

Electroweak Tests of the Standard Model

Jens Erler (IF-UNAM)

PASCOS 2012 — Mérida, Yuc. (Mexico)

June 7, 2012

Electroweak Tests of the Standard Model

Jens Erler (IF-UNAM)

PASCOS 2012 — Mérida, Yuc. (Mexico)

June 7, 2012

Electroweak Tests of the Standard N list the Higgs

Jens Erler (IF-UNAM)

PASCOS 2012 — Mérida, Yuc. (Mexico)

June 7, 2012

Many Thanks

Many Thanks

for invitation: organizers (especially Myriam Mondragon)

Many Thanks

- for invitation: organizers (especially Myriam Mondragon)
- for collaboration and plots:
 - Leo Bellantoni (FNAL)
 - Jon Heckman, Paul Langacker (IAS Princeton)
 - Krishna Kumar (Amherst, MA)
 - Sky Bauman, Michael Ramsey-Musolf (Madison, WI)
 - Eduardo Rojas (IF-UNAM, Mexico)

ντ	Ţ	ť	t	t	t	T	T	ľt	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=½
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
V μ s=½	μ- s=½	μ+ s=½	C S= ¹ ⁄ ₂	C s=½	C S=½	C s=½	C S= ¹ ⁄2	C S= ¹ ⁄2	S S= ¹ ⁄2	S s=½	S S=½	S S= ¹ ⁄2	S S= ¹ ⁄2	S S= ¹ ⁄2
~ 0	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e -	e +	u	u	u	lu	٦	lu	d	d	d	d	þ	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
н	H≠	Ζ	W -	W+	g	g	g	g	g	g	g	g	Y	G
s=0	s=0	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=2
134	86.3 ξ	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

ντ	Ē	ť	t	t	t	۲	t	ī	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=½	S=½	S=1⁄2	S=1⁄2	S=1/2	S=1/2	S=½	S=1/2	S=1⁄2	S=1⁄2	S=1/2
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
νμ	μ⁻	μ+	C	C	C	C	C	C	S	S	S	S	S	S
S=½	S=½	S=½	S=1⁄2	S=½	S=½	S=½	S=1⁄2	S=1/2	S=1⁄2	S=½	S=½	S=½	S=½	S=½
~ 0	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e -	e +	u	u	u	ū	ū	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=½	S=1/2	S=1⁄2	S=1⁄2	S=1/2	S=1/2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=1/2
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
H	H≢	Ζ	W-	W+	g	g	g	g	g	g	g	g	Y	G
s=0	=0	s=1	S=1	S=1	s=1	s=1	S=1	S=1	S=1	s=1	s=1	S=1	s=1	s=2
101	86.3 ξ	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

Vτ	T-	ţ	t	t	t	۲	١t	۲t	b	b	b	b	þ	b
S=1⁄2	S=1⁄2	S=½	S=1/2	S=1⁄2	S=1/2	S=½	S=½	S=1/2	S=1/2	S=1⁄2	S=1/2	S=1⁄2	S=½	S=½
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
νμ s='	μ- s=½	μ+ s=½	- 1/2	C s=½	C s=½	C s=½	C s=½	C s=½	S S=½	S s=½	S s=½	S S= ¹ ⁄2	S S= ¹ ⁄2	S S=½
~ 0	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e -	e +	u	u	u	ū	ū	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=½	S=1/2
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
H	H≠	Ζ	W-	W+	g	g	g	g	g	g	g	g	Y	G
s=0	s=0	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=2
134	86.3 ξ	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

T 1/2 S-1/2 ~ 0	T S=½ 1.9075	T + S=½ 1.9075	S- /2 176	t S=½ ¹⁷⁶	t S=½ 176	t s=½ ¹⁷⁶	t S=½ 176	t s=½ ¹⁷⁶	b s=½ 4.5	b s=½ 4.5	b s=½ 4.5	b s=½ 4.5	b s=½ 4.5	b s=½ 4.5
V μ s=½ ~0	μ ⁻ s=½ 0.11343	μ+ s=½ 0.11343	C s=½	C s=½	C s=½	C s=½	C s=½ 1.4	C s=½ 1.4	S S= ¹ ⁄2 0.1	S s=½ 0.1	S s=½ 0.1	S S= ¹ ⁄2 0.1	S S= ¹ ⁄2 0.1	S S=½ 0.1
Ve s=½ ~0	e - s=½ 0.00055	e+ s=½ 0.00055	U S=½ 0.003	U s=½ 0.003	U S=½ 0.003	u s=½ 0.003	U S=½ 0.003	U s=½ 0.003	C s=½ 0.005	d s=½ 0.005	d s=½ 0.005	d s=½ 0.005	d s=½ 0.005	d s=½ 0.005
H s=0	H ± S=0 86.3€	Z s=1 ^{97.9}	W - s=1 86.3	W+ s=1 86.3	g s=1	g s=1	g s=1	g s=1	g s=1	g s=1	g s=1	g s=1	Y s=1	G s=2

ντ	Ļ	ť	t	t	t	ľt	۲	T	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
ν μ s=½	=1/2	μ+ s=½	C s=½	C s=½	C s=½	C s=½	C S= ¹ /2	C s=½	S s=½	S s=½	S s=½	S S= ¹ /2	S = ¹ /2	S S= ¹ /2
	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e -	e +	u	u	u	ū	u	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
н	H≠	Ζ	W -	W+	g	g	g	g	g	g	g	g	Y	G
s=0	s=0	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=2
134	86.3 ξ	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

Vτ	1	ť	t	t	t	T	۲t	۲t	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=½	S=1/2	S=1⁄2	S=1⁄2	S=1/2
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
V μ s=½	μ- s=½	μ+ s=½	C S= ¹ / ₂	C s=½	C s=½	C S= ¹ /2	C S= ¹ / ₂	C s=½	S S= ¹ / ₂	S s=½	S S= ¹ ⁄2	S S= ¹ ⁄2	S = ¹ / ₂	S S= ¹ ⁄2
~ 0	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e -	e +	u	u	u	ū	ū	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½	S=1⁄2	S=1⁄2	S=½	S=½
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
H	H≠		W -	W+	Ŀ	g	g	g	g	g	g	g	Y	G
s=0	s=0	S=1	s=1	s=1	1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=2
134	86.3 ξ	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

ντ	τ-	τŤ	t	t	t	Ŧ	Ŧ	Ŧ	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1/2	S=1/2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=1/2	_=½	S=1⁄2	S=1/2	S=½	S=½	S=½
~ 0	1.9075	1.9075	170	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
Vμ	μ- 1⁄	μ+ 1/	C	C	C				S	S	S	S	S	S
S≡72 ~0	S= 72	S=72	S=72	S=72	S= 72	S=72	S= 72	S=72	S= 72	S=72	S= 72	S=72	S= 72	S=72
Ve	e -	e +	u	u	u	ū	ū	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=1⁄2	S=1/2	S=½	S=½	S=½
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
н	H≠	Ζ	W -	W+	g	g	g	g	g	g	g	g	Y	G
s=0	s=0	s=1	s=1	s=1	s=1	s=1	S=1	s=1	s=1	s=1	S=1	s=1	s=1	s=2
134	86.3 E	97.9	86.3	86.3	0	0	0	0	0	0	0	0	0	0

ντ	1	ť	t	t	t	ľ	١t	۲t	b	b	b	b	b	b
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1/2	S=1⁄2	S=½	S=½
~ 0	1.9075	1.9075	176	176	176	176	176	176	4.5	4.5	4.5	4.5	4.5	4.5
V μ s=½	μ- s=½	μ+ s=½	C s= ¹ /2	C s= ¹ /2	C s=½	C s= ¹ /2	C S= ¹ /2	C	S	S	S	S	S = ¹ / ₂	S
~ 0	0.11343	0.11343	1.4	1.4	1.4	1.4	1.4	1.4	0.1	0.1	0.1	0.1	0.1	0.1
Ve	e -	e +	u	u	u	ū	ū	ū	d	d	d	d	d	d
S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=1⁄2	S=½	S=1⁄2	S=1⁄2	S=1⁄2	S=½	S=1⁄2	S=1⁄2	S=½	S=½
~ 0	0.00055	0.00055	0.003	0.003	0.003	0.003	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.005
н	H₹	Ζ	V -	W+	g	g	g	g	g	g	g	g	Y	G
s=0	S=	s=1	=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=1	s=2
134	86.3 ξ	00	86.3	86.3	0	0	0	0	0	0	0	0	0	0

 1970s: discovery of key predictions of the SM (neutral currents, APV, polarized DIS)

- 1970s: discovery of key predictions of the SM (neutral currents, APV, polarized DIS)
- 1980s: establishment of basic structure of the SM (mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)

- 1970s: discovery of key predictions of the SM (neutral currents, APV, polarized DIS)
- 1980s: establishment of basic structure of the SM (mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level \Rightarrow new physics at most a perturbation

- 1970s: discovery of key predictions of the SM (neutral currents, APV, polarized DIS)
- 1980s: establishment of basic structure of the SM (mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level \Rightarrow new physics at most a perturbation
- 2000s (Tevatron): ultra-high precision in m_t (0.5%) and M_W (2×10⁻⁴) \Rightarrow (most of) new physics separated by at least a little hierarchy (or else conspiracy)

- 1970s: discovery of key predictions of the SM (neutral currents, APV, polarized DIS)
- 1980s: establishment of basic structure of the SM (mutually consistent values of $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level \Rightarrow new physics at most a perturbation
- 2000s (Tevatron): ultra-high precision in m_t (0.5%) and M_W (2×10⁻⁴) \Rightarrow (most of) new physics separated by at least a little hierarchy (or else conspiracy)
- 2010s (LHC, intensity frontier): electroweak symmetry breaking sector

Recent Developments

μ^{-} -lifetime and GF

μ^{-} -lifetime and G_F

• $\tau_{\mu}=2.1969803(2.2)\times10^{-6}$ S MuLan 2011 \Longrightarrow

μ^{-} -lifetime and G_F

- $\tau_{\mu}=2.1969803(2.2)\times10^{-6}$ S MuLan 2011 \Rightarrow
- $G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$

μ^- -lifetime and G_F

- $\tau_{\mu}=2.1969803(2.2)\times10^{-6}$ S MuLan 2011 \Rightarrow
- $G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$
- so precise that error in atomic mass unit (u) can shift G_F (*MuLan* quotes $G_F = 1.1663788(7) \times 10^{-5} \text{ GeV}^{-2}$)

μ^- -lifetime and G_F

- $\tau_{\mu}=2.1969803(2.2)\times10^{-6}$ S MuLan 2011 \Rightarrow
- $G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$
- so precise that error in atomic mass unit (u) can shift G_F (MuLan quotes $G_F=1.1663788(7)\times 10^{-5}~GeV^{-2})$
- finite M_W in the W-propagator no longer negligible:
 - correct for, i.e., absorb in Δq : $\tau_{\mu}^{-1} \sim G_{F}^{2} (1 + \Delta q)$
 - or not, i.e., absorb in $\Delta r: \sqrt{32} \text{ G}_F = g^2/M_W^2(1 + \Delta r)$
 - latter convention motivated by effective Fermi theory point of view and used by *MuLan*, and since this year also in *PDG*

τ -lifetime and α_s

τ^{-} -lifetime and α_{s}

• at least one low-energy α_s -value needed to promote Z-width to a SM test (constraint on BSM physics).

τ^{-} -lifetime and α_{s}

- at least one low-energy α_s -value needed to promote Z-width to a SM test (constraint on BSM physics).
- recent developments:
 - 4-loop PQCD coefficient Baikov, Chetyrkin, Kühn 2008
 - FOPT vs. CIPT controversy *Le Diberder, Pich 1992; Beneke, Jamin 2008*
 - fit to condensate terms *Davier et al. 2008; Boito et al. 2012*

τ -lifetime and α_s

- at least one low-energy α_s -value needed to promote Z-width to a SM test (constraint on BSM physics).
- recent developments:
 - 4-loop PQCD coefficient Baikov, Chetyrkin, Kühn 2008
 - FOPT vs. CIPT controversy *Le Diberder, Pich 1992; Beneke, Jamin 2008*
 - fit to condensate terms *Davier et al. 2008; Boito et al. 2012*
- $\alpha_{s}[\tau] = 0.1193 \pm 0.0021$

τ -lifetime and α_s

- at least one low-energy α_s -value needed to promote Z-width to a SM test (constraint on BSM physics).
- recent developments:
 - 4-loop PQCD coefficient Baikov, Chetyrkin, Kühn 2008
 - FOPT vs. CIPT controversy *Le Diberder, Pich 1992; Beneke, Jamin 2008*
 - fit to condensate terms Davier et al. 2008; Boito et al. 2012
- $\alpha_{s}[\tau] = 0.1193 \pm 0.0021$
- α_s [Z-pole] = 0.1197 ± 0.0028 (perfect agreement)
 - only determination with very small theory uncertainty

• $\sin^2 \theta_W^{\text{on-shell}} = 1 - M_W^2 / M_Z^2 = 0.2277 \pm 0.0016$

- $sin^2 θ_W^{on-shell} = 1 M_W^2 / M_Z^2 = 0.2277 ± 0.0016$
- SM: $\sin^2 \theta_W = 0.22296 \pm 0.00028$ (3.0 σ deviation)

- $sin^2 θ_W^{on-shell} = 1 M_W^2 / M_Z^2 = 0.2277 ± 0.0016$
- SM: $\sin^2 \theta_W = 0.22296 \pm 0.00028$ (3.0 σ deviation)
 - deviation sits in g_{L^2} (2.7 σ)

- $\sin^2 \theta_{\rm W}^{\rm on-shell} = 1 M_{\rm W}^2 / M_{\rm Z}^2 = 0.2277 \pm 0.0016$
- SM: $\sin^2 \theta_W = 0.22296 \pm 0.00028$ (3.0 σ deviation)
 - deviation sits in g_{L^2} (2.7 σ)
 - various SM effects have been suggested:

asymmetric strange sea

isospin violation (QED splitting effects *Glück, Jimenez-Delgado, Reya 2005* and PDFs *Sather 1992; Rodionov, Thomas, Londergan 1994; Martin et al. 2004*)

nuclear effects (e.g., isovector EMC effect *cloët, Bentz, Thomas 2009*)

QED Arbuzov, Bardin, Kalinovskaya 2005; Park, Baur, Wackeroth 2009, Diener, Dittmaier, Hollik 2004 QCD Dobrescu, Ellis 2004 and EW Diener, Dittmaier, Hollik 2005 radiative corrections
NuTeV

- $\sin^2 \theta_W^{\text{on-shell}} = 1 M_W^2 / M_Z^2 = 0.2277 \pm 0.0016$
- SM: $\sin^2 \theta_W = 0.22296 \pm 0.00028$ (3.0 σ deviation)
 - deviation sits in g_{L^2} (2.7 σ)
 - various SM effects have been suggested:

asymmetric strange sea

isospin violation (QED splitting effects *Glück, Jimenez-Delgado, Reya 2005* and PDFs *Sather 1992; Rodionov, Thomas, Londergan 1994; Martin et al. 2004*)

nuclear effects (e.g., isovector EMC effect *Cloët, Bentz, Thomas 2009*)

QED Arbuzov, Bardin, Kalinovskaya 2005; Park, Baur, Wackeroth 2009, Diener, Dittmaier, Hollik 2004 QCD Dobrescu, Ellis 2004 and EW Diener, Dittmaier, Hollik 2005 radiative corrections

 situation not conclusive; breaking news @CIPANP: Bob Bernstein confirms that NuTeV fitting functions were applied correctly by *Cloët et al.*

M_W

• $M_W = 80.387 \pm 0.016 \text{ GeV}$ *cdf* & *do* 2012 (±19 MeV *cdf* 2.2 fb⁻¹)

M_{W}

- $M_W = 80.387 \pm 0.016 \text{ GeV}$ *cdf* & *do* 2012 (±19 MeV *cdf* 2.2 fb⁻¹)
- $M_W = 80.376 \pm 0.033$ GeV LEP 2

 $\Rightarrow \sin^2 \theta_W^{\text{on-shell}} \equiv 1 - M_W^2 / M_Z^2 = 0.22290 \pm 0.00028$

 $\Rightarrow sin^2 \theta_W^{eff} = 0.23141 \pm 0.00013 \text{ and } M_H = 96^{+29}_{-25} \text{ GeV}$

M_{W}

- $M_W = 80.387 \pm 0.016 \text{ GeV}$ *cdf* & *do* 2012 (±19 MeV *cdf* 2.2 fb⁻¹)
- $M_W = 80.376 \pm 0.033$ GeV LEP 2

 $\Rightarrow sin^2 \theta_W^{on-shell} \equiv 1 - M_W^2 / M_Z^2 = 0.22290 \pm 0.00028$

 $\Rightarrow sin^2 \theta_W^{eff} = 0.23141 \pm 0.00013 \text{ and } M_H = 96^{+29}_{-25} \text{ GeV}$

• new global electroweak fit: $M_H = 102^{+24}_{-20}$ GeV *JE 2012*

M_{W}

- $M_W = 80.387 \pm 0.016 \text{ GeV}$ *cdf* & *do* 2012 (±19 MeV *cdf* 2.2 fb⁻¹)
- $M_W = 80.376 \pm 0.033$ GeV LEP 2

 $\Rightarrow sin^2 \theta_W^{on-shell} \equiv 1 - M_W^2 / M_Z^2 = 0.22290 \pm 0.00028$

 $\Rightarrow sin^2 \theta_W^{eff} = 0.23141 \pm 0.00013 \text{ and } M_H = 96^{+29}_{-25} \text{ GeV}$

- new global electroweak fit: $M_H = 102^{+24}_{-20}$ GeV *JE 2012*
- prospects for 10 fb⁻¹:
 - no PDF (±10 MeV) & QED (±4 MeV) improvement \Rightarrow ±13 MeV *cpr*
 - most optimistic scenario $\Rightarrow \pm 10 \text{ MeV} cor$
 - cf. with ILC threshold scan: ±6 MeV

• $m_t = 173.4 \pm 0.9_{exp} \pm 0.5_{th} \text{ GeV}$

- $m_t = 173.4 \pm 0.9_{exp} \pm 0.5_{th} \text{ GeV}$
- Question: What is the definition of m_t ?

Correct but useless answer: $m_t = m_t^{Pythia}$ ("Pythia tuning parameter")

We assume $m_t^{Pythia} = m_t^{pole} \pm \Lambda_{QCD}$ where

 $m_t^{\text{pole}} \equiv \overline{m}_t(\overline{m}_t) \left[1 + 4/3 \alpha_s(\overline{m}_t)/\pi + O(\alpha_s^2) + O(\alpha_s^3)\right]$

and Λ_{QCD} = the $O(\alpha_s^3)$ term above (see also *skands, Wicke 2007*)

- $m_t = 173.4 \pm 0.9_{exp} \pm 0.5_{th} \text{ GeV}$
- Question: What is the definition of m_t ?

Correct but useless answer: $m_t = m_t^{Pythia}$ ("Pythia tuning parameter") We assume $m_t^{Pythia} = m_t^{pole} \pm \Lambda_{QCD}$ where $m_t^{pole} = \overline{m_t(m_t)} [1 + 4/3 \alpha_s(\overline{m_t})/\pi + O(\alpha_s^2) + O(\alpha_s^3)]$ and $\Lambda_{QCD} =$ the $O(\alpha_s^3)$ term above (see also *Skands, Wicke 2007*)

• Alternative I: SCET + HQET \rightarrow "jet mass" Fleming, Hoang, Mantry, Stewart 2008

- $m_t = 173.4 \pm 0.9_{exp} \pm 0.5_{th} \text{ GeV}$
- Question: What is the definition of m_t ?

Correct but useless answer: $m_t = \overline{m_t}^{Pythia}$ ("Pythia tuning parameter") We assume $m_t^{Pythia} = m_t^{pole} \pm \Lambda_{QCD}$ where $m_t^{pole} = \overline{m_t}(\overline{m_t}) [1 + 4/3 \alpha_s(\overline{m_t})/\pi + O(\alpha_s^2) + O(\alpha_s^3)]$ and $\Lambda_{QCD} =$ the $O(\alpha_s^3)$ term above (see also *skands, Wicke 2007*)

- Alternative I: SCET + HQET \rightarrow "jet mass" Fleming, Hoang, Mantry, Stewart 2008
- Alternative II: get $\overline{m_t}(\overline{m_t})$ directly from t \overline{t} cross-section \Rightarrow $\overline{m_t}(\overline{m_t}) = 160.0 \pm 3.3 \text{ GeV}$ Langenfeld, Moch, Uwer 2008 $\Rightarrow M_H = 81^{+32}_{-24} \text{ GeV} (m_t^{\text{pole}} = 169.6 \pm 3.5 \text{ GeV})$

- Qweak: measurement of Q_W(p) ~ 1 4 sin²θ_W to 4% in elastic polarized e⁻ p scattering
 - data taking completed
 - similar quantity as weak charges measured in APV, but different kinematics \Rightarrow re-enhancement of $\gamma\text{-}Z$ box
 - also at MESA in Mainz? (if not then MAMI)

- Qweak: measurement of Q_W(p) ~ 1 4 sin²θ_W to 4% in elastic polarized e⁻ p scattering
 - data taking completed
 - similar quantity as weak charges measured in APV, but different kinematics \Rightarrow re-enhancement of $\gamma\text{-}Z$ box
 - also at MESA in Mainz? (if not then MAMI)
- MOLLER: ultra-high precision $\sin^2\theta_W$ measurement in polarized e⁻ e⁻ scattering at 12 GeV CEBAF
 - improvement over sLAC-E158 by factor of 5

- Qweak: measurement of $Q_W(p) \sim 1 4 \sin^2 \theta_W$ to 4% in elastic polarized e⁻ p scattering
 - data taking completed
 - similar quantity as weak charges measured in APV, but different kinematics \Rightarrow re-enhancement of $\gamma\text{-}Z$ box
 - also at MESA in Mainz? (if not then MAMI)
- MOLLER: ultra-high precision $\sin^2\theta_W$ measurement in polarized e⁻ e⁻ scattering at 12 GeV CEBAF
 - improvement over *slac-e158* by factor of 5
- PVDIS and SOLID: array of kinematics points to test strong, EW & new physics

22

- Qweak: measurement of Q_W(p) ~ 1 4 sin²θ_W to 4% in elastic polarized e⁻ p scattering
 - data taking completed
 - similar quantity as weak charges measured in APV, but different kinematics \Rightarrow re-enhancement of $\gamma\text{-}Z$ box
 - also at MESA in Mainz? (if not then MAMI)
- MOLLER: ultra-high precision $\sin^2\theta_W$ measurement in polarized e⁻ e⁻ scattering at 12 GeV CEBAF
 - improvement over *slac-e158* by factor of 5
- PVDIS and SOLID: array of kinematics points to test strong, EW & new physics
- . JLab 12 GeV upgrade

22

Effective 4-Fermi interactions

talk on LENA by Estela Garces tuesday

$g_{\mu}-2$

- $a_{\mu} \equiv (1165920.80 \pm 0.63) \times 10^{-9}$ BNL-E821 2004
- SM: $a_{\mu} = (1165918.41 \pm 0.48) \times 10^{-9}$
 - 3.0 σ deviation (includes e^+e^- and $\tau\text{-decay}$ data)
 - e^+e^- based (annihilation and radiative return): 3.6 σ
 - **τ** based: 2.4 **σ**
 - 2.3 σ discrepancy between experimental $\oint(\tau^- \rightarrow \nu \pi^0 \pi^-)$ and prediction from e⁺e⁻ and CVC
 - but also 1.9 σ conflict between κLOE and BaBar (which is not inconsistent with τ-data)
- new physics (SUSY)? Personally, I am less concerned about the hadronic issues than the absence of BSM hints at the Tevatron/LHC

25

SM Interpretation: MH

- LHC data require "look elsewhere effect correction"
- Can be avoided when combined with electroweak precision data *JE 2012*

30

• $p(M_H) = exp[-\chi^2_{EW}(M_H)/2] Q_{LEP} Q_{Tevatron} Q_{LHC} M_H^{-1}$

factorized form: neglect of correlations

- $p(M_H) \equiv \exp[-\chi^2_{EW}(M_H)/2] Q_{LEP} Q_{Tevatron} Q_{LHC} M_{H^{-1}}$ factorized form: neglect of correlations
- QLEP(MH), QTevatron(MH): likelihood ratios H/H+B

- $p(M_H) \equiv exp[-\chi^2_{EW}(M_H)/2] Q_{LEP} Q_{Tevatron} Q_{LHC} M_{H}^{-1}$ factorized form: neglect of correlations
- QLEP(MH), QTevatron(MH): likelihood ratios H/H+B
- $Q_{LHC}(M_H) = Q_{ATLAS}(M_H) Q_{CMS}(M_H)$ (but not available) instead: $2 \ln Q \equiv \chi^2_{H+B}(M_H) - \chi^2_B(M_H) \equiv (1 - \overline{\sigma}_{obs})^2 / \Delta \overline{\sigma}_+^2 - \overline{\sigma}_{obs}^2 / \Delta \overline{\sigma}_-^2$

- $p(M_H) \equiv exp[-\chi^2_{EW}(M_H)/2] Q_{LEP} Q_{Tevatron} Q_{LHC} M_{H^{-1}}$ factorized form: neglect of correlations
- QLEP(MH), QTevatron(MH): likelihood ratios H/H+B
- $Q_{LHC}(M_H) = Q_{ATLAS}(M_H) Q_{CMS}(M_H)$ (but not available) instead: 2 In $Q \equiv \chi^2_{H+B}(M_H) - \chi^2_B(M_H) \equiv (1 - \overline{\sigma}_{obs})^2 / \Delta \overline{\sigma}_+^2 - \overline{\sigma}_{obs}^2 / \Delta \overline{\sigma}_-^2$
- σ_{obs} : eff. observed X-section (signal strength) combining all channels

- $p(M_H) \equiv exp[-\chi^2_{EW}(M_H)/2] Q_{LEP} Q_{Tevatron} Q_{LHC} M_{H^{-1}}$ factorized form: neglect of correlations
- QLEP(MH), QTevatron(MH): likelihood ratios H/H+B
- $Q_{LHC}(M_H) = Q_{ATLAS}(M_H) Q_{CMS}(M_H)$ (but not available) instead: 2 In $Q = \chi^2_{H+B}(M_H) - \chi^2_B(M_H) =$ $(1 - \overline{\sigma}_{obs})^2 / \Delta \overline{\sigma}_+^2 - \overline{\sigma}_{obs}^2 / \Delta \overline{\sigma}_-^2$
- $\overline{\sigma}_{obs}$: eff. observed X-section (signal strength) combining all channels
- $\Delta \overline{\sigma}_{\pm}$: error pointing in signal (+) and background (–) direction

- $p(M_H) \equiv exp[-\chi^2_{EW}(M_H)/2] Q_{LEP} Q_{Tevatron} Q_{LHC} M_{H^{-1}}$ factorized form: neglect of correlations
- QLEP(MH), QTevatron(MH): likelihood ratios H/H+B
- $Q_{LHC}(M_H) = Q_{ATLAS}(M_H) Q_{CMS}(M_H)$ (but not available) instead: 2 In $Q \equiv \chi^2_{H+B}(M_H) - \chi^2_B(M_H) \equiv (1 - \overline{\sigma}_{obs})^2 / \Delta \overline{\sigma}_+^2 - \overline{\sigma}_{obs}^2 / \Delta \overline{\sigma}_-^2$
- $\overline{\sigma}_{obs}$: eff. observed X-section (signal strength) combining all channels
- $\Delta \overline{\sigma}_{\pm}$: error pointing in signal (+) and background (–) direction
- Poisson statistics $\Rightarrow \Delta \overline{\sigma}_+ > \Delta \overline{\sigma}_-$ but often also $\Delta \overline{\sigma}_+ < \Delta \overline{\sigma}_-$

Examples
• 2 In Q_{ATLAS}(126 GeV) = 9.8 - 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)

 $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ

• 2 In Q_{ATLAS}(126 GeV) = 9.8 - 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)

 $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ

• 2 In $Q_{ATLAS}(244 \text{ GeV}) \approx 2 \text{ In } Q_{ATLAS}(560 \text{ GeV}) \approx -3 (H \rightarrow ZZ)$

- 2 In Q_{ATLAS}(126 GeV) = 9.8 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)
 - $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ
- 2 In Qatlas(244 GeV) \approx 2 In Qatlas(560 GeV) \approx -3 (H \rightarrow ZZ)
- 2 In Q_{CMS}(119.5 GeV) = -5.6 (H \rightarrow ZZ^{*}, WW^{*}, b \overline{b} , $\tau^+ \tau^-$)

• 2 In Q_{ATLAS}(126 GeV) = 9.8 - 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)

 $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ

- 2 In Qatlas(244 GeV) \approx 2 In Qatlas(560 GeV) \approx -3 (H \rightarrow ZZ)
- 2 In Q_{CMS}(119.5 GeV) = -5.6 (H \rightarrow ZZ^{*}, WW^{*}, b \overline{b} , $\tau^+ \tau^-$)
- 2 In Q_{CMS}(124 GeV) = -6.6 (mostly H $\rightarrow \gamma\gamma$)

- 2 In Q_{ATLAS}(126 GeV) = 9.8 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)
 - $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ
- 2 In Qatlas(244 GeV) \approx 2 In Qatlas(560 GeV) \approx -3 (H \rightarrow ZZ)
- 2 In Q_{CMS}(119.5 GeV) = -5.6 (H \rightarrow ZZ^{*}, WW^{*}, b \overline{b} , $\tau^+ \tau^-$)
- 2 In Q_{CMS}(124 GeV) = -6.6 (mostly H $\rightarrow \gamma\gamma$)
- 2 In Q_{Tevatron 2012}(120 GeV) = -8.0 (mostly H \rightarrow b b)

- 2 In Q_{ATLAS}(126 GeV) = 9.8 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)
 - $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ
- 2 In Qatlas(244 GeV) \approx 2 In Qatlas(560 GeV) \approx -3 (H \rightarrow ZZ)
- 2 In Q_{CMS}(119.5 GeV) = -5.6 (H \rightarrow ZZ^{*}, WW^{*}, b \overline{b} , $\tau^+ \tau^-$)
- 2 In Q_{CMS}(124 GeV) = -6.6 (mostly H $\rightarrow \gamma\gamma$)
- 2 In Q_{Tevatron 2012}(120 GeV) = -8.0 (mostly H \rightarrow b b)
- $2 \ln Q_{\text{LEP}}(117 \text{ GeV}) = -1.7 (H \rightarrow 4 \text{ jets } ALEPH)$

- 2 In Q_{ATLAS}(126 GeV) = 9.8 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)
 - $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ
- 2 In QATLAS(244 GeV) \approx 2 In QATLAS(560 GeV) \approx -3 (H \rightarrow ZZ)
- 2 In Q_{CMS}(119.5 GeV) = -5.6 (H \rightarrow ZZ^{*}, WW^{*}, b b, $\tau^+ \tau^-$)
- 2 In Q_{CMS}(124 GeV) = -6.6 (mostly H $\rightarrow \gamma\gamma$)
- 2 In Q_{Tevatron 2012}(120 GeV) = $-8.0 \pmod{H} \rightarrow b \overline{b}$
- 2 In $Q_{LEP}(117 \text{ GeV}) = -1.7 (H \rightarrow 4 \text{ jets } ALEPH)$
- $\chi^2_{EW}(127 \text{ GeV}) \chi^2_{EW}(115.5 \text{ GeV}) = 0.63$

- 2 In Q_{ATLAS}(126 GeV) = 9.8 1.1 = -8.7 (H $\rightarrow \gamma\gamma$, ZZ*)
 - $\sqrt{8.7} = 2.9$ while quoted local significance of excess = 3.6 σ
- 2 In QATLAS(244 GeV) \approx 2 In QATLAS(560 GeV) \approx -3 (H \rightarrow ZZ)
- 2 In Q_{CMS}(119.5 GeV) = -5.6 (H \rightarrow ZZ^{*}, WW^{*}, b \overline{b} , $\tau^+ \tau^-$)
- 2 In Q_{CMS}(124 GeV) = -6.6 (mostly H $\rightarrow \gamma\gamma$)
- 2 In Q_{Tevatron 2012}(120 GeV) = $-8.0 \pmod{H} \rightarrow b \overline{b}$
- 2 In Q_{LEP}(117 GeV) = -1.7 (H \rightarrow 4 jets *ALEPH*)
- $\chi^2_{EW}(127 \text{ GeV}) \chi^2_{EW}(115.5 \text{ GeV}) = 0.63$
- $2 \ln p_{direct}(125 \text{ GeV}) = -13.2$

New Physics Interpretations

canonical examples: 4G & 2HD

canonical examples: 4G & 2HD

 if Higgs hint is real, an extra fermion generation is ruled out (99.6% CL) *Kuflik, Nir, Volansky 2012*

canonical examples: 4G & 2HD

- if Higgs hint is real, an extra fermion generation is ruled out (99.6% CL) *Kuflik, Nir, Volansky 2012*
- 3 scenarios (all need some tuning & faith; mass spectra generally similar)
 - $M_H ≤ 120 \text{ GeV e.g., Dighe, Ghosh,}$ Godbole, Prasath 2012
 - M_H ≈ 450 GeV
 Buchkremer, Gérard, Maltoni 2012
 - M_H ≈ 125 GeV + physics
 beyond 4G. Example: 2HD4G
 Bellantoni, Heckman, JE 2012

MSSM with R-parity

• Precision tests have reached per-mille and sub per-mille accuracy in derived quantities.

- Precision tests have reached per-mille and sub per-mille accuracy in derived quantities.
- Precision data in very good agreement with the SM \Rightarrow tight constraints on new physics.

• Precision tests have reached per-mille and sub per-mille accuracy in derived quantities.

- Precision data in very good agreement with the SM \Rightarrow tight constraints on new physics.
- When combined with the absence of BSM signals at the LHC \Rightarrow more and more likely that new physics is separted from the SM by at least a little hierarchy.

- Precision tests have reached per-mille and sub per-mille accuracy in derived quantities.
- Precision data in very good agreement with the SM \Rightarrow tight constraints on new physics.
- When combined with the absence of BSM signals at the LHC \Rightarrow more and more likely that new physics is separted from the SM by at least a little hierarchy.
- Only tantalizing deviation is in g_{μ} -2.

- Precision tests have reached per-mille and sub per-mille accuracy in derived quantities.
- Precision data in very good agreement with the SM \Rightarrow tight constraints on new physics.
- When combined with the absence of BSM signals at the LHC \Rightarrow more and more likely that new physics is separted from the SM by at least a little hierarchy.
- Only tantalizing deviation is in g_{μ} -2.
- Within SM, Higgs searches + EW precision data give the LHC/Tevatron Higgs hints a 3 $\frac{1}{2} \sigma$ significance (no need for look-elsewhere effect correction).

- Precision tests have reached per-mille and sub per-mille accuracy in derived quantities.
- Precision data in very good agreement with the SM \Rightarrow tight constraints on new physics.
- When combined with the absence of BSM signals at the LHC \Rightarrow more and more likely that new physics is separted from the SM by at least a little hierarchy.
- Only tantalizing deviation is in g_{μ} -2.
- Within SM, Higgs searches + EW precision data give the LHC/Tevatron Higgs hints a 3
 ¹/₂ σ significance (no need for look-elsewhere effect correction).
- . Not confirming the LHC Higgs hint would be a much bigger deal than discovering it

Back-ups

