Dark Matter in SUGRA Models with Nonuniversal Gaugino Masses

D. P. Roy

Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai – 400088, India

Outline

SUGRA Models with Nonuniversal Gaugino Masses

 $SU(5) \Rightarrow 24 \times 24 = 1(\tilde{B}) + 24(\tilde{B}) + 75(\tilde{H}) + 200(\tilde{H})$: gaugino – mass

- Bulk Annihilation of Bino LSP via Sfermion exchange suppressed by the large Sfermion mass limit from LEP => Generic Overabundance of Bino DM relic density
- Efficient Annihilation of Higgsino LSP via W/Z exchange
 => Underabundance of relic density LSP mass < 1 TeV
- Bulk Annihilation Region of Bino LSP in 1+24, 1+75 & 1+200 Models : Implication for LHC Signal
- Mixed Bino-Higgsino & Bino-Wino-Higgsino LSP in 1+75 and 1+200 Models : Implications for DM and LHC Expts.
- Wino and Higgsino LSP in AMSB Model: TeV scale LSP mass for right relic density => Implications for DM Expts.

Nonuniversal gaugino mass models of SUGRA

$$M_i^G \equiv M_{\lambda i} \in \frac{\langle F_S \rangle_{ij}}{M_{Pl}} \lambda_i \lambda_j; i \& j = 1, 2, 3$$

 $SU(5): F_s \supset 24 \otimes 24 = 1 + 24 + 75 + 200$

n	M	I_3^G	M_2^G	M_1^G
1		1	1	1
24		1	-3/2	2 - 1/2
75		1	3	-5
200		1	2	10

$$F_{S} = 1 \Longrightarrow M_{1,2,3}^{G} = m_{1/2}(Universal) \Longrightarrow M_{1} \cong 0.4m_{1/2} < \mu \cong \sqrt{2}m_{1/2} : \tilde{B} - LSP$$

$$F_{S} = 24 \Longrightarrow M_{1,2,3}^{G} = (-1/2, -3/2, 1) \times m_{1/2} \Longrightarrow |M_{1}| \cong 0.2m_{1/2} < \mu : \tilde{B} - LSP$$

$$F_{S} = 75 \Longrightarrow M_{1,2,3}^{G} = (-5, 3, 1) \times m_{1/2} \Longrightarrow |M_{1}| \cong 2m_{1/2} > \mu \Longrightarrow \tilde{H} - LSP$$

$$F_{S} = 200 \Longrightarrow M_{1,2,3}^{G} = (10, 2, 1) \times m_{1/2} \Longrightarrow M_{1} \cong 4m_{1/2} > \mu \Longrightarrow \tilde{H} - LSP$$

$$\mu^{2} + M_{Z}^{2} / 2 \cong -0.1m_{0}^{2} + 2.1M_{3}^{G2} - 0.2M_{2}^{G2} + 0.2M_{3}^{G}M_{2}^{G}$$

Chattopadhyay & Roy, Huitu et al, Anderson et al, ...

$$\langle F_{S} \rangle = (1 - \kappa) \langle F_{1} \rangle + \kappa \langle F_{24,75,200} \rangle$$

Bino LSP in Non-universal Gaugino Mass Model

King, Roberts & Roy, JHEP 07

Bulk annihilation region of Bino DM (yellow) allowed in Non-universal gaugino mass models

 $m_0 = 70 GeV$

Light right sleptons Even left sleptons lighter than Wino =>Large leptonic BR of SUSY Cascade decay via Wino at LHC

$$\chi_1^0 + \chi_1^0 \xrightarrow{\widetilde{e}} e^+ + e^- + \gamma$$

Hard Positron Signal (PAMELA?)

Particle	Mass (GeV)
$\tilde{\chi}_1^0$ (bino)	78.1
$\tilde{\chi}_2^0$ (wino)	457
$\tilde{\chi}_3^0$ (higgsino)	614
$\tilde{\chi}_4^0$ (higgsino)	636
$\tilde{\chi}_1^+$ (wino)	461
$\tilde{\chi}_2^+$ (higgsino)	635
M_1	81
M_2	470
μ	611
\tilde{g}	1150
$ ilde{ au}_1$	104
$ ilde{ au}_2$	399
$\tilde{e}_R, \tilde{\mu}_R$	115
$\tilde{e}_L, \tilde{\mu}_L$	399
\tilde{t}_1	793
\tilde{t}_2	1025
\tilde{b}_1	980
\tilde{b}_2	1000
$\tilde{q}_{1,2,R}$	~ 1005
$\tilde{q}_{1,2,L}$	~ 1070

Mixed bino-higgsino LSP (DM) 1+75 Model Chattopadhyay, Das & Roy, PRD 09

$$m_{1/2} = (1 - \kappa)m_{1/2}^1 + \kappa m_{1/2}^{75}; \kappa = 0.475$$

$$1 + 200 Model \Rightarrow m_{1/2} = (1 - \kappa)m_{1/2}^1 + \kappa m_{1/2}^{200}; \kappa = 0.12$$

Mixed bino-wino-higgsino LSP (DM)

Bino, Higgsino & Wino LSP Signals in Dark Matter Detection Expts

Not for pure bino, wino or higgsino DM

2. Indirect Detection via HE v from $\chi\chi$ annihilation in the Sun (Ice Cube,Antares)

$$\chi \qquad p \qquad R_{\chi\chi}^{ann.} = R_{\chi}^{trap} \propto \sigma_{\chi p} \propto g_{Z\chi\chi}^{2} \propto (c_{3}^{2} - c_{4}^{2})^{2}$$

$$\Rightarrow OK. for \chi = mixed (\tilde{B} - \tilde{H})$$

$$\Rightarrow Not. for \chi \cong \tilde{B}, \tilde{W} \& \tilde{H} \equiv \tilde{H}_{d} \pm \tilde{H}_{u}$$

Roy, PRD '10 ($\alpha_{75} \equiv \kappa$)

Fig 1. Prediction of the (1+75) model compared with the putative signal corridor of the two candidate events of the CDMS II expt. The blue dots denote the WMAP DM relic density compatible points.

Table 1. Superparticle masses (in GeV) for a WMAP compatible point in the intersection region of the (1 + 75) model prediction with the CDMS II candidate events of Fig 1, corresponding to $m_{1/2} = 144$ GeV and $m_0 = 1255$ GeV. All the remaining sfermion and Higgs boson masses are around 1250 GeV.

χ ⁰ 1(χ)	χ ⁰ 2	χ ⁰ 3	χ ⁰ 4	χ ⁺ 1	χ ⁺ 2	ĝ	ĩ1	₹2	ΰ 1	h^0	
103	120	168	270	121	270	433	760	1063	1054	112	$\sigma_{\chi p} = 3.8 \times 10^{-5} pt$

Low gluino mass ($\leq 800 \text{ GeV}$) => Viable LHC Signal at 7 TeV.

Fig 2. Prediction (1+200) model prediction with the putative signal corridor, corresponding to the two candidate events of the CDMS II expt. Blue dots correspond to the points, compatible with the WMAP DM relic density.

$\mathbf{m}_{1/2}$	m_0	χ ⁰ 1(χ)	χ ⁰ 2	χ ⁰ 3	χ ⁰ 4	χ^+ 1	χ ⁺ 2	ĝ	\tilde{t}_l	\tilde{t}_2	$\mathbf{\tilde{b}}_{l}$	\mathbf{h}^0
725	1450	633	657	794	822	643	818	1700	1460	1813	1801	117
900	1357	798	818	985	1009	807	1005	2045	1649	2013	2001	118

(Other squark masses are in the 2000-2200 GeV range)

Inverted Hierarchy => Decay of the gluino pair via stop $\Rightarrow 3-4$ top quarks in addition to the missing- E_T (like the focus pt. region) \Rightarrow Multiple isolated leptons and b-tags + missing- E_T .

 \Rightarrow Gluino mass of 2.0-2.5 TeV requires LHC at 14TeV

Guchait, Sengupta & DPR PRD 85, 035024 (2012)

TABLE I. Mass spectrum (in GeV) for the three representative parameter points (A) $m_{1/2} = 144$ GeV, $m_0 = 1255$ GeV, (B) $m_{1/2} = 300$ GeV, $m_0 = 1325$ GeV, (C) $m_{1/2} = 300$ GeV, $m_0 = 185$ GeV. For all cases $\tan\beta = 10$ and $A_0 = 0$.

Model	ĝ	\tilde{q}_L	\tilde{q}_R	\tilde{t}_1	\tilde{b}_1	<i>ẽ</i> _l	$ ilde{ au_1}$	χ_1^0	χ^0_2	χ_1^+	χ_2^+
A	433	1280	1274	759	1054	1263	1246	104	122	123	271
В	793	1480	1440	902	1246	1375	1327	227	256	257	501
С	722	750	660	483	649	437	237	231	301	302	490

Proc	Cross section (pb)	N	$T \le 0.95$	$R_T \leq .9$	$\not\!$	$H_T \ge 500$	$n_b \ge 3$	1 fb ⁻¹	5 fb ⁻¹
A: ğ ğ A: q ğ	5.84 0.28	10 k 10 k	6900 8332	3170 4356	446 2042	301 2002	32 315	6.6 3.4	33.0 17.0
Total B: <i>ğ ğ</i> B: <i>q ğ</i>	0.06 0.018	10 k 10 k	8708 9100	5901 6263	2901 4212	2584 4177	779 1322	10 2.07 1.02	50 10.35 5.1
Total C: <i>ğ ğ</i> C: <i>q ğ</i> C: <i>q q</i>	0.1 0.57 0.55	10 k 10 k 10 k	7623 5933 3326	3700 1984 729	2888 1145 433	1761 1030 385	404 121 17	3.09 1.13 1.82 0.3	15.45 5.65 9.1 1.5
Total tī								3.25	16.25
5–200 200–500 500–inf	143.5 16.32 0.16	100 k 50 k 10 k	37162 27831 1741	14548 8559 482	21 109 68	14 54 64	0 3 7	0 0.48 0.09	0 2.4 0.45
Total QCD								0.57	2.85
300–500 500–800	873 43.1	1 M 100 k	194636 19100	27532 2329	7 9	5 9	0 0	0 0	0 0
200-300	6983	1 M	123	14	0	0	0	0	0

Wino LSP (mAMSB model)

SUSY braking in HS in communicated to the OS via the Super-Weyl Anomaly Cont. (Loop)

$$M_{\lambda} = \frac{\beta_{g}}{g} m_{3/2} \Longrightarrow M_{1} = \frac{33}{5} \frac{g_{1}^{2}}{16\pi^{2}} m_{3/2}, M_{2} = \frac{g_{2}^{2}}{16\pi^{2}} m_{3/2}, M_{3} = -3 \frac{g_{3}^{2}}{16\pi^{2}} m_{3/2}$$
$$A_{y} = -\frac{\beta_{y}}{y} m_{3/2} \& m_{\phi}^{2} = -\frac{1}{4} \left(\frac{\partial \gamma}{\partial g} \beta_{g} + \frac{\partial \gamma}{\partial y} \beta_{y} \right) m_{3/2}^{2} + m_{0}^{2}$$

$m_{3/2}$, m_0 , tan β , sign (μ)

 $\mathsf{RGE} \Rightarrow M_1: M_2: |M_3| \approx 2.8: 1: 7.1$ including 2-loop conts

 $\tilde{W} - LSP: M_2 = 2.1 \pm 0.2 TeV \& \tilde{H} - LSP: \mu \cong 1 TeV (m_{\phi} = 10 - 30 TeV)$

Robust results, independent of other SUSY parameters (Valid in any SUSY model with Wino(Higgsino) LSP)

3. Detection of HE γ Rays from Galactic Centre in ACT (HESS,CANGAROO,MAGIC,VERITAS) $\chi \cong \tilde{H} \& \tilde{W}, \tilde{B}$

vσ ~ 10⁻²⁶ cm³/s ⇒Cont. γ Ray Signal (But too large $π^0$ →γ from Cosmic Rays)

$$\tilde{B} - LSP \Rightarrow \chi \chi \xrightarrow{A} b \overline{b} b, b \to \pi^0 s \to \gamma s$$

Reconciling Heavy Wino DM Model with the Relic Density and PAMELA Data with Sommerfeld Enhancement:

Mohanty, Rao & Roy: IJMP A27, 1250025 (2012)

Enhanced by multiple W boson exchange ladder diagram (Sommerfeld Resonace) → Increase of DM Annihilation CS and decrease of relic density at Resonance Peak

Hisano, Matsumoto. Nojiri'03 Lattanzi, Silk '09

FIG. 1: Ladder diagram giving rise to the Sommerfeld enhancement for $\chi \chi \to X \overline{X}$ annihilation, via the exchange of gauge bosons.

Fig. 1. Sommerfield enhancement from W exchange as a function of the DM mass for different relative velocities.

Fig. 9. Positron flux ratio for the 3.98 TeV wino DM compared with PAMELA data.¹ Dashed

E(GeV)

