A new idea to search for charged lepton flavor violation using a muonic atom

Sato, Joe (Saitama Univ.)

Collaborators

Koike, M (Saitama Univ.) Kuno, Y (Osaka Univ.) Sato, T (Osaka Univ) Yamanaka, M (Saitama Univ.) Phys.Rev.Lett.105:121601,2010 And work in progress

Introduction

 $\mu^- e^- \longrightarrow e^- e^-$ in muonic atom

Introduction

What is target ?

Flavor violation between μ and e

- What is advantage ?
- Sensitive to both photonic dipole cLFV operator and 4-Fermi contact cLFV operator
- \Leftrightarrow Clean signal [back-to-back dielectron]

Interaction rate

$$\Gamma(\mu^- e^- \to e^- e^-; Z) = 2\sigma v_{\rm rel} |\psi_{1S}^{(e)}(0; Z-1)|^2$$

Approximation

Muon localization at nucleus position $\left[\because m_e << m_{\mu} \right]$

Overlap = electron wave function at nucleus

r : radial coordinate (distance from nucleus) Z : atomic number of nucleus in muonic atom

Overlap of wave functions $|\psi_{1S}^{(e)}(0; Z-1)|^2$

Interaction rate

$$\Gamma(\mu^- e^- \to e^- e^-; Z) = 2\sigma v_{\rm rel} \psi_{1S}^{(e)}(0; Z-1) |^2$$

Cross section for elemental interaction

$$\mu e \longrightarrow e e$$

 A_{L}

 $A_{\rm R}$

Effective Lagrangian [Y. Kuno and Y. Okada Rev. Mod. Phys. 73 (2001)]

$$\mathcal{L}_{\mu^{-}e^{-} \rightarrow e^{-}e^{-}} = -\frac{4G_{\rm F}}{\sqrt{2}} \Big[m_{\mu}A_{\rm R} \,\overline{\mu_{\rm R}} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu} + m_{\mu}A_{\rm L} \,\overline{\mu_{\rm L}} \sigma^{\mu\nu} e_{\rm R} F_{\mu\nu} + g_{1} \big(\overline{\mu_{\rm R}} e_{\rm L}\big) \big(\overline{e_{\rm R}} e_{\rm L}\big) + g_{2} \big(\overline{\mu_{\rm L}} e_{\rm R}\big) \big(\overline{e_{\rm L}} e_{\rm R}\big) + g_{3} \big(\overline{\mu_{\rm R}} \gamma^{\mu} e_{\rm R}\big) \big(\overline{e_{\rm R}} \gamma_{\mu} e_{\rm R}\big) + g_{4} \big(\overline{\mu_{\rm L}} \gamma^{\mu} e_{\rm L}\big) \big(\overline{e_{\rm L}} \gamma_{\mu} e_{\rm L}\big) + g_{5} \big(\overline{\mu_{\rm R}} \gamma^{\mu} e_{\rm R}\big) \big(\overline{e_{\rm L}} \gamma_{\mu} e_{\rm L}\big) + g_{6} \big(\overline{\mu_{\rm L}} \gamma^{\mu} e_{\rm L}\big) \big(\overline{e_{\rm R}} \gamma_{\mu} e_{\rm R}\big) + (\mathrm{H.c.})\Big]$$

cLFV effective coupling constant

Sensitive to the structure of new physics

 $|g_1|$ $|g_2|$ $|g_3|$ $|g_4|$

 g_6

 g_5

4-Fermi interaction dominant case

Branching ratio

$$Br(\mu^{-}e^{-} \to e^{-}e^{-}) \equiv \tilde{\tau}_{\mu}\Gamma(\mu^{-}e^{-} \to e^{-}e^{-})$$
$$= 24\pi(Z-1)^{3}\alpha^{3}\left(\frac{m_{e}}{m_{\mu}}\right)^{3}\frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}G$$
$$= (3.31 \times 10^{-12})(Z-1)^{3}(\tilde{\tau}_{\mu}/\tau_{\mu})G$$

$$\begin{aligned} \tau_{\mu} & \text{Lifetime of free muon } (2.197 \times 10^{-6} \text{ s}) \\ \tilde{\tau}_{\mu} & \text{Lifetime of bound muon} \begin{bmatrix} 2.19 \times 10^{-6} \text{ s} & \text{for } {}^{1}\text{H} \\ (7 - 8) \times 10^{-8} \text{ s} & \text{for } {}^{238}\text{U} \end{bmatrix} \end{aligned}$$

4-Fermi interaction dominant case

Branching ratio

$$\begin{aligned}
& \text{Br}(\mu^{-}\text{e}^{-} \to \text{e}^{-}\text{e}^{-}) \equiv \tilde{\tau}_{\mu}\Gamma(\mu^{-}\text{e}^{-} \to \text{e}^{-}\text{e}^{-}) \\
&= 24\pi(Z-1)^{3}\alpha^{3}\left(\frac{m_{e}}{m_{\mu}}\right)^{3}\frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}G \\
&= (3.31 \times 10^{-12})(Z-1)^{3}(\tilde{\tau}_{\mu}/\tau_{\mu})G \\
&= (4001 \times 10^{-12})(Z-1)^{3}(\tilde{\tau}_{\mu}/\tau_{\mu})G \\
&= (6001 \times 10^{-12})(Z-1$$

<u>u e</u>

e e

4-Fermi interaction dominant case

Branching ratio

$$Br(\mu^{-}e^{-} \to e^{-}e^{-}) \equiv \tilde{\tau}_{\mu}\Gamma(\mu^{-}e^{-} \to e^{-}e^{-})$$
$$= 24\pi(Z-1)^{3}\alpha^{3}\left(\frac{m_{e}}{m_{\mu}}\right)^{3}\frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}G$$
$$= (3.31 \times 10^{-12})(Z-1)^{3}(\tilde{\tau}_{\mu}/\tau_{\mu})G$$

Enhancement factor from overlap of wave functions

- Positive charge attracts muon and electron toward the nucleus position.

Notable advantage for heavy nuclei

Photonic interaction dominant case

Branching ratio

$$Br(\mu^{-}e^{-} \to e^{-}e^{-})$$

= $1536\pi^{2}(Z-1)^{3}\alpha^{4}(|A_{R}|^{2}+|A_{L}|^{2})\frac{m_{e}}{m_{\mu}}\frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}$
= $2.08 \times 10^{-9}(Z-1)^{3}(|A_{R}|^{2}+|A_{L}|^{2})(\tilde{\tau}_{\mu}/\tau_{\mu})$

Photon propagator in non-relativistic limit $\frac{1}{q^2} \simeq \frac{1}{m_\mu m_e}$

Enhancement factor compared with 4-Fermi case

$$\mu e \rightarrow e e$$
Case : same order cLFV coupling
$$A_{L(R)} \cong g_i \left(i = 1, 2, \dots 6 \right)$$

Ratio between photonic and 4-Fermi cross section

$$\sigma v_{\rm photonic} \sim \alpha \frac{m_{\mu}^2}{m_e^2} \times \sigma v_{\rm 4Fermi} \sim 10^3 \times \sigma v_{\rm 4Fermi}$$

One of the distinct features for the process

Collaboration	Searching for	Intensity
MEG	$\mu \to e\gamma$	$10^{7.5}\mu/{ m s}$
MUSIC	$\mu \to 3 e$	$10^8\mu/{ m s}$
COMET	$\mu^- N \to e^- N$	$10^{11}\mu/{ m s}$
Mu2E (E973)	$\mu^- N \to e^- N$	$10^{11}\mu/{ m s}$
PRISM	$\mu^- N \to e^- N$	$10^{12}\mu/{ m s}$

For run-time 1 year $\sim 3 \times 10^{18}$ s $10^{18} - 10^{19}$ muon at COMET experiment

Project	Intensity Reach	
COMET / PRISM	10¹⁸ – 10¹⁹ μ /year	
ν factories	10²¹ µ /year	

With these number of muons the process will be seen !!

3 Towards a Precise Estimate

 \Leftrightarrow Out-going electron is also attracted

Enhancement of the rate

Bound electron is more concentrated for relativistic wave fn.
Enhancement of the rate

Nuclei is not a point charge

Solve Dirac Eq. numerically

For trial, uniform charge density is assumed

$$V(r) = -\frac{Z\alpha}{R} \left(\frac{3}{2} - \frac{1}{2}\frac{r^2}{R^2}\right) \quad \text{for} \quad r < R$$
$$= -\frac{Z\alpha}{r} \quad \text{for} \quad r > R$$

 $R = 1.2A^{1/3} \mathrm{fm}$

Preliminary Enhancement of the rate for

contact interaction

Z, A = 2Z	Point colomb	Uniform
40	1.86	1.70
80	16.1	6.62
90	39.1	10.5
100	118	17.4

Coulomb force does not change chirality and hence same factorization for g's holds

Branching ratio can be 10^{-17}

Enerov distribution

- Σ Clean signal (back to back electron with $E_{e} \cong m_{\mu} / 2$)
- Σ Interaction rate $\Gamma(\mu^- e^- \to e^- e^-; Z) \sim (Z-1)^3$

Advantage : Large nucleus

Detectable in on-going or future experiments
We wish to observe LFV in the process

Ratio between BR(
$$\mu e \rightarrow e e$$
) and BR($\mu \rightarrow e e e$)

$$\begin{bmatrix} Br(\mu^- e^- \rightarrow e^- e^-) \\ Br(\mu^+ \rightarrow e^+ e^+ e^-) \end{bmatrix} = 192\pi (Z-1)^3 \alpha^3 \left(\frac{m_e}{m_{\mu}}\right)^3 \frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}$$

 Σ Photonic interaction dominant case

Branching ratio ($\mu \longrightarrow e \ e \ e$) $Br(\mu^+ \rightarrow e^+ e^+ e^-)$ $= 128\pi\alpha \left(|A_R|^2 + |A_L|^2 \right) \left[\log \left(\frac{m_\mu}{m_e} \right)^2 - \frac{11}{4} \right]$

Ratio between BR($\mu e \longrightarrow e e$) and BR($\mu \longrightarrow e e e$)

$$\frac{\text{Br}(\mu^- \text{e}^- \to \text{e}^- \text{e}^-)}{\text{Br}(\mu^+ \to \text{e}^+ \text{e}^+ \text{e}^-)}$$
$$= 12\pi (Z-1)^3 \alpha^3 \frac{m_{\text{e}}}{m_{\mu}} \frac{\tilde{\tau}_{\mu}}{\tau_{\mu}} \Big[\log \Big(\frac{m_{\mu}}{m_{\text{e}}}\Big)^2 - \frac{11}{4} \Big]^{-1}$$

 \ge Photonic interaction dominant case

Branching ratio ($\mu \rightarrow e \gamma$) $Br(\mu^+ \to e^+ \gamma) = \frac{\Gamma(\mu^+ \to e^+ \gamma)}{\Gamma(\mu^+ \to e^+ \nu_e \bar{\nu}_\mu; Free)}$ $= 384\pi^2 (|A_{\rm R}|^2 + |A_{\rm L}|^2)$

Ratio between BR($\mu e \longrightarrow e e$) and $\mu \longrightarrow e \gamma$

$$\frac{BR(\mu^{-}e^{-} \to e^{-}e^{-})}{Br(\mu^{+} \to e^{+}\gamma)} = 4(Z-1)^{3}\alpha^{4}\frac{m_{e}}{m_{\mu}}\frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}$$
$$= 5.49 \times 10^{-11}(Z-1)^{3}\frac{\tilde{\tau}_{\mu}}{\tau_{\mu}}$$

COMET (COherent Muon Electron Transition)

 $B(\mu^- + Al \to e^- + Al) < 10^{-16}$