Different realizations of S_{3} as a unified theory for quarks and leptons

U. J. Saldaña Salazar

Work supported by Mexican Grants: PAPIIT-IN113712 and CONACyT-132059

$$
\text { PASCOS } 2012
$$

Mérida, Yucatán.
June 7, 2012

In collaboration with:
Prof. A. Mondragón, L. Velasco-Sevilla and F. González Canales
Acknowledgements:
M. Mondragón
"What are the least things that I need in order to explain what I know?"

Talk of Prof. M. Lindner

1 Stage I: What we found...

2 Stage II: How we did it?

3 Stage III: Conclusions

Stage I: What we found...

$S \mathrm{M}+m_{\nu}+\left.S_{3}\right|_{3} S+3 H$

■ Mixing angles in terms of mass ratios.
■ A "simple" and "natural" scenario with a unified treatment.

- A model with viable phenomenology. (Here only quarks are discussed)

$\mathrm{SM}+m_{\nu}+\left.S_{3}\right|_{3} S+3 H$

$=$

■ Mixing angles in terms of mass ratios.

A desirable feature of any physical theory is predictivity.

$$
\begin{gathered}
\mathrm{SM}+m_{\nu} \\
\left(6 m_{q}, 3 \theta_{q}, \delta_{c p}^{q}, 6 m_{l}\left(+3 m_{\nu R}\right), 3 \theta_{l}, \delta_{c p}^{\prime}(+2 \text { Maj. phases })\right) \\
20(+2 \text { Maj. }) \text { free parameters }
\end{gathered}
$$

- Since the late 1960's:

$$
\theta_{C} \approx \sqrt{m_{d} / m_{s}}
$$

■ Gatto, Sartori, and Tonin, Phys. Lett., B28:128-130, 1968.

- Cabibbo and Maiani, Phys. Lett., B28:131-135, 1968.
- Pagels, Phys. Rev., D11:1213, 1975.

■ Weinberg, Trans. New York Acad. Sci., 38:185-201,1977.

- Wilczek and Zee, Phys. Lett., B70:418, 1977.

■ Fritzsch, Phys. Lett., B70:436, 1977.
■ Ebrahim, Phys. Lett., B73:181-184, 1978.
■ Mohapatra and Senjanovic, Phys. Lett., B73:176, 1978.
■ Fritzsch, Phys. Lett., B73:317-322, 1978.
■ Pakvasa and Sugawara, Phys. Lett., B73:61, 1978.

We pursue a model with this feature.

$\mathrm{SM}+m_{\nu}+\left.S_{3}\right|_{3} S+3 H$

$=$

■ Mixing angles in terms of mass ratios.
■ A "simple" and "natural" scenario with a unified treatment.

S_{3}

■ "Simple" \rightarrow Smallest non-abelian discrete symmetry group.
■ "Natural" \rightarrow Before Yukawa interactions 3 families are undistinguishable.
■ Unified treatment \rightarrow A universal mass matrix for quarks and leptons.
$S M+m_{\nu}+\left.S_{3}\right|_{3} S+3 H$
$=$

■ Mixing angles in terms of mass ratios.
■ A "simple" and "natural" scenario with a unified treatment.

- An incredible quark phenomenology.

Stage II: How we did it?

Relative values in each fermion sector

Generic mass matrix for Dirac fermions

$\mathrm{SM}+m_{\nu}+\left.S_{3}\right|_{3} S+3 H$

$$
\begin{gathered}
\binom{f_{I(L, R)}}{f_{I I(L, R)}} \sim 2 ; \quad f_{I I I(L, R)} \sim 1_{\mathbf{s}}, \\
\binom{H_{1 W}}{H_{2 W}} \sim 2 ; \quad H_{S W} \sim 1_{\mathbf{S}} ; \quad H_{A W} \sim 1_{\mathbf{A}} .
\end{gathered}
$$

After the Riggs mechanism:

$$
\mathcal{M}_{S_{3}}^{f}=\left(\begin{array}{ccc}
\sqrt{2} Y_{2}^{f} v_{S}+Y_{3}^{f} w_{2} & Y_{3}^{f} w_{1}+\sqrt{2} Y_{4}^{f} v_{A} & \sqrt{2} Y_{5}^{f} w_{1} \tag{1}\\
Y_{3}^{f} w_{1}-\sqrt{2} Y_{4}^{f} v_{A} & \sqrt{2} Y_{2}^{f} v_{S}-Y_{3}^{f} w_{2} & \sqrt{2} Y_{5}^{f} w_{2} \\
\sqrt{2} Y_{6}^{f} w_{1} & \sqrt{2} Y_{6}^{f} w_{2} & 2 Y_{1}^{f} v_{S}
\end{array}\right)
$$

where the couplings Y_{i}^{f} are complex and the rev's $\left(v_{S}, v_{A}, w_{1}, w_{2}\right)$ are real.

$$
\theta_{C} \approx \sqrt{m_{d} / m_{s}}
$$

1. $\operatorname{Tr}\left[\mathcal{M}_{S_{3}}^{f}\right], \operatorname{Det}\left[\mathcal{M}_{S_{3}}^{f}\right]$, and $\operatorname{Tr}\left[\mathcal{M}_{S_{3}}^{f}{ }^{2}\right]$
2. $\mathcal{M}_{S_{3}}^{f}=\mathcal{M}_{S_{3}}^{f}\left(m_{1}, m_{2}, m_{3}\right)$
3. $U_{i j}=U_{i j}(\widetilde{m})$

STOP AND THINK

4-zero Fritzsch-like texture

$$
\mathcal{M}_{\text {Her. }}^{f}=\left(\begin{array}{ccc}
0 & A^{f} & 0 \tag{2}\\
A^{f^{*}} & \left|B^{f}\right| & C^{f} \\
0 & C^{f *} & \left|D^{f}\right|
\end{array}\right)
$$

■ Nishiura, Matsuda and Fukuyama, Phys. Rev., D60:013006, 1999.
■ Fritzsch and Xing, Prog. Part. Nucl. Phys., 45:1-81, 2000.
■ Matsuda and Nishiura, Phys. Rev., D74:033014, 2006.
■ Barranco, Gonzalez Canales and Mondragón, Phys. Rev., D82:073010, 2010.

- Viable phenomenology.
- It allows a unified treatment.

The rotated matrix:

$$
\begin{array}{ccc}
\mathcal{M}_{\text {Hier. }}^{f}= & \\
\left(\begin{array}{ccc}
\mu_{1}^{f}-\mu_{4}^{f} \mathrm{~s} 2 \theta+\mu_{2}^{f}\left(\mathrm{c}^{2} \theta-\mathrm{s}^{2} \theta\right) & \mu_{5}^{f}+\mu_{2}^{f} \mathrm{~s} 2 \theta+\mu_{4}^{f}\left(\mathrm{c}^{2} \theta-\mathrm{s}^{2} \theta\right) & \mu_{6}^{f} \mathrm{c} \theta-\mu_{7}^{f} \mathrm{~s} \theta \\
-\mu_{5}^{f}+\mu_{2}^{f} \mathrm{~s} 2 \theta+\mu_{4}^{f}\left(\mathrm{c}^{2} \theta-\mathrm{s}^{2} \theta\right) & \mu_{1}^{f}+\mu_{4}^{f} \mathrm{~s} 2 \theta-\mu_{2}^{f}\left(\mathrm{c}^{2} \theta-\mathrm{s}^{2} \theta\right) & \mu_{6}^{f} \mathrm{~s} \theta+\mu_{7}^{f} \mathrm{c} \theta \\
\mu_{8}^{f} \mathrm{c} \theta-\mu_{9}^{f} \mathrm{~s} \theta & \mu_{8}^{f} \mathrm{~s} \theta+\mu_{9}^{f} \mathrm{c} \theta & \mu_{3}^{f}
\end{array}\right) . \tag{3}
\end{array}
$$

where we have denoted

$$
\begin{gathered}
\mu_{1}^{f} \equiv \sqrt{2} Y_{2}^{f} v_{S}, \quad \mu_{2}^{f} \equiv Y_{3}^{f} w_{2}, \quad \mu_{3}^{f} \equiv 2 Y_{1}^{f} v_{S}, \quad \mu_{4}^{f} \equiv Y_{3}^{f} w_{1}, \quad \mu_{5}^{f} \equiv \\
{ }_{2}^{2} Y_{4}^{f} v_{A}, \\
\mu_{6}^{f} \equiv \sqrt{2} Y_{5}^{f} w_{1}, \quad \mu_{7}^{f} \equiv \sqrt{2} Y_{5}^{f} w_{2}, \quad \mu_{8}^{f} \equiv \sqrt{2} Y_{6}^{f} w_{1}, \quad \mu_{9}^{f} \equiv \sqrt{2} Y_{6}^{f} w_{2} .
\end{gathered}
$$

What are the implied conditions...?

The implied conditions:

1. Hermiticity:
a) $Y_{5}^{f}=Y_{6}^{f *}$,
b) $\arg \left(Y_{4}^{f}\right)= \pm \frac{\pi}{2}$,
c) $\arg \left(Y_{1}^{f}\right)=\arg \left(Y_{2}^{f}\right)=\arg \left(Y_{3}^{f}\right)=0$
2. Two null matrix elements: $(1,1)$ and $(1,3)$:
a) $\tan \theta=\frac{w_{1}}{w_{2}}$,
b) $\sqrt{2} Y_{2}^{f} v_{s}=-Y_{3}^{f} w_{2} \cos ^{2} \theta\left(1-3 \tan ^{2} \theta\right)$.

The resulting matrix:

$$
\begin{gather*}
\mathcal{M}_{\text {Hier. }}^{f}= \\
\left(\begin{array}{ccc}
\left|\mu_{2}^{f}\right| \sin \theta \cos \theta\left(3-\tan ^{2} \theta\right)+i\left|\mu_{5}^{f}\right| & 0 \\
0 & -2\left|\mu_{2}^{f}\right| \cos ^{2} \theta\left(1-3 \tan ^{2} \theta\right) & \mu_{8}^{f} \sec \theta \\
\mu_{8}^{f *} \sec \theta & \left|\mu_{3}^{f}\right|
\end{array}\right) \tag{4}
\end{gather*}
$$

which is equivalent to:

$$
\mathcal{M}_{\text {Her. }}^{f}=\left(\begin{array}{ccc}
0 & A^{f} & 0 \tag{5}\\
A^{f^{*}} & \left|B^{f}\right| & C^{f} \\
0 & C^{f *} & \left|D^{f}\right|
\end{array}\right)
$$

Quark mixing sector

Exact analytical forms ($V_{C K M}$):

$$
\begin{align*}
& V_{u d}^{t h}=\sqrt{\frac{\widetilde{m}_{c} \tilde{m}_{s} \xi_{1}^{u} \xi_{1}^{d}}{\mathcal{D}_{1 u} \mathcal{D}_{1 d}}}+\sqrt{\frac{\widetilde{m}_{u} \widetilde{m}_{d}}{\mathcal{D}_{1 u} \mathcal{D}_{1 d}}}\left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right) \xi_{1}^{u} \xi_{1}^{d}}+\sqrt{\delta_{u} \delta_{d} \xi_{2}^{u} \xi_{2}^{d}} e^{i \phi_{2}}\right) e^{i \phi_{1}}, \\
& V_{u s}^{t h}=-\sqrt{\frac{\widetilde{m}_{c} \widetilde{m}_{d} \xi_{1}^{u} \xi_{2}^{d}}{\mathcal{D}_{1 u} \mathcal{D}_{2 d}}}+\sqrt{\frac{\tilde{m}_{u} \tilde{m}_{s}}{\mathcal{D}_{1 u} \mathcal{D}_{2 d}}}\left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right) \xi_{1}^{u} \xi_{2}^{d}}+\sqrt{\delta_{u} \delta_{d} \xi_{2}^{u} \xi_{1}^{d}} e^{i \phi_{2}}\right) e^{i \phi_{1}}, \\
& V_{u b}^{t h}=\sqrt{\frac{\widetilde{m}_{c} \widetilde{m}_{d} \widetilde{m}_{s} \delta_{d} \xi_{1}^{u}}{\mathcal{D}_{1 u} \mathcal{D}_{3 d}}}+\sqrt{\frac{\widetilde{m}_{u}}{\mathcal{D}_{1 u} \mathcal{D}_{3 d}}}\left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right) \delta_{d} \xi_{1}^{u}}-\sqrt{\delta_{u} \xi_{2}^{u} \xi_{1}^{d} \xi_{2}^{d}} e^{i \phi_{2}}\right) e^{i \phi_{1}}, \\
& V_{c d}^{t h}=-\sqrt{\frac{\widetilde{m}_{u} \tilde{m}_{s} \xi_{2}^{u} \xi_{1}^{d}}{\mathcal{D}_{2 u}}}+\sqrt{\frac{\tilde{m}_{c} \tilde{m}_{d}}{\mathcal{D}_{2 u} \mathcal{D}_{1 d}}}\left(\sqrt{\left(1-\delta_{u}\right)\left(1-\delta_{d}\right) \xi_{2}^{u} \xi_{1}^{d}}+\sqrt{\delta_{u} \delta_{d} \xi_{1}^{u} \xi_{2}^{d}} e^{i \phi_{2}}\right) e^{i \phi_{1}} . \tag{6}
\end{align*}
$$

Studied cases:

1. ϕ_{1} and ϕ_{2} as free parameters. $\left(S_{3}-\mathrm{SM}, w_{1} \neq w_{2}\right)$ (cyan dashed line)
a. $\phi_{2}=0$ and ϕ_{1} as a free parameter. (red dashed line)
b. $\phi_{1}=\frac{\pi}{2}$ and $\phi_{2}=0$. (blue solid line)
2. $\phi_{1}=0$ and ϕ_{2} as a free parameter. $\left(H_{A W}=0 \rightarrow \mathrm{MS}_{3}\right.$ IESM, $\left.w_{1}=w_{2}\right)($ green dashed line)

■ Pakvasa and Sugawara, Phys. Lett. B73, 61, 1978.
■ Derman, Phys. Rev. D19, 317, 1979.
■ Wyler, Phys. Rev. D19, 330, 1979.
■ Yahalom, Phys. Rev. D29, 536, 1984.
■ Kubo, Mondragón, Mondragón, Rodriguez-J Prog. Theor. Phys. 109, 795 (2003)

■ Kubo, Okada and Sakamaki, Phys. Rev. D70:036007, 2004.
■ Mondragón, Mondragón and Peinado, Phys. Rev. D76:076003, 2007.
■ Teshima and Okumura, Phys. Rev. D84:016003, 2011.
■ Bhattacharyya et al, Phys. Rev. D83:011701, 2011.
■ ...

Highlights of the fit:

1. By considering unitary the $V_{C K M}$ we need to fit to 4 observables $\left(V_{u d}, V_{u s}, V_{u b}, \mathcal{J}_{q}\right)$.
2. The χ^{2} is constructed

$$
\begin{equation*}
\chi^{2}=\frac{\left(V_{u d}^{\mathrm{th}}-V_{u d}\right)^{2}}{\sigma_{V_{u d}}^{2}}+\frac{\left(V_{u s}^{\mathrm{th}}-V_{u s}\right)^{2}}{\sigma_{V_{u s}}^{2}}+\frac{\left(V_{u b}^{\mathrm{th}}-V_{u b}\right)^{2}}{\sigma_{V_{u b}}^{2}}+\frac{\left(\mathcal{J}_{q}^{\mathrm{th}}-\mathcal{J}_{q}\right)^{2}}{\sigma_{\mathcal{J}_{q}}^{2}} \tag{7}
\end{equation*}
$$

3. The minimization of χ^{2} depends in:

- mass ratios* (2σ regions),

	Mass ratios at m_{z}
$\widetilde{m_{u}}\left(m_{z}\right)$	0.0000081 ± 0.0000025
$\widetilde{m_{c}}\left(m_{z}\right)$	0.0036 ± 0.0004
$\widetilde{m_{d}}\left(m_{z}\right)$	0.000998 ± 0.000188
$\widetilde{m_{s}}\left(m_{z}\right)$	0.021 ± 0.006

- δ_{u} and δ_{d},
- ϕ_{1} and ϕ_{2}.

Studied cases:

1. 4 free parameters: $\delta_{u}, \delta_{d}, \cos \phi_{1}$, and $\cos \phi_{2} .\left(S_{3}-S M, w_{1} \neq w_{2}\right)$ (cyan dashed line)
a. 3 free parameters: δ_{u}, δ_{d}, and $\cos \phi_{1}$.. (red dashed line)

■ Mondragón and Rodriguez-Jauregui, Phys. Rev., D59:093009, 1999.
■ Fritzsch and Xing, Prog. Part. Nucl. Phys., 45:1-81, 2000.
■ Barranco, Gonzalez Canales and Mondragón, Phys. Rev., D82:073010, 2010.
b. 2 free parameters: δ_{u} and δ_{d}. (blue solid line)
2. 1 free parameter: ϕ_{2}. $\left(H_{A W}=0 \rightarrow \mathrm{MS}_{3}\right.$ IESM, $\left.w_{1}=w_{2}\right)$ (green dashed line)

Variation of χ^{2} with respect to $\tilde{\boldsymbol{m}}_{s}$

Variation of χ^{2} with respect to \widetilde{m}_{u}

Stage III: Conclusions

"What are the least things that I need in order to explain what I know?" (Prof. M. Lindner)

■ Massive neutrinos (Dirac or Majorana).

- S_{3} (smallest...)

■ A minimally extended Higgs sector.

Thanks for your attention.

"Wine is valued by its price, not its flavour."

A. Trollope

"Is your model better than no model?"

Prof. A. de Gouvea

Backup (Aaahh!)

Quark sector experimental status:

1. An incredible development in the last decade

$$
\left|V_{C K M}\right|=\left(\begin{array}{ccc}
0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347_{-0.00012}^{+0.00016} \\
0.2252 \pm 0.0007 & 0.97345_{-0.00015}^{+0.00015} & 0.0410_{-0.0007}^{+0.0011} \\
0.00862_{-0.00020}^{+0.00026} & 0.0403_{-0.0007}^{+0.0011} & 0.999152_{-0.000045}^{+0.000030}
\end{array}\right) .
$$

2. Any quark model should present a detailed analysis about their predictions.

Unknown scalar sector \rightarrow possibility of adding more H

Recall S_{3} irreps: $2,1_{\mathbf{S}}$, and $1_{\mathbf{A}}$
General case allowed $\rightarrow+3 H\left(H_{\mathrm{D}}, H_{\mathrm{s}}\right.$, and $\left.H_{\mathrm{A}}\right)$

SM $+m_{\nu}+$ Flavour Symm.|.mmyS ruovalF

In the spirit of constructing the simplest model...

1st way

■ No new particles \rightarrow Discrete symmetry groups
■ Mixing angles in terms of mass ratios \rightarrow Non-abelian $+\geq 3 H^{*}$

* D. Wyler, Phys. Rev. D19, 330 (1979)

■ The smallest group $\rightarrow S_{3}$

In the spirit of taking seriously some facts...

2nd way

- Experiments have not found evidence of more families.

■ Universal interactions among 3 massless families $\rightarrow S_{3}$

- Mass distribution pattern: $\mathbf{2} \oplus 1$

$\rightarrow S_{3}$ irreps: $2,1_{\text {s }}$ and 1_{A}
- 1 H :

$$
\mathcal{M}_{f}=\left(\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
0 & \mu_{1} & 0 \\
0 & 0 & \mu_{3}
\end{array}\right)
$$

