}
$$

- This allow right handed neutrinos to decay in to left handed ones.

$$
\nu_{R} \longrightarrow \nu
$$

- The Lepton and the Baryon Number are not conserved quantities, nevertheless $B-L$ is, so

$$
L \longrightarrow B .
$$

Leptogenesis

- The first Feynman diagrams of the right handed neutrino decays are

(a)

(b)

(c)

Fig 2.1 a) At tree level. b) One loop diagram. c) Self-interaction diagram.

Leptogenesis

- Replacing

$$
-Y_{1}^{\nu} \overline{L_{l}}\left(i \sigma_{2} H_{S}^{*} \nu_{I R}\right) \longleftrightarrow h_{i j} \nu_{R_{i}} \bar{L}_{j} H .
$$

- The decay rate for the neutrinos is

$$
\begin{aligned}
\Gamma_{D_{i}}=\sum_{\alpha}\left[\Gamma \left(\nu_{i}\right.\right. & \left.\left.\rightarrow H+\ell_{\alpha}\right)+\Gamma\left(\nu_{i} \rightarrow \bar{H}+\bar{\ell}_{\alpha}\right)\right] \\
& =\frac{1}{8 \pi}\left(h h^{\dagger}\right)_{i i} M_{i}
\end{aligned}
$$

- The Lepton CP asymmetry is

$$
\epsilon_{1}=\frac{\sum_{\alpha} \Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)}{\sum_{\alpha} \Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)} .
$$

Leptogenesis

- We calculate the asymmetry

$$
\epsilon \simeq-\frac{3}{8 \pi} \frac{1}{\left(h_{\nu} h_{\nu}^{\dagger}\right)} \sum_{i=2,3} \operatorname{Im}\left\{\left(h_{\nu} h_{\nu}^{\dagger}\right)_{1 i}^{2}\right\}\left[f\left(\frac{M_{i}^{2}}{M_{1}^{2}}\right)+g\left(\frac{M_{i}^{2}}{M_{1}^{2}}\right)\right],
$$

- $f(x)$ is from the loop diagram (Fig 2.1 (a))

$$
f(x)=\sqrt{x}\left[1-(1+x) \ln \left(\frac{1+x}{x}\right)\right] .
$$

- $g(x)$ is from the self-interaction diagram (Fig 2.1 (c))

$$
g(x)=\frac{\sqrt{x}}{1-x}
$$

Leptogenesis

- The baryon and the lepton asymmetry are related by the Sphalerion process

$$
Y_{B}=a\left(Y_{B-L}\right)=\frac{a}{a-1} Y_{L},
$$

where a is $a=\left(8 N_{f}+4 N_{H}\right) /\left(22 N_{f}+13 N_{H}\right)$ and

$$
Y_{L}=\frac{n_{L}-n_{\bar{L}}}{s}=\kappa \frac{\epsilon_{i}}{g^{*}} .
$$

Leptogenesis

- g is 110 , the relativistic freedom number, κ is obtained from the Boltzman equations, we can reparameterized κ,

$$
\begin{gathered}
\kappa \approx \frac{0.3}{K(\ln (K))^{0.6}} \text { for } 10<K<10^{6} \\
\kappa \approx \frac{1}{2 \sqrt{K^{2}+9}} \text { for } 0<K<10
\end{gathered}
$$

where $k=\Gamma_{1} / H<1$ describes off-thermal equilibrium process, $\kappa<1$ describe the washout effects.

Leptogenesis

with

$$
K=\frac{M_{p l}}{1.66 \sqrt{g *\left(8 \pi v^{2}\right)}} \frac{\left(m_{D}^{\dagger} m_{D}\right)_{11}}{M_{1}} .
$$

Results

- We can calculate the asymmetry as function of the phases, θ_{1} and δ.

- The maximum is reached when $\delta=\frac{3 \pi}{4}$ and $\theta_{1}=\pi$.

Results

- Baryon asymmetry as function of the difference of masses $M 2$ and M3.

- For close masses we have to take into account the condition $\left|\Gamma_{1}-\Gamma_{i}\right| \ll\left|M_{1}-M_{i}\right|$.
- When the masses M_{1} and M_{2} are of the same order. If $\left|\Gamma_{1}-\Gamma_{i}\right| \sim\left|M_{1}-M_{i}\right|$, we can't take into account the self-interaction contribution.

Results

$$
\text { If }\left|\Gamma_{1}-\Gamma_{i}\right| \ll\left|M_{1}-M_{i}\right|
$$

Conclusions

- The S 3 model is a good extension of the SM .
- The texture of the mass matrices and the Yukawa matrices doesn't change in high energies.
- Leptogenesis is very dependent on the phases.
- The S3 model show a contribution to Leptogenesis, this contribution can be considerable with specific values of phases and masses.

Conclusions

Thanks!!!

