General four-zero texture mass matrix parametrizations in the neutrino and quark sector

Lao-Tse López Lozano
In collaboration with

David Delepine and Juan Barranco

División de Ciencias e Ingeniería - Campus León
Universidad de Guanajuato
18th Symposium on Particles, Strings and Cosmology.

$$
\text { June 7, } 2012
$$

Outline

- Fritszch's matrices
- Parametrizations of mass matrices
- χ^{2} analysis and some results.
- Conclusions

Fritszch's matrices

- Make able to generate strong hierarchy of quark masses with small flavor mixing angles
- Suitable to accommodate the neutrino oscillation data representing large mixing angles quite well
- Compatible with specific models of GUTs i.e. SO(10)
- Fritzsch-like texture 4 zero neutrino are seesaw invariant

Fritszch's matrices

- Make able to generate strong hierarchy of quark masses with small flavor mixing angles
- Suitable to accommodate the neutrino oscillation data representing large mixing angles quite well
- Compatible with specific models of GUTs i.e. SO(10)
- Fritzsch-like texture 4 zero neutrino are seesaw invariant

Some interesting issues

- Does exist a parallel structure between strongly hierarchical fermions and weakly hierarchical fermions?
- Can weakly hierarchical quark mass matrices are able to reproduce the mixing data which involves strongly hierarchical parameters?
- Does we have something new using non-hermitian mass matrices?

Mass matrix diagonalization

- Diagonal mass matrix

$$
\tilde{M}_{f} \equiv \operatorname{diag}\left(m_{1}^{f}, \ldots, m_{n}^{f}\right)=U_{L}^{\dagger} M_{f} U_{R} \quad \text { for } \quad f=u, d, \ell, \nu
$$

- The hermitian squared mass matrix

$$
\begin{aligned}
H_{f} & \equiv M_{f} M_{f}^{\dagger}=U_{L}^{f} \tilde{M}_{f}^{2} U_{L}^{f \dagger} \quad \text { (Unitary transformation) } \\
I_{f} & \equiv M_{f}^{\dagger} M_{f}=U_{R}^{f} \tilde{M}_{f}^{2} U_{R}^{f \dagger} \quad\left(U_{R}^{f} \text { can not be observed }\right)
\end{aligned}
$$

- Diagonalizing H_{f} gives a mixing matrix of the form $P_{f}^{\dagger} \mathcal{O}_{f}$
- Free parameters in the general case of n generations

$$
N=2 n^{2}-\underbrace{n^{2}}_{\text {mixing }}-\underbrace{n}_{\text {masses }}-\underbrace{n}_{\text {rephasing }}-\underbrace{X}_{\text {additional assumptions }}
$$

The non-hermitian 4 zero mass matrix

- Fritszch matrix

$$
M_{f}=\left(\begin{array}{ccc}
0 & C_{f} & 0 \\
C_{f}^{\prime} & D_{f} & B_{f} \\
0 & B_{f}^{\prime} & A_{f}
\end{array}\right) \quad \text { with } \quad \begin{aligned}
& \left|C_{f}\right|=\left|C_{f}^{\prime}\right| \quad ; \quad \operatorname{Arg}\left(C_{f}\right) \neq \operatorname{Arg}\left(C_{f}^{\prime}\right) \\
& \left|B_{f}\right|=\left|B_{f}^{\prime}\right| \quad ; \quad \operatorname{Arg}\left(B_{f}\right) \neq \operatorname{Arg}\left(B_{f}^{\prime}\right)
\end{aligned}
$$

- Hierarchy

$$
\begin{array}{ccc}
\left|C_{f}\right| \ll\left|B_{f}\right| & ; \quad\left|D_{f}\right| \ll\left|A_{f}\right| & \text { Strong hierarchy } \\
\left|C_{f}\right| \lesssim\left|B_{f}\right| & ; \quad\left|D_{f}\right| \lesssim\left|A_{f}\right| & \text { Weak hierarchy }
\end{array}
$$

- Removing off-diagonal phases.

$$
H_{f}=M_{f} M_{f}^{\dagger}=P_{f}^{\dagger} \tilde{H}_{f} P_{f}
$$

with $P_{f}=e^{-\frac{i}{2} \Xi} \operatorname{diag}\left(e^{\frac{i}{2} \Xi}, e^{i\left(\phi_{C}-\phi_{D}\right)}, e^{i\left(\phi_{C}+\phi_{B^{\prime}}+\Xi\right)}\right)$ and

$$
\Xi=\arctan \left[\frac{a \sin \left(\phi_{B}+\phi_{B^{\prime}}-\phi_{A}-\phi_{D}\right)}{d+a \cos \left(\phi_{B}+\phi_{B^{\prime}}-\phi_{A}-\phi_{D}\right)}\right]
$$

The mixing matrix

- Orthogonal matrix (as in the hermitian case)

$$
\tilde{H}=\left(\begin{array}{ccc}
c^{2} & c d & b c \\
c d & c^{2}+d^{2}+b^{2} & b|d+a \delta| \\
b c & b\left|d+a \delta^{*}\right| & a^{2}+b^{2}
\end{array}\right) \quad \text { with } \quad \delta=e^{i\left(\phi_{D}-\phi_{B^{\prime}}-\phi_{B}+\phi_{A}\right)}
$$

$$
D_{f}=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)=\mathcal{O}_{f} \tilde{H}_{f} \mathcal{O}_{f}^{-1}
$$

- Mixing matrices

$$
V_{\mathrm{CKM}}=\mathcal{O}_{d}^{-1} P_{d} P_{u}^{\dagger} \mathcal{O}_{u} \quad ; \quad V_{\mathrm{PMNS}}=\mathcal{O}_{\ell}^{-1} P_{\ell} P_{\nu}^{\dagger} \mathcal{O}_{\nu}
$$

- Additional phases

$$
P_{f} P_{f^{\prime}}^{\dagger}=e^{-\frac{i}{2}(\Delta \Xi)} \operatorname{diag}\left(1, e^{i \Phi_{1}}, e^{i \Phi_{2}} e^{i \Delta \Xi}\right)
$$

thus $\Delta \Xi=0$ is a good assumption, but not the only one.

Constructing parametrizations

- Invariants give 32 solutions, not all independent.

$$
\begin{aligned}
\operatorname{Tr}\left(\tilde{H}_{f}\right) & =\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2} \\
\operatorname{Tr}^{2}\left(\tilde{H}_{f}\right)-\operatorname{Tr}\left(\tilde{H}^{2}\right) & =2 \lambda_{1}^{2} \lambda_{2}^{2}+2 \lambda_{1}^{2} \lambda_{3}^{2}+2 \lambda_{2}^{2} \lambda_{3}^{2} \\
\operatorname{Det}\left(\tilde{H}_{f}\right) & =\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} .
\end{aligned}
$$

- Chiral transformations makes able to choose $\lambda_{i}>0$ $\left(\left|\lambda_{i}\right|=m_{i}\right)$
- Every solution define different parameters spaces.
- Masses, hierarchy and the value of δ define which one is phenomenologically compatible.

The orthogonal matrix

$$
\begin{aligned}
& \mathcal{O}_{i j}^{f}=v_{i}\left(\left(m_{j}^{f}\right)^{2}, a_{f}, \delta_{f}\right) \\
& v_{1}\left(m_{i}^{2}, a, \delta\right)=\left(b^{2}+c^{2}-c d+d^{2}-m_{i}^{2}\right)\left(a^{2}-b|d+a \delta|+b^{2}-m_{i}^{2}\right) \\
&-b(c-|d+a \delta|)\left(-b|d+a \delta|+b^{2}+c^{2}+d^{2}-m_{i}^{2}\right) \\
& v_{2}\left(m_{i}^{2}, a, \delta\right)=-m_{i}^{2}\left(a^{2}+b^{2}+c^{2}-c d\right)+c\left(a^{2}+b d\right)(c-d) \\
&+b\left[c(b-c)+m_{1}^{2}\right]|d+a \delta|+m_{i}^{4} \\
& v_{3}\left(m_{i}^{2}, a, \delta\right)=\begin{array}{ll}
& {\left[c(d-c)-m_{i}^{2}\right]\left(b^{2}+c^{2}+d^{2}-b|d+a \delta|-m_{i}^{2}\right)} \\
& +c(b-d)\left(b^{2}+c^{2}-c d+d^{2}-m_{i}^{2}\right)
\end{array}
\end{aligned}
$$

- We have only one additional parameter with equations difficult to solve.
- If we assume $\Xi=0$ we get $\delta= \pm 1$, that means
$\phi_{D}-\phi_{B^{\prime}}-\phi_{B}+\phi_{A}=m \pi$

Parametrizations

With $\delta=1$ solutions of the invariants equations are

$$
\begin{aligned}
& \tilde{m}_{1} \leq a^{\prime} \leq \tilde{m}_{2} \quad\left\{\begin{array}{ll}
b^{\prime} & =\sqrt{\frac{\left(a^{\prime}-\tilde{m}_{1}\right)\left(-a^{\prime}+\tilde{m}_{2}\right)\left(\tilde{m}_{3}+a^{\prime}\right)}{a^{\prime}}} \\
d^{\prime} & =\sqrt{a^{\prime}+\tilde{m}_{1}+\tilde{m}_{2}-\tilde{m}_{3}} \\
\tilde{m}_{1} \leq a^{\prime} \leq \tilde{m}_{3} \quad\left\{\begin{array}{lll}
b^{\prime} & = & \sqrt{\frac{\left(a^{\prime}-\tilde{m}_{1}\right)\left(a^{\prime}+\tilde{m}_{2}\right)\left(\tilde{m}_{3}-a^{\prime}\right)}{a^{\prime}}} \\
d^{\prime} & = & -a^{\prime}+\tilde{m}_{1}-\tilde{m}_{2}+\tilde{m}_{3}
\end{array}\right. \\
\tilde{m}_{2} \leq a^{\prime} \leq \tilde{m}_{3} \quad\left\{\begin{array}{lll}
b^{\prime} & =\sqrt{\frac{\left(a^{\prime}+\tilde{m}_{1}\right)\left(a^{\prime}-\tilde{m}_{2}\right)\left(\tilde{m}_{3}-a^{\prime}\right)}{a^{\prime}}} \\
d^{\prime} & = & -a^{\prime}-\tilde{m}_{1}+\tilde{m}_{2}+\tilde{m}_{3}
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

Here $c^{\prime}=\sqrt{\frac{\tilde{m}_{1} \tilde{m}_{2} \tilde{m}_{3}}{a^{\prime}}}$ with $X^{\prime}=\frac{X}{m_{3}^{f}}$

- $a^{\prime}\left(x_{f}\right)=\tilde{m}_{\max }\left(1-x_{f} \frac{\tilde{m}_{\max }-\tilde{m}_{\text {min }}}{\tilde{m}_{\max }}\right)$
- There are 3 independent forms to diagonalize H_{f}
- There are 9 possibilities to parametrize the mixing matrix.

χ^{2} experimental inputs

- For quarks
- Masses (at the scale of Z)
- Mixing angles ($V_{\text {CKM }}$)
- For leptons
- Limits on the mass difference of neutrinos
- The angle θ_{13}

$$
\begin{gathered}
V_{\text {CKM }}=\left(\begin{array}{ccc}
0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347_{-0.00012}^{+0.00016} \\
0.2252 \pm 0.0007 & 0.97345_{-0.00015}^{+0.00016} & 0.0410_{-0.0007}^{+0.0011} \\
0.00862_{-0.00020}^{+0.00026} & 0.0403_{-0.0007}^{+0.0011} & 0.999152_{-0.000045}^{+0.000030}
\end{array}\right) \\
U_{\text {PMNS }}=\left(\begin{array}{ccc}
0.824_{-0.010}^{+0.011} & 0.547_{-0.014}^{+0.016} & 0.145_{-0.031}^{+0.022} \\
0.500_{-0.021}^{+0.027} & 0.582_{-0.023}^{+0.050} & 0.641_{-0.023}^{+0.061} \\
0.267_{-0.027}^{+0.044} & 0.601_{-0.022}^{+0.048} & 0.754_{-0.020}^{+0.022}
\end{array}\right)
\end{gathered}
$$

Four parametrizations for quarks sector

$\chi_{\text {quarks }}^{2}\left(a_{u}, a_{d}, \phi\right)=\sum_{i=1}^{9}\left(\frac{V_{\mathrm{CKM}}^{t h}\left(a_{u}, a_{d}, \phi\right)-\left|V_{\mathrm{CKM}}\right|}{\delta V_{\mathrm{CKM}}}\right)^{2}+\chi_{\text {angles }}^{2}$.

Parametrization	1	2	3
1	$\chi_{\min }^{2}=930.02$	$\chi_{\min }^{2}=3.55 \times 10^{5}$	$\chi_{m i n}^{2}=3.55 \times 10^{5}$
2	$\chi_{\min }^{2}=1.43 \times 10^{5}$	$\chi_{\min }^{2}=1.270$	$\chi_{\min }^{2}=2.212$
3	$\chi_{\min }^{2}=4.50 \times 10^{5}$	$\chi_{\min }^{2}=1.44$	$\chi_{\min }^{2}=2.163$

Nine parametrizations for lepton sector

Parametrization	1	2	3
1	$\chi_{\text {min }}^{2}=4.758$	$\chi_{\text {min }}^{2}=0.009$	$\chi_{\text {min }}^{2}=11.02$
2	$\chi_{\text {min }}^{2}=4.798$	$\chi_{\text {min }}^{2}=0.006$	$\chi_{\text {min }}^{2}=3.119$
3	$\chi_{\text {min }}^{2}=7.087$	$\chi_{\text {min }}^{2}=0.456$	$\chi_{\text {min }}^{2}=0.006$

Something about θ_{13}

Parallel parametrization $(1,1)$

Conclusions

- Some class of non-hermitian mass matrices can be analysed with the same number of free parameters
- Four zero mass matrix can deal with strong and weak hierarchy with the same mechanism
- With this analysis we found that the mass of the third neutrino is $m_{\nu_{3}} \sim 0.05 \mathrm{eV}$.
- Predictions is highly sensible to the experimental measurements

