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Hunting for the Higgs



String theory landscape?

... seems so 5BC 



String theory landscape?

... seems so 5BLHC LHC



D for Dark Energy



D for Dark Energy
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In the year 15AD ... 



D for Dark Energy

Cosmological constant 



Still, while Riess and his team made a striking discovery, the findings also revealed a new mystery. The universe’s acceleration is thought 
to be driven by an immensely powerful force that since has been labeled “dark energy” — but precisely what that is remains an enigma, 
“perhaps the greatest in physics today,” according to the academy that annually awards Nobel Prizes.

Riess called dark energy the “leading candidate” to explain the acceleration of the universe’s expansion, but said he and others in his field 
have plenty of work to do before they determine how it works.

“You’ll win a Nobel Prize if you figure it out,” Riess said. “In fact, I’ll give you mine.”

A challenge:



Cosmic Acceleration & String Theory

The zero of the vacuum energy:

✤ is immaterial in the absence of gravity,

✤can be tuned at will classically.

Solution to the dark energy problem likely
requires quantum gravity!





A landscape of string vacua?



Outline of this talk

The case for the landscape

No-go theorems and attempts to construct explicit models
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STRING THEORY LANDSCAPE

•Many perturbative formulations:

• In each perturbative limit, many topologies:

• For a fixed topology, many choices of fluxes.



STRING THEORY LANDSCAPE
• String theory has many solutions ...

• Fluxes contribute to energy density:

•Quantization of fluxes:

• A large number of moduli (hence possible fluxes) allows 
for the fine-tuning of the cc.
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Bousso Polchinski
• A large discretuum:

• # solutions ~ (# flux quanta)#moduli ~mN~10500
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Figure 1: The allowed values of the four-form energy density are given by the

radius-squared of points in the grid, whose dimension is the number of four-forms

J . The spacing in direction i is qi. The negative of the bare cosmological constant

corresponds to a (J − 1)-dimensional sphere, and cancellation is possible if there

is at least one grid point sufficiently close to the sphere.

An important feature of this result is that that the qi need not be exceed-
ingly small if there are more than two four-form fields. In order to achieve
a small λ, it is sufficient that there be a discrepancy between the magnitude
of λbare and that of the charges. For fixed charges, the task of cancellation
actually becomes easier, the larger the bare cosmological constant. This can
be understood from Fig. 1. The larger the shell, the more points it will
contain.6 The results (2.24) to (2.26) treat the ni as essentially continuous,
and break down if any of the qi exceed J−1/2|2λbare|1/2. In this case the flux
associated with qi should simply be ignored.

6Note, however, that the radius of the shell in Fig. 1 represents not |2λbare|, but the
square root of |2λbare|. This is why one cannot recognize in Fig. 1 the need for the charges
qi to be incommensurate, a fact that is immediately clear from Eq. (2.21). It is also the
reason why increasing |λbare| has no beneficial effect in the case of J = 2. For fixed ∆λ,
the shell gets thinner as one increases its radius. If J = 2, this precisely compensates for
the increase of the shell radius, and the volume remains constant.
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But how many of them are actually (meta)stable?



Explicit Constructions

KKLT, LVS, ...

Classical dS



Flux Compactification
• Fluxes stabilize complex structure moduli but Kahler 

moduli remain unfixed. 

• Non-perturbative effects (D7 gauge instantons or ED3 
instantons) stabilize the Kahler moduli.

• Anti-branes and/or ∆Kpert to “uplift” vacuum energy.

2

plest KKLT models [5] with the superpotential of the
form W = W0 + Ae−aρ and with the Kähler potential
K = −3 ln[ρ+ρ] provide the AdS minima for the volume
modulus ρ = σ + iα at finite, moderately large values
of volume. When this potential is supplemented by a
D-type contribution C

σ2 from D3 brane [5] or D7 branes
[16], one finds a de Sitter minimum. This simplest KKLT
model has a minimum at some real value of the field ρ:
ρ = σ, α = 0. This minimum is separated from the
Minkowski vacuum of Dine-Seiberg type at infinite vol-
ume of the internal space by a barrier, which makes the de
Sitter minimum metastable with the lifetime t ∼ 1010120

years.
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FIG. 1: Thin green line corresponds to AdS stabilized poten-
tial for W0 = −10−4, A = 1, a = 0.1. Dashed line shows
the additional term C

σ2 , which appears either due to the con-

tribution of a D3 brane or of a D7 brane. Thick black line
shows the resulting potential including the C

σ2 correction with
C = 2.6×10−11, which uplifts the AdS minimum to a dS min-
imum. All potentials are shown multiplied by 1015.

Since DiW = 0 in the AdS minimum, its depth is given
by

VAdS = − 3eK |W |2 . (1)

Here all functions are calculated at σ = σcr, where σcr is
the position of the minimum of the potential prior to the
uplifting. We use the units where M2

P = (8πGN )−1 = 1.

Before the uplifting, the potential has only one ex-
tremum, at σ = σcr, and its absolute value exponentially
decreases at σ # σcr. When we add the term C

σ2 , the
minimum shifts upward in such a way that the new dS
minimum is positioned at σ0 ≈ σcr. This means that the
values of the function eK(σ)|W (σ)|2 in the minimum of
the effective potential remain almost unchanged during
the uplifting. Meanwhile, the value of DiW (σ) in the
minimum after the uplifting is no longer equal to zero,
but it still remains relatively small, DiW (σ0) % W (σ0).
At the dS minimum, the total effective potential must
vanish, with the accuracy of 10−120. Therefore one has
C
σ2

0

≈ −VAdS = 3eK |W |2.

The gravitino mass in the uplifted dS minimum is given
by

m2
3/2(σ0) = eK(σ0)|W (σ0)|2 ≈ eK(σcr)|W (σcr)|2 =

VAdS

3
.

(2)

The gravitino mass can be associated with the strength
of supersymmetry breaking at the minimum where the
total potential is approximately vanishing. Indeed,

VKKLT(σ0) = VF + VD = |F |2 − 3m2
3/2 +

1

2
D2 ≈ 0 . (3)

This yields

3m2
3/2 ≈

1

2
D2 + |F |2 . (4)

Now let us discuss the height of the barrier VB which
stabilizes dS state after the uplifting. Since the uplifting
is achieved by adding a slowly decreasing function C/σ2

to a potential which rapidly approaches zero at large σ,
the height of the barrier VB is approximately equal (up
to a factor O(1)) to the depth of the AdS minimum VAdS,
see Fig. 1:

VB ∼ |VAdS| ∼ m2
3/2 . (5)

To complete the list of important features of this
model, let us remember what should be done to use it
for the description of inflation.

The simplest possibility would be to use the extremum
of the potential of the height VB as an initial point for
inflation. A particular realization of this scenario was
proposed in [17]. (In order to do it, it was necessary to
consider a racetrack superpotential with two exponents).
In this case one has an interesting relation between var-
ious parameters of our model and the Hubble constant
during inflation:

H2 ≈ VB/3 ∼ |VAdS|/3 ∼ m2
3/2 . (6)

One may also achieve inflation by considering dynam-
ics of branes in the compactified space. This involves a
second uplifting, which corresponds to a nearly dS (infla-
tionary) potential added to the KKLT potential VKKLT ,
for example in D3/D7 case [18]. The added potential
should be flat in the inflaton direction, and, according to
[18], it has a σ−3 dependence on the volume modulus:

V infl
tot ≈ VKKLT (σ) +

V (φ)

σ3
. (7)

Here φ is an inflaton field. The resulting potential as a
function of σ is schematically shown in Fig. 2 for different
values of the function V (φ). It is apparent from this
figure that the vacuum stabilization is possible in this
model only for sufficiently small values of the inflaton
potential,

V infl
tot

<∼ c VB ∼ c |VAdS| ∼ c m2
3/2 , (8)

ρ

[Kachru, Kallosh, Linde, Trivedi];
[Balasubramanian, Berglund, Conlon, Quevedo];

 ...



But ....

• Non-perturbative effects: difficult to compute 
explicitly. Most work aims to illustrate their existence, 
rather than to compute the actual contributions:

Moreover, the full moduli dependence is suppressed.

• Anti D3-branes: backreaction on the 10D SUGRA 
proves to be very challenging.

[DeWolfe, Kachru, Mulligan];[McGuirk, GS, Sumitomo];[Bena, 
Grana, Halmagyi], [Dymarsky], ...

Wnp = Ae�a� Wnp = A(�i)e�a�



Classical de Sitter solutions

In Type IIA, fluxes alone can stabilize all 
moduli; known examples so far are AdS vacua. 

Absence of np effects, and explicit SUSY 
breaking localized sources, e.g., anti-branes.

Explicitly computable within classical SUGRA.

Solve 10D equations of motion (c.f., 4D EFT).

Readily amenable to statistical studies (later).



Our Ingredients
✤Fluxes: contribute positively to energy and tend to make the 

internal space expands:

✤Branes: contribute positively to energy and tend to shrink the 
internal space (reverse for O-plane which has negative tension):

✤Curvature: Positively (negatively) curved spaces tend to shrink 
(expand) and contribute a negative (positive) energy:

Necessary(ingredients(to(built(models

The(existence(of(classical flux(vacua can(be(understood(as(a(balancing of(various(
forces(coming(from((fluxes,(branes(and(the(curvature of(the(extra(dimensions.(

1. Fluxes:(if(a(submanifold is(filled(with(magnetic(flux(it(wants(to(expand.(Gives(
positive energy(contribution((

2.(((Branes:(energy(comes(from(tension source(term((DBI).(A(positive((negative)(tension(
brane wants(to((shrink((expand)(and(gives(positive((negative)(energy(contribution

3.(((Curvature:(Einstein(equations(entail(that(positively((negatively)(curved(dimensions(
want(to(shrink((expand)(and(give(negative((positive)(energy(contribution

Example:((Freund(Rubin:(AdS_4(X(S^7
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Universal Moduli

on dS solutions in IIA [4, 5]2. It is one of our aims to improve on these works since the
proposed stable dS solution in [5] turns out to not solve the 10D equations of motion
whereas the candidate example in [4] is perturbatively unstable. Furthermore, because
of the complexity of the solution in [4] it is hard to check that it really solves the 10D
equations of motion3.

We investigate the effective potential for such Type II compactifications and search for
de Sitter critical points in models with orientifold sources and fluxes on a compact internal
manifold. Our treatments for Type IIA and IIB theories are completely parallel except for
some obvious changes as one goes between these duality frames. We derive several no-go
conditions for the existence of de Sitter solutions, and explore some explicit models that
circumvent them. In the specific case of SU(3)-structure manifolds in IIA with smeared
O6 planes, we find de Sitter solutions that solve the 10D equations of motion when certain
conditions on the torsion classes are satisfied, even though the stability of such de Sitter
solutions needs to be checked once specific models are found. On the other hand, we verify
that these torsion conditions are not satisfied for the coset geometries. These examples
illustrate the utility and power of the no-go constraints. It remains an open problem
whether there exist SU(3)-manifolds that satisfy the conditions on the torsion classes for
these simple de Sitter solutions to be realized.

As an interesting aside we find that our analysis allows us to construct new non-
supersymmetric AdS solutions for some coset geometries.

2 The coupling and volume dependence of Vtree

The number of scalar fields appearing in an effective 4D theory after compactification
depends on the specifications of the compactification under consideration. Nonetheless
there are 2 universal moduli that always appear, these are the string coupling φ and the
internal volume V. The appearance in the effective potential at tree-level is also universal,
see for instance [1, 15]. In the following we re-derive these potential terms from type II
supergravity since we will need these to derive our nogo theorems in the next section.

The metric Ansatz, in 10 dimensional string frame, that describes an unwarped reduc-
tion to 3 + 1 dimensions is

ds210 = τ−2ds24 + ρ ds26 , (1)

where we have to take
τ ≡ ρ3/2e−φ , (2)

in order to find 4D Einstein frame4.
2For literature on non-classical dS solutions in IIA we refer to [19–21].
3In the sourceless case, that admits no dS solutions, there exist arguments showing that the dimensional

reduction is consistent [22].
4In our conventions, the 10D string frame action is

∫
√

| g |e−2φ(R+ 4(∂φ)2 + . . .).
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✤Consider metric in 10D string frame and 4d Einstein frame:

ρ, τ are the universal moduli.

✤The various ingredients contribute to V in some specific way:

✤The full 4D potential V(ρ,τ,φi) = VR + VH + Vq + Vp.



Intersecting Brane Models
✤Consider Type IIA string theory with intersecting D6-branes/

O6-planes in a Calabi-Yau space:

a popular framework for building the Standard Model (and 
beyond) from string theory. See [Blumenhagen, Cvetic, Langacker, GS]; 
[Blumenhagen, Kors, Lust, Stieberger];[Marchesano]; ... for reviews.  

114 CHAPTER 7. YUKAWA COUPLINGS

7.1.2 Yukawa couplings in intersecting D-brane models

Up to now, we have only considered superpotentials arising from one single stack of D6-branes. In the
intersecting brane world picture we have given above, however, chiral matter in the bifundamental
arises from the intersection of two stacks of branes, each with a different gauge group. It thus seems
that, in order to furnish a realistic scenario, several stacks of branes are needed. In fact, given the
semi-realistic model-building philosophy considered in Chapter 5, it seems that a minimal number
of four stacks of branes are necessary in order to accommodate the chiral content of the Standard
Model in bifundamentals. Notice that the general discussion there applies equally well to a Calabi-
Yau compactification, so we would again have the stacks named as Baryonic (a), Left (b), Right (c)
and Leptonic (d), which multiplicities Na = 3, Nb = 2, Nc = 1 and Nd = 1 and wrapping special
Lagrangian submanifolds of a CY3. The SM gauge group and U(1) structure will appear just as in
the toroidal case, and SM chiral fermions will naturally arise from pairs of intersecting stacks. This
scenario has been depicted schematically in figure 7.2.
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Figure 7.2: The Standard Model at intersecting D-branes. a) Four stacks of branes, baryonic, left,
right and leptonic are needed to get all quark and leptons at the intersections. b) The SM branes
may be wrapping cycles on a, e.g., CY3 manifold, with appropriate intersection numbers so as to
yield the SM chiral spectrum of table 5.2 or 6.2.

Notice that considering a full D6-brane configuration instead of one single brane makes the super-
symmetry discussion more involved. Although each of the components of the configuration (i.e., each
stack of D6-branes) is wrapping a special Lagrangian cycle and thus yields a supersymmetric theory on
its worldvolume, it may well happen that two cycles do not preserve a common supersymmetry. In a
CY3 of SU(3) holonomy this picture is conceptually quite simple. There only exist one family of real
volume forms Ω parametrized by a phase eiθ. Two sL’s Πα, Πβ will preserve the same supersymmetry
if they are calibrated by the same real 3-form, that is, if θα = θβ in (6.4). In this case, a chiral fermion
living at the intersection Πα ∩ Πβ will be accompanied by a complex scalar with the same quantum
numbers, filling up a N = 1 chiral multiplet 1. In manifolds of lower holonomy, however, there are far
more possibilities, since many more SUSY’s are involved. Consideration of such possibilities lead to
the idea of Quasi-Supersymmetry in [23,24] (see [211,212] for related work). In order to simplify our
discussion, we will suppose that all the branes preserve the same N = 1 superalgebra, although our
results in the next section seem totally independent of this assumption.

1Departure from the equality of angles will be seen as Fayet-Iliopoulos terms in the effective D = 4 field theory.
Contrary to the superpotential, these FI-terms are predicted to depend only on the complex structure moduli of the
CY3. These aspects have been explored in [191,197] in the general case, and computed from the field theory perspective
in the toroidal case in [23].
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No-go Theorem(s)

✏ � O(1)

✤For Calabi-Yau, VR =0, we have: 

✤The universal moduli dependence leads to an inequality:

✤This excludes a de Sitter vacuum:

 as well as slow-roll inflation since            .

✤More general no-goes were found for Type IIA/B theories with 
various D-branes/O-planes. [Haque, GS, Underwood, Van Riet, 08]; 
[Danielsson, Haque, GS, van Riet, 09];[Wrase, Zagermann,10].



No-go Theorem(s)
✤Evading these no-goes: O-planes [introduced in any case 

because of [Gibbons; de Wit, Smit, Hari Dass; Maldacena,Nunez]], fluxes, 
often also negative curvature. [Silverstein + above cited papers]

✤Classical AdS vacua from IIA flux compactifications with D6/O6 
were found [Derendinger et al; Villadoro et al; De Wolfe et al; Camara et al].

✤  Minimal ingredients needed for dS [Haque, GS, Underwood, Van Riet]:

       1) O6-planes 2) Romans mass 3) H-flux 4) Negatively curved internal space.

Heuristically: negative internal 
scalar curvature acts as an 

uplifting term.



Minimal Constraints for Stability

✤Sylvester’s Criterion: An N x N Hermitian matrix is positive definite 
iff all upper-left n x n submatrices (n≤N) are positive definite.

✤Mass matrix M of 2D universal moduli subspace must satisfy:

✤The minimal ingredients for classical dS extrema tabulated in 
[Danielsson, Haque, GS, van Riet, 09];[Wrase, Zagermann,10]:

all turn out to have an unstable mode!

detM > 0, trM > 0

fdp header will be provided by the publisher 3

Curvature No-go, if No no-go in IIA with No no-go in IIB with

VR6 ∼ −R6 ≤ 0
q + p− 6 ≥ 0, ∀p, q,
ε ≥ (3+q)2

3+q2 ≥ 12
7

O4-planes andH , F0-flux O3-planes andH , F1-flux

VR6 ∼ −R6 > 0

q + p− 8 ≥ 0, ∀p, q,
(except q = 3, p = 5)
ε ≥ (q−3)2

q2−8q+19 ≥ 1
3

O4-planes and F0-flux
O4-planes and F2-flux
O6-planes and F0-flux

O3-planes and F1-flux
O3-planes and F3-flux
O3-planes and F5-flux
O5-planes and F1-flux

Table 1 The table summarizes the conditions that are needed in order to find a no-go theorem in the (ρ, τ )-plane and
the resulting lower bound on the slow-roll parameter ε. The third and fourth column spell out the minimal ingredients
necessary to evade such a no-go theorem.

that give an effective 4D, N = 1 supergravity action, which leads us to SU(3)-structure manifolds with
O6-planes in IIA, and SU(2)-structure compactifications with O5- and O7-planes in type IIB string theory.4

3 Type IIA

The attempts to construct classical dS vacua in IIA compactifications on manifolds with negative curvature
and O6-planes were initiated in [18], where also other types of sources such as KK5-monopoles were
used. A similar construction with only the ingredients of eq. (1) was attempted in [20], whereas in [17] the
authors argued that the constructions of [18] and [20] cannot be lifted to full 10D solutions.
In this note, we review IIA compactifications on a special class of SU(3)-structure manifolds, namely

coset spaces [11, 12, 21] involving semisimple and Abelian groups, as well as twisted tori (solvmanifolds)
[22, 23]. The underlying Lie group structure endows these spaces with a natural expansion basis (the left-
invariant forms) for the various higher-dimensional fields and fluxes, and one expects that the resulting 4D,
N = 1 theory is a consistent truncation of the full 10D theory [24]. Furthermore, in these compactifications
it is possible to stabilize all moduli in AdS vacua [10, 6, 22]. This means that the scalar potential generically
depends on all moduli, which is a prerequisite for the construction of metastable dS vacua.
Whereas the previous analysis focused on the behavior of the potential in the volume-dilaton plane, it is

clear that once the no-go theorems using these fields are circumvented, one must still make sure that there
are no other steep directions of the scalar potential in directions outside the (ρ, τ)-plane. For the coset
spaces and twisted tori studied in [21, 23], the volume turns out to factorize further into a two-dimensional
and a four-dimensional part: vol6 = ρ3 = ρ(2)ρ

2
(4). In such cases one can then study directions involving

ρ(2) or ρ(4) and finds that, if for a given model

(−2τ∂τ − ρ(4)∂ρ(4)
)VR6 ≥ 6VR6 , (2)

then the full scalar potential also satisfies (−2τ∂τ − ρ(4)∂ρ(4)
)V ≥ 6V , and one obtains the bound ε ≥ 2.

In [21] six out of seven coset spaces could be excluded by this refined no-go theorem. In [23] many similar
no-go theorems were discussed and used to exclude almost all concrete models of twisted tori.
The only spaces that could not be excluded in this manner are SU(2) × SU(2) with four O6-planes

and a twisted version of T 6/Z2 × Z2. These two spaces are closely related [25], and therefore it is not
surprising that they have very similar properties. In particular, for both of these models it is possible to
find (numerical) dS extrema [21, 23]. Unfortunately, these dS extrema are unstable as one of the 14 real
scalar fields turns out to be tachyonic with an η parameter of order one. Interestingly, this tachyon is not
the potential tachyon candidate identified for certain types of Kähler potentials in [26]. This can also be
seen from the results in [27], where a similar Kähler potential and a modified superpotential based on
non-geometric fluxes lead to stable dS vacua (see also [28, 29, 30]).

4 We need to compactify on an SU(2)-structure manifold in IIB, because the F1-flux requires a 1-form. N = 1 supersymmetry
then also requires O7-planes in addition to the O5-planes.

Copyright line will be provided by the publisher

[GS, Sumitomo, 11]



Minimal Ingredients
✤A negatively curved internal space:

✤Backreaction of NS-NS & RR fluxes including the Romans mass.

✤Orientifold planes

Ricci-flat Negatively curved



Generalized Complex Geometry

✤ Interestingly, such extensions were considered before in the 
context of generalized complex geometry (GCG). 

✤Among these GCG, many are negatively curved (e.g., twisted 
tori), at least in some region of the moduli space [Lust et al; Grana 
et al; Kachru et al; ...].

✤Attempts to construct explicit dS models were made soon 
after no-goes [Haque,GS,Underwood,Van Riet];[Flauger,Paban,Robbins, 
Wrase]; [Caviezel,Koerber,Lust,Wrase,Zagermann];[Danielsson,Haque,GS,van Riet]; [de 
Carlos,Guarino,Moreno];[Caviezel, Wrase,Zagermann];[Danielsson, Koerber, Van Riet]; ....

✤A systematic search within a broad class of such manifolds 
[Danielsson, Haque, Koerber, GS, van Riet, Wrase]. 



Two Approaches

SUSY broken 
@ or above
KK scale

SUSY broken 
below 

KK scale

[Silverstein, 07]; 
[Andriot, Goi, Minasian, Petrini, 10]; 
[Dong, Horn, Silverstein, Torroba, 10]; 
...

Do not lead to an effective
SUGRA in dim. reduced theory

Lead to a 4d SUGRA (N=1):
[This talk]

➡ Spontaneous SUSY state 
➡ Potentially lower SUSY scale
➡ Much more control on the EFT
➡ c.f. dS searches within SUGRA 

        [Roest et al];[de Roo et al] 



Search Strategy

 

✤GCG: natural framework for N=1 SUSY compactifications 
when backreaction from fluxes are taken into account.

✤Type IIA SUSY AdS vacua arise from specific SU(3) structure 
manifolds [Lust, Tsimpis];[Caviezel et al];[Koerber, Lust, Tsimpsis]; ... 

✤Modify the AdS ansatz for the fluxes (which solves the flux 
eoms from the outset) and search for dS solutions.

✤Spontaneously SUSY breaking state in a 4D SUGRA: powerful 
results & tools from SUSY, GCG.

 



SU(3) Structure

 

✤SUSY implies the existence of a nowhere vanishing internal 6d 
spinor η+ (and complex conjugate η-).

✤Characterized by a real 2-form J and a complex 3-form Ω:

satisfying 

✤J, Ω define SU(3) structure, not SU(3) holonomy:  generically 
dJ≠0 and dΩ≠0.

Introduction Ansatz and conditions Example: SU(2)×SU(2) Conclusions

Learn from N = 1 susy AdS solutions with
SU(3)-structure

Susy implies the existence of nowhere-vanishing internal 6d spinor
η+ (and complex conjugate η−)

Define forms:

J =
i

2||η||2
η†+γi1i2η+dx

i1 ∧ dxi2

Ω =
1

3!||η||2
η†−γi1i2i3η+dx

i1 ∧ dxi2 ∧ dxi3

J and Ω define SU(3)-structure, not holonomy since generically
dJ "= 0, dΩ "= 0: geometric flux

Susy conditions translate into condition dJ and dΩ

More general: η1, η2: SU(3)×SU(3)-structure
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Universal type IIA de Sitter solutions at tree-level (Paul Koerber)

A Form conventions for reduction to 4D

Consider type IIA string theory on an SU(3)-structure manifold M6, equipped with a Z2

orientifold action which includes an anti-holomorphic involution σ. The forms on M6 then
split into even and odd parts, depending upon the behavior of each class under σ. We will
take the following basis of representative real forms28:

• The zero-form 1,

• a set of odd two-forms Y (2−)
i , i = 1, . . . , h1,1

− ,

• a set of even two-forms Y (2+)
α , α = 1, . . . , h1,1

+ ,

• a set of even four-forms Y (4+)i, i = 1, . . . , h1,1
− ,

• a set of odd four-forms Y (4−)α, α = 1, . . . , h1,1
+ ,

• a six form Y (6−), odd under σ,

• a set of even three-forms Y (3+)
K , K = 1, . . . , h2,1 + 1,

• and a set of odd three-forms Y (3−)K , K = 1, . . . , h2,1 + 1.

It turns out that we can always choose the Y (3+)
K and Y (3−)K to form a symplectic basis

such that the only non-vanishing intersections are
∫

Y (3+)
K ∧ Y (3−)J = δJK . (A.1)

Furthermore, we define the triple intersecting numbers

κijk =

∫

Y (2−)
i ∧ Y (2−)

j ∧ Y (2−)
k , κ̂iαβ =

∫

Y (2−)
i ∧ Y (2+)

α ∧ Y (2+)
β , (A.2)

and take the even degree forms to satisfy
∫

Y (6−) = 1,

∫

Y (2−)
i ∧ Y (4+)j = δji ,

∫

Y (2+)
α ∧ Y (4−)β = δβα. (A.3)

B Half-flat manifolds

A six-dimensional SU(3)-structure manifold can be characterized by a globally defined
real two-form J and a complex decomposable three-form Ω = ΩR + iΩI , satisfying a
compatibility and a normalization condition

Ω ∧ J = 0 , Ω ∧ Ω∗ = (4i/3) J ∧ J ∧ J = 8i vol6 . (B.1)

28The existence of everywhere non-vanishing one-forms would imply that the structure group is a strict
subgroup of SU(3) like for example SU(2) or the trivial group. We do not consider such cases here.
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SU(3) Torsion Classes

2. FROM G-STRUCTURES TO CALABI-YAU GEOMETRY

Torsion classes Name
W1 = W2 = 0 Complex

W1 = W3 = W4 = 0 Symplectic
W2 = W3 = W4 = W5 = 0 Nearly Kähler
W1 = W2 = W3 = W4 = 0 Kähler

ImW1 = ImW2 = W4 = W5 = 0 Half-flat
W1 = ImW2 = W3 = W4 = W5 = 0 Nearly Calabi-Yau
W1 = W2 = W3 = W4 = W5 = 0 Calabi-Yau

W1 = W2 = W3 = 0, (1/2)W4 = (1/3)W5 = −dA Conformal Calabi-Yau

Table 1: Classification of geometries from vanishing SU(3) torsion classes. Adapted from
table 3.1 of [1].

described by respectively the primitive W2,

W2 ∧ ω ∧ ω = 0 , (2.73)

and again W1. Because the Wi in dΩ are complex these representations count twice.
It follows from (2.58) that if W1 = W2 = 0 the almost complex structure is integrable

and the manifold is complex. On the other hand, if W1 = W3 = W4 = 0 we find dω = 0
and the manifold is called symplectic. If the manifold is both complex and symplectic,
then it is a Kähler manifold and ω is called the Kähler form. In this case the manifold
has U(3)-holonomy. If on top of that also W5 = 0 the holonomy reduces to SU(3) and the
manifold is Calabi-Yau. If (ω,Ω) define a Calabi-Yau holonomy up to on overall factor eA,
i.e. (ω′,Ω′)=(e2Aω, e3AΩ) is Calabi-Yau then the geometry is called conformal Calabi-Yau
(see example 4.1). Another interesting case which is relevant for the study of type IIA
AdS4 compactifications [39, 40] is W2 = W3 = W4 = W5, which is called nearly Kähler
(see section 4.3). See table 1 for an overview containing some more cases.

For Calabi-Yau manifolds there exists the following celebrated theorem.

Theorem 2.2 (Calabi-Yau). On a compact Kähler manifold M of dimension d with
Kähler form ω̃ and complex structure J , for which there exists a globally defined nowhere-
vanishing (d/2, 0)-form Ω, there is a unique metric with Kähler form ω in the same Kähler
class as ω̃ (which means ω̃ = ω + dα) such that (fΩ,ω), with appropriate normalization
function f , is Calabi-Yau.

The requirement that there exists a globally defined nowhere-vanishing (d/2, 0)-form
is often phrased as the statement that the integral Chern class c1(M,Z) vanishes or that
the canonical line bundle Ωd/2,0(M) is trivial. Sometimes the extra requirement that the
fundamental group ofM be trivial (and thus b1 = 0) is imposed in order to exclude “trivial”
or reducible Calabi-Yau manifolds, like tori or products of tori with lower-dimensional
Calabi-Yau manifolds. Note that although because of the above theorem it is known that
there is a unique Calabi-Yau metric, except for tori, this metric is not analytically known.

2.5 The language of spinors

Finally we come to the last way of describing an SU(d/2)-structure: an invariant spinor
and its complex conjugate. In fact, since GL(d,R) does not have a spinor representation

21

Introduction Ansatz and conditions Example: SU(2)×SU(2) Conclusions

SU(3)-structure AdS4 solutions

Lüst,Tsimpis

Geometric flux i.e. non-zero torsion classes:

dJ =
3

2
Im(W1Ω

∗) +W4 ∧ J +W3

dΩ = W1J ∧ J +W2 ∧ J +W∗
5 ∧Ω
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Universal type IIA de Sitter solutions at tree-level (Paul Koerber)

The non-closure of the exterior derivatives characterized by:
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Universal type IIA de Sitter solutions at tree-level (Paul Koerber)

The non-closure of the exterior derivatives characterized by:

compatible with the orbifold/orientifold symmetries considered



Universal Ansatz
✤Ricci tensor can be expressed explicitly in terms of J, Ω  and 

the torsion forms [Bedulli, Vezzoni].

✤ In terms of the universal forms:

one finds a natural ansatz for the fluxes:

✤Universal ansatz: forms appear in all SU(3) structure (in this 
case, half flat) manifolds. 

10D approach to manifolds that are not half-flat.
A half-flat manifold possesses a set of canonical forms, which we call universal forms

and they are given by the (would-be) real Kähler form J and the (would be) holomorphic
complex three-form Ω, and the torsion classes W1,W2,W3

universal forms:
{

J,Ω,W1,W2,W3

}

. (2.13)

These then serve as natural expansion forms for the fluxes. Hence a general ansatz for a
solution could be given by

eΦF̂0 = f1 , (2.14a)

eΦF̂2 = f2J + f3Ŵ2 , (2.14b)

eΦF̂4 = f4J ∧ J + f5Ŵ2 ∧ J , (2.14c)

eΦF̂6 = f6vol6 , (2.14d)

H = f7ΩR + f8Ŵ3 , (2.14e)

j = j1ΩR + j2Ŵ3 . (2.14f)

where the fluxes are decomposed as follows:

F = F̂ + vol4 ∧ F̃ . (2.15)

The fluxes F̂ and F̃ have only components in the internal dimensions. We furthermore
used the notation of [19] where Ŵ i = (

√

|W i|2)−1W i 9. This ansatz is consistent with the
orientifold involutions for supersymmetrically embedded orientifold planes [32]. In order to
check for which coefficients f1, . . . , f8 and j1, j2 we have a solution we need the expression
for the Ricci tensor as demanded by the Einstein equations. The Ricci tensor for a general
SU(3)-structure manifold has been established in [54] and is presented in appendix B.
The relevant property is that it is given in terms of the universal forms. It is for this
reason that a universal ansatz (where the fluxes and sources are given by universal forms)
is sensible, since the Einstein equation forces the energy-momentum tensor to be made
from universal forms. However, to our surprise, most de Sitter solutions in the models we
consider below are not universal. This implies that there must be non-trivial cancelations
of the non-universal flux pieces in the energy-momentum tensor.

It turns out that in order to find solutions different from the SUSY AdS solutions, one
needs to impose constraints on the universal forms. These constraints are such that the
equations of motion imply fewer constraints and therefore make possible the existence of

9We define the square of a p-form as A2
p = 1

p!Ai1...ipA
i1...ip .
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same ansatz in finding SUSY 
AdS vacua [Lust, Tsimpis] 



O-planes
✤To simplify, we take the smeared approximation:

i.e., we solve the eoms in an “average sense”. If backreaction 
is ignored, eoms are not satisfied pointwise [Douglas, Kallosh].

✤Finding backeacted solutions with localized sources proves to 
be challenging (more later) [Blaback, Danielsson, Junghans, Van 
Riet, Wrase, Zagermann].

✤The Bianchi identity becomes: 

✤The source terms of smeared O-planes in dilaton/Einstein 
eoms can be found in [Koerber, Tsimpis, 07].

A"final"thing"of"interest"in"the"Ricci"tensor"for"these"spaces."This"can"be"done"in"terms"
of"the"previous"forms"[Bedulli &"Vezzoni�����	���������������
�

Idea"to"find"dS in universal"way:"
["Danielsson,"Haque,"Shiu,"VR,"2009,"Danielsson,"Koerber,"VR,"2010]

Make"10d"Ansatz in"terms"of"universal"forms"and"solve"all"equations"Eg:

Where"""""""""""is"the"source"term"for"SMEARED"O6"planes,"appearing"in"the"Bianchi"identity""

since"O6"is"magnetically"charged."To"fully"do"the"computation"one"needs"to"know"the"
source"terms"of"the"smeared"O6"planes"in"the"dilaton and"Einstein"equations"of"motion."
This"was"derived"in"eg [Koerber&Tsimpis,"2007]."

A"final"thing"of"interest"in"the"Ricci"tensor"for"these"spaces."This"can"be"done"in"terms"
of"the"previous"forms"[Bedulli &"Vezzoni�����	���������������
�

Idea"to"find"dS in universal"way:"
["Danielsson,"Haque,"Shiu,"VR,"2009,"Danielsson,"Koerber,"VR,"2010]

Make"10d"Ansatz in"terms"of"universal"forms"and"solve"all"equations"Eg:

Where"""""""""""is"the"source"term"for"SMEARED"O6"planes,"appearing"in"the"Bianchi"identity""

since"O6"is"magnetically"charged."To"fully"do"the"computation"one"needs"to"know"the"
source"terms"of"the"smeared"O6"planes"in"the"dilaton and"Einstein"equations"of"motion."
This"was"derived"in"eg [Koerber&Tsimpis,"2007]."
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Finding Solutions
✤The dilaton/Einstein/flux eoms and Bianchi identities can be 

expressed as algebraic equations (skip details).

✤To find solutions other than the SUSY AdS, impose constraints:

 for some c’s and d’s.

new solutions. These constraints are

dŴ2 = c1ΩR + d1Ŵ3 , (2.16a)

Ŵ2 ∧ Ŵ2 = c2J ∧ J + d2Ŵ2 ∧ J , (2.16b)

d !6 Ŵ3 = c5J ∧ J + c3Ŵ2 ∧ J , (2.16c)

1

2
(Ŵ3 iklŴ3 j

kl)+ = d4JikŴ2
k
j . (2.16d)

where

c1 = −w2

4
, c2 = − 1

3!
, c3 = −d1, c4 =

1

2
, c5 =

w3

3!
(2.17a)

d2 = − !6 (Ŵ2 ∧ Ŵ2 ∧ Ŵ2) , (2.17b)

and

w2 =
√

W 2
2 , w3 =

√

W 2
3 . (2.18)

It is then straightforward to put the ansatz into the IIA equations of motion (see [19]) to
obtain the algebraic equations for the flux parameters. These are very lengthy expressions
and we therefore present them in appendix C. It is very non-trivial to find the general
solution to these algebraic equations but many solutions have nonetheless been found.

Let us review these solutions

• The SUSY AdS solutions necessarily have W3 = 0 and they require us to enforce the
first constraint in equations (2.16) [52, 55].

• Non-SUSY AdS solutions can be found when W3 = 0 when we also enforce the second
constraint in equations (2.16) [10, 53].

• De Sitter solutions can be found under the same circumstances as the above non-
SUSY AdS vacua [10], however no explicit geometry has been found that satisfies the
parameter windows that gives these dS solutions, as opposed to the AdS solutions.

• Universal solutions with non-zero W3 have been investigated in [19] but with the
simplification that W2 = 0. In that case AdS, Minkowski and dS solutions are
possible when we enforce the third and fourth constraint in equations (2.16) with
the choice d4 = 0. In fact one extra constraint was necessary, namely Q1(Ŵ3, Ŵ3) ∝
Q2(Ŵ3, Ŵ3) ∝ (Ŵ3)2,1, where we refer to appendix B for the definitions of Q1 and Q2.
Interestingly, there exists at least one explicit geometry that satisfies the conditions
for these universal dS solutions, namely SU(2)× SU(2) as was shown in [19].

3 Classification of geometries

3.1 Homogenous SU(3)-structures

We want to classify homogeneous geometries that are consistent with an SU(3)-structure
that is invariant under the left acting isometries. The covering space of a homogenous

11
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Figure 4: The two 10−1× mass2 eigenvalues and V (dashed) as functions of β for γ = 0.1.

From figure 5 it can be seen that these solutions have a net orientifold charge.
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Figure 5: VO6 as a function of β for γ = 0.1.

From figure 5 we can see that, if β is chosen near −0.13 the solution has a vanishing
O6/D6 charge. At this value of β both the mass matrix eigenvalues are positive as can be
seen from figure 4. So, we get AdS solutions with vanishing charge that are stable in the
ρ, τ -directions.
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Figure 1: Λ/(f1)2 as a function of f2/f1, for c3 = 8/
√
3 and f3 = f4 = 0. The area close to

the horizontal axis is shown in more detail such that the dS solutions (in green) are visible.
AdS solutions are shown in red and Minkowski solutions in blue.

We will choose to factor out this overall scale by dividing each quantity by appropriate
factors of f1 (which is equivalent to considering solutions with f1 = 1). We then end
up with a one-dimensional set of solutions that include non-susy AdS solutions, non-susy
Minkowski solutions and de Sitter solutions.

This is made clear in figure 1, where we plot the value of the cosmological constant
(vertical axes) against f2/f1 (horizontal axis). This plot contains all kinds of solutions,
but to make the de Sitter solutions visible, in an inset we zoomed in on an area very close
to the horizontal axis. Most essential in the figure is the interval with de Sitter solutions
bounded from below by a Minkowski point at f2/f1 = 0.965 and this forms our key result.
For large values of f2/f1 the line of de Sitter solutions asymptotes to a line of Minkowski
solutions, which are remarkably simple solutions taking the form

f5/f1 =
1

4
, f6/f1 =

√
3

2
, W1 =

f2
2
, w3/W1 = 3

√
3 . (27)

This phenomenon, where de Sitter solutions interpolate between Minkowski solutions in
parameter space, was first observed in [28], which obtained similar results from a four-
dimensional point of view. Here we gain the extra insight of a ten-dimensional interpreta-
tion. On one side the bounding four-dimensional Minkowski solutions are the remarkably
simple solutions (27) with fluxes along the universal forms. On the other side we find
a Minkowski solution where the curve of figure 1 crosses the x-axis (as displayed in the
inset). For the de Sitter solutions itself the explicit forms of the parameters fi are not that
insightful, so apart from the plots we do not present them explicitly.

Most abundant are the non-supersymmetric AdS branches in solution space. It seems
a generic property of tree-level flux compactifications (allowing dS solutions) that the AdS
solutions far outnumber the dS solutions.

Figure 2 displays the ratio w3/W1 on the vertical axis and f2/f1 on the horizontal axis.
This plot reveals that the ratio w3/W1 is bounded from above for all solutions and that
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Figure 3: Negative eigenvalues of the mass matrix M2/(f1)2 for our line of dS solutions.

6 Discussion

We have established the fact that the class of universal de Sitter solutions exists by at
least providing one explicit example: an unstable de Sitter solution on an orientifold of
SU(2) × SU(2). This solution turns out to be the ten-dimensional lift of the solution
found in [6]. Furthermore, the other explicit solution, coming from (an orientifold) of the
solvmanifold s1.2 [7] is not universal, which demonstrates that the class of universal de
Sitter solutions does not cover all of the classical de Sitter solutions. But, as we argued in
the introduction, we believe that most natural solutions are of this form and we hope to
report on more examples in a future work [17].

Obviously, the understanding of classical de Sitter solutions is very incomplete, and
sofar no conclusion can be drawn regarding the existence of phenomenologically viable
solutions. The requirements for phenomenological viability are plenty, and some require-
ments can be dropped for other purposes. Especially if we want a simple de Sitter solution
for the sake of understanding holography, or more general, quantum gravity in de Sitter
space-time, we can drop the requirement for a small cosmological constant, a decoupling of
KK modes, etc. The most important requirement is perturbative stability. The two exam-
ples coming from SU(2)×SU(2) and the solvmanifold s1.2 are both perturbative unstable.
This is not surprising since the lack of supersymmetry does not protect one from tachyons
in the spectrum. Since most simple models have order 10 moduli, one has to be rather
lucky that all of them have positive mass. In case one is allowed to think that, in the
absence of susy, there is an equal chance for a field direction to be unstable or stable, then
one is forced to conclude that stable solutions must exist if there are enough classical de
Sitter solutions in the landscape. But, the existence of meta-stable non-susy AdS solutions
seems to demonstrate that one should not apply a “50-50” reasoning for all field directions
to be stable.

When it comes to stability with respect to the light degrees of freedom it is useful to
consult the results that were obtained directly in four-dimensional supergravity theories,
without the concern of a higher-dimensional origin. Investigations on this mainly focus on
extended gauged supergravities [31–38], and some on N = 1 supergravity [10, 28, 39, 40].
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Unfortunately, out 
of 14 scalars, one 
is tachyonic ! 

✤Bottom-up approach: we found necessary constraints on fluxes 
& torsion classes for universal dS solutions, a useful first step.

✤Bottom-up constraints (with W2=0) can be satisfied with an 
explicit model: an SU(2) x SU(2) group manifold.
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Group Manifolds
✤A coframe of left-invariant forms: 

that obeys the Maurer-Cartan relations:

✤From these MC forms, we can construct J, Ω, and the metric: 

✤Levi’s theorem:

semi-simple     ;;  radical      = largest solvable ideal

Ideal:

Solvable:                     vanishes at some point

from being semi-simple to the opposite, being nilpotent. The solvable cases are somewhere
in between. Especially the nilpotent examples have received much attention since they are
the covering space of compact spaces obtained from T-duality of a torus with H-flux. They
are called twisted tori. But the name twisted tori is sometimes also given to the solvable
cases and even all group spaces.

Let us discuss those cases that have already made an appearance in the literature.
Reference [55] classified those cosets that have an isometry group G which is a compact
semi-simple group or the product thereof with U(1)-factors. This also includes the space
Spin(4) = SU(2)× SU(2), which we have depicted in the intersection of groups and cosets
with semi-simple isometry groups.

The class of cosets in [55] is not the most general class of cosets with non-trivial isotropy
because one can consider spaces with non-compact G or with G generically non-semi-
simple. Examples of this sort have not appeared in the literature to our knowledge. We
will not deal with those examples here, but they might offer an interesting class of coset
geometries to investigate de Sitter solutions. Reference [9] considered all possible “metric
fluxes” consistent with the symmetries of all the abelian orbifold groups of the six-torus.
However they did not provide any further description of these spaces like for example the Lie
algebra of symmetries. In contrast reference [56]12 made a less complete list (solvmanifolds
and nilmanifolds), but has a partial description of the geometries. Below we present a full
(and simple) classification of covering spaces G using group theory, which allows us to have
an algebraic understanding of the various metric fluxes. We also find more possibilities for
orientifolds than the ones given in [56].

3.2 Group manifold geometry and geometric moduli

We recall the basic concepts of the geometry of a group manifold. Although this has been
done in many places before, we repeat this here such that the paper is self-contained.

On a group manifold, G, one can define a co-frame of left-invariant forms, called the
Maurer–Cartan forms, as follows,

g−1dg = eaTa , (3.1)

where the T a are the generators of the Lie algebra associated to G and denoted g. The
Maurer–Cartan forms obey the relations

dea = −1
2f

a
bce

b ∧ ec , (3.2)

where the f ’s are the structure constants of g. The conditions for a set of fa
bc to describe

a Lie algebra are

fa
bc = −fa

cb , fa
b[cf

b
de] = 0 . (3.3)

12Later this has been significantly been improved in [17].
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where g0 = g0 = g. Both the upper-derived series, gn, and the lower-derived series, gn, are
obviously ideals. A solvable Lie algebra is a Lie algebra for which the upper-derived series
vanishes at some point and for a nilpotent Lie algebra the lower-derived series vanishes at
some point. It is easy to show that gn ⊆ gn, from which follows that a nilpotent algebra is
also solvable. One can prove that the nilpotent Lie algebras form the building blocks for
the solvable algebras by taking semi-direct products, whereas the solvable and simple Lie
algebras are the building blocks for all remaining Lie algebras, again by taking semi-direct
products. The latter is the content of Levi’s theorem, which states that any Lie algebra g

is the semi-direct product of a semi-simple algebra s with the largest solvable ideal r

g = s! r . (3.9)

The largest solvable ideal, r, can be shown to be unique and is called the radical. Using
this theorem the problem boils down to classifying semi-simple and solvable algebras of
dimension d ≤ 6 and the possible semi-direct products between the m-dimensional semi-
simple algebra s and the n-dimensional radical r, where m+ n = 6.

Semi-simple and nilpotent algebras are always unipotent, but unipotence has to be
verified for solvable groups. Note that for a general Lie algebra to be unipotent, the
radical itself has to be unipotent. Indeed, using indices a′, b′ to run over s and a′′, b′′ to
run over r we find

0 = fa
ab′′ = fa′

a′b′′ + fa′′
a′′b′′ = fa′′

a′′b′′ , (3.10)

since all fa′
a′b′′ = 0, as r is an ideal.

The classification of the semi-simple algebras of dimension d ≤ 6 is straightforward and
one can find six examples

• so(p, q) with p+ q = 4 .

• so(3)× so(2, 1) .

• so(p, q) with p+ q = 3 .

Note that so(4) = so(3)2 and so(2, 2) = so(2, 1)2. So, there are four six-dimensional semi-
simple algebras and only the compact case so(4) has so far been used in the flux literature.
For the other three cases, it is not clear whether there are points in the moduli space of
these groups that allow a discrete subgroup L that makes G/L a smooth compact space.

To find the other six-dimensional group spaces using Levi’s theorem we deduce that
we need to know all six- and three-dimensional solvable algebras. The six-dimensional
unipotent solvable algebras are the ones that describe the solvmanifolds and their classifi-
cation appears in e.g. [56]13. We will not repeat those algebras here but refer to tables 4
and 5 in [56]). The nilpotent ones have the nice feature that the associated group space
G always allows a discrete subgroup L such that G/L is a smooth compact space, called
nilmanifolds.

13The classification of solvable algebras in [56] is not complete. There are some non-algebraic examples
that are not given. For a complete list we refer to [59] or [17].
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It can be shown that only unipotent groups, i.e. groups with traceless structure con-
stants,

fa
ab = 0 , for all b (sum over a implied) , (3.4)

can be made compact. To be more precise, only unipotent groups G can have a discrete
subgroup, L, acting without fixed points, such that G/L is a compact space. If the group
is already compact L can of course taken to be trivial. Unipotence, however, is not a
sufficient condition to establish the existence of such a discrete subgroup, see e.g. [17, 56]
and references therein.

In terms of the Maurer–Cartan one-forms, ea = eaµdx
µ, we can introduce a metric on

the group manifold,
ds2 = Mabe

a ⊗ eb , (3.5)

where M is constant, symmetric and positive definite. The Ricci tensor is then given by
(see e.g. [57])

Rab =
1
4facdfb

cd − 1
2f

c
daf

d
cb − 1

2fcdaf
cd

b , (3.6)

where we lower and raise indices using the metric M and its inverse. Furthermore we
restricted to algebras for which fa

ab = 0, (sum over a implied), since we are not interested
in non-compact models. The Ricci scalar then reads

R = −1
4fabcf

abc − 1
2fcabf

acb . (3.7)

The matrix M parameterizes that part of the group manifold moduli space that is
concerned with metric deviations along left-invariant directions. This moduli space is
GL(n, IR)/ SO(n), as can be seen from the fact that the matrix M transforms under
GL(n, IR)-matrices, but is invariant under an SO(n)-group. When we consider orbifold
and orientifold symmetries we put further restrictions on M such that the geometric mod-
uli space gets truncated.

3.3 All unipotent real six-dimensional Lie algebras

Here, we would like to classify all six-dimensional real Lie algebras. The classification is
already done in the literature [58], but in our case the classification is simplified because
we restrict to unipotent algebras.

Lie algebras are classified depending on whether or not they have ideals. We remind
ourselves that an ideal i of an algebra g is a subalgebra with the following property:
[g, i] ⊆ i. On the one end of the collection of Lie algebras one has simple Lie algebras.
They are defined as the Lie algebras that have no proper ideal. Next to those come the
semi-simple Lie algebras which have no proper abelian ideals. One can show that they are
direct sums of simple Lie algebras. The definition of a semi-simple Lie algebra turns out
to be equivalent to having a non-degenerate Killing form C, where Cab = f c

daf d
cb. On the

other end of the spectrum of Lie algebras are those that have big ideals. One way to built
ideals is by taking commutators. Consider the following sets of subalgebras of g

gn = [gn−1, gn−1] , gn = [g, gn−1] , (3.8)
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to be equivalent to having a non-degenerate Killing form C, where Cab = f c

daf d
cb. On the

other end of the spectrum of Lie algebras are those that have big ideals. One way to built
ideals is by taking commutators. Consider the following sets of subalgebras of g

gn = [gn−1, gn−1] , gn = [g, gn−1] , (3.8)
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Group Manifolds

[Danielsson, Haque, Koerber, GS, Van Riet, Wrase]

Case

so(3)× so(3)
so(3)× so(2, 1)
so(2, 1)× so(2, 1)

so(3, 1)

Table 1: The semi-simple six-dimensional Lie algebras

Case Representations

so(3)!ρ u(1)3 ρ = 1⊕ 1⊕ 1 and ρ = 3
so(3)!ρHeis3 ρ = 1⊕ 1⊕ 1
so(3)!ρ iso(2) ρ = 1⊕ 1⊕ 1
so(3)!ρ iso(1, 1) ρ = 1⊕ 1⊕ 1
so(2, 1)!ρ u(1)3 ρ = 1⊕ 1⊕ 1, ρ = 1⊕ 2 and ρ = 3
so(2, 1)!ρ Heis3 ρ = 1⊕ 1⊕ 1 and ρ = 1⊕ 2
so(2, 1)!ρ iso(2) ρ = 1⊕ 1⊕ 1
so(2, 1)!ρ iso(1, 1) ρ = 1⊕ 1⊕ 1

Table 2: The unipotent non-solvable, non-semi-simple six-dimensional Lie algebras

Hence there are 16 unipotent non-solvable six-dimensional Lie algebras. These have to
be added to the list of solvable unipotent Lie algebras in [17,56]. As we mentioned before,
unipotence is just one condition for a compactification L to exist when the group G is
non-compact, but we do not know which of these examples cannot be made compact. The
non-compact semi-simple cases of table 1 could be problematic. When the representation is
trivial, ρ = 1⊕1⊕1, for the cases in table 2 and the simple part is so(3) then we know for
sure that the space can be made compact since SO(3) is compact and the three-dimensional
solvable groups can be made compact, see e.g. [7, version 1].

4 Discrete symmetries, orbifolds and orientifolds

4.1 Discrete subgroups of SU(3)

In this paper we restrict ourselves to the study of compactifications that preserve N = 1
in four dimensions since these are interesting for phenomenological reasons. Since group
manifolds have a trivial structure group they lead after an orientifold projection to 4D
theories with N = 4. Therefore we have to mod out the group manifolds by a discrete
subgroup of SU(3) to obtain an N = 1 theory. Any dS critical point we find is then
also a dS critical point of the parent N = 4 theory. General studies of 4D N = 4
theories [18, 22, 23, 61–64] indicate that they do not allow for a metastable dS solution.
However, when we truncate to an N = 1 theory we can hope that we project out the
tachyonic directions and find stable dS vacua. An unstable dS extremum in the parent
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• Semi-simple:

where g0 = g0 = g. Both the upper-derived series, gn, and the lower-derived series, gn, are
obviously ideals. A solvable Lie algebra is a Lie algebra for which the upper-derived series
vanishes at some point and for a nilpotent Lie algebra the lower-derived series vanishes at
some point. It is easy to show that gn ⊆ gn, from which follows that a nilpotent algebra is
also solvable. One can prove that the nilpotent Lie algebras form the building blocks for
the solvable algebras by taking semi-direct products, whereas the solvable and simple Lie
algebras are the building blocks for all remaining Lie algebras, again by taking semi-direct
products. The latter is the content of Levi’s theorem, which states that any Lie algebra g

is the semi-direct product of a semi-simple algebra s with the largest solvable ideal r

g = s! r . (3.9)

The largest solvable ideal, r, can be shown to be unique and is called the radical. Using
this theorem the problem boils down to classifying semi-simple and solvable algebras of
dimension d ≤ 6 and the possible semi-direct products between the m-dimensional semi-
simple algebra s and the n-dimensional radical r, where m+ n = 6.

Semi-simple and nilpotent algebras are always unipotent, but unipotence has to be
verified for solvable groups. Note that for a general Lie algebra to be unipotent, the
radical itself has to be unipotent. Indeed, using indices a′, b′ to run over s and a′′, b′′ to
run over r we find

0 = fa
ab′′ = fa′

a′b′′ + fa′′
a′′b′′ = fa′′

a′′b′′ , (3.10)

since all fa′
a′b′′ = 0, as r is an ideal.

The classification of the semi-simple algebras of dimension d ≤ 6 is straightforward and
one can find six examples

• so(p, q) with p+ q = 4 .

• so(3)× so(2, 1) .

• so(p, q) with p+ q = 3 .

Note that so(4) = so(3)2 and so(2, 2) = so(2, 1)2. So, there are four six-dimensional semi-
simple algebras and only the compact case so(4) has so far been used in the flux literature.
For the other three cases, it is not clear whether there are points in the moduli space of
these groups that allow a discrete subgroup L that makes G/L a smooth compact space.

To find the other six-dimensional group spaces using Levi’s theorem we deduce that
we need to know all six- and three-dimensional solvable algebras. The six-dimensional
unipotent solvable algebras are the ones that describe the solvmanifolds and their classifi-
cation appears in e.g. [56]13. We will not repeat those algebras here but refer to tables 4
and 5 in [56]). The nilpotent ones have the nice feature that the associated group space
G always allows a discrete subgroup L such that G/L is a smooth compact space, called
nilmanifolds.

13The classification of solvable algebras in [56] is not complete. There are some non-algebraic examples
that are not given. For a complete list we refer to [59] or [17].
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• Semi-direct product of semi-simple algebra & radical:

Unimodular algebra:

necessary condition for
non-compact group space 
to be made compact.

It can be shown that only unipotent groups, i.e. groups with traceless structure con-
stants,

fa
ab = 0 , for all b (sum over a implied) , (3.4)

can be made compact. To be more precise, only unipotent groups G can have a discrete
subgroup, L, acting without fixed points, such that G/L is a compact space. If the group
is already compact L can of course taken to be trivial. Unipotence, however, is not a
sufficient condition to establish the existence of such a discrete subgroup, see e.g. [17, 56]
and references therein.

In terms of the Maurer–Cartan one-forms, ea = eaµdx
µ, we can introduce a metric on

the group manifold,
ds2 = Mabe

a ⊗ eb , (3.5)

where M is constant, symmetric and positive definite. The Ricci tensor is then given by
(see e.g. [57])

Rab =
1
4facdfb

cd − 1
2f

c
daf

d
cb − 1

2fcdaf
cd

b , (3.6)

where we lower and raise indices using the metric M and its inverse. Furthermore we
restricted to algebras for which fa

ab = 0, (sum over a implied), since we are not interested
in non-compact models. The Ricci scalar then reads

R = −1
4fabcf

abc − 1
2fcabf

acb . (3.7)

The matrix M parameterizes that part of the group manifold moduli space that is
concerned with metric deviations along left-invariant directions. This moduli space is
GL(n, IR)/ SO(n), as can be seen from the fact that the matrix M transforms under
GL(n, IR)-matrices, but is invariant under an SO(n)-group. When we consider orbifold
and orientifold symmetries we put further restrictions on M such that the geometric mod-
uli space gets truncated.

3.3 All unipotent real six-dimensional Lie algebras

Here, we would like to classify all six-dimensional real Lie algebras. The classification is
already done in the literature [58], but in our case the classification is simplified because
we restrict to unipotent algebras.

Lie algebras are classified depending on whether or not they have ideals. We remind
ourselves that an ideal i of an algebra g is a subalgebra with the following property:
[g, i] ⊆ i. On the one end of the collection of Lie algebras one has simple Lie algebras.
They are defined as the Lie algebras that have no proper ideal. Next to those come the
semi-simple Lie algebras which have no proper abelian ideals. One can show that they are
direct sums of simple Lie algebras. The definition of a semi-simple Lie algebra turns out
to be equivalent to having a non-degenerate Killing form C, where Cab = f c

daf d
cb. On the

other end of the spectrum of Lie algebras are those that have big ideals. One way to built
ideals is by taking commutators. Consider the following sets of subalgebras of g

gn = [gn−1, gn−1] , gn = [g, gn−1] , (3.8)
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Group Manifolds

[Turkowski];[Andriot,Goi,Petrini,Minasian];
[Grana,Minasian,Petrini,Tomasiello]

• Solvable groups:
Name Algebra O5 O6 Sp

g−1

3.4 ⊕ R3 (q123, q213, 0, 0, 0, 0) q1, q2 > 0 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, !

26, 34, 35, 36 246, 256, 345, 346, 356
g0

3.5 ⊕ R3 (−23, 13, 0, 0, 0, 0) 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, !

26, 34, 35, 36 246, 256, 345, 346, 356
g3.1 ⊕ g−1

3.4 (−23, 0, 0, q156, q246, 0) q1, q2 > 0 14, 15, 16, 24, 25, - !

26, 34, 35, 36
g3.1 ⊕ g0

3.5 (−23, 0, 0, −56, 46, 0) 14, 15, 16, 24, 25, - !

26, 34, 35, 36
g−1

3.4 ⊕ g0
3.5 (q123, q213, 0, −56, 46, 0) q1, q2 > 0 14, 15, 16, 24, 25, - !

26, 34, 35, 36
g−1

3.4 ⊕ g−1

3.4 (q123, q213, 0, q356, q446, 0) q1, q2, q3, q4 > 0 14, 15, 16, 24, 25, - !

26, 34, 35, 36
g0

3.5 ⊕ g0
3.5 (−23, 13, 0, −56, 46, 0) 14, 15, 16, 24, 25, - !

26, 34, 35, 36

g
p,−p−1

4.5 ⊕ R2 ? -

g
−2p,p

4.6 ⊕ R2 ? -
g−1

4.8 ⊕ R2 (−23, q134, q224, 0, 0, 0) q1, q2 > 0 14, 25, 26, 35, 36 145, 146, 256, 356 -
g0

4.9 ⊕ R2 (−23, −34, 24, 0, 0, 0) 14, 25, 26, 35, 36 145, 146, 256, 356 -

g
1,−1,−1

5.7 ⊕ R (q125, q215, q245, q135, 0, 0) q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 !

g−1

5.8 ⊕ R (25, 0, q145, q235, 0, 0) q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 !

g
−1,0,r

5.13 ⊕ R (q125, q215, −q2r45, q1r35, 0, 0) r #= 0, q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 !

g0
5.14 ⊕ R (−25, 0, −45, 35, 0, 0) 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 !

g−1

5.15 ⊕ R (q1(25 − 35), q2(15 − 45), q245, q135, 0, 0) q1, q2 > 0 14, 23, 56 146, 236 !

g
p,−p,r

5.17 ⊕ R (q1(p25 + 35), q2(p15 + 45), q2(p45 − 15), q1(p35 − 25), 0, 0) 14, 23, 56 146, 236 !

r2 = 1, q1, q2 > 0 p = 0: 12, 34 p = 0: 126, 135, 245, 346
g0

5.18 ⊕ R (−25 − 35, 15 − 45, −45, 35, 0, 0) 14, 23, 56 146, 236 !

g
0,−1

6.3 (−26, −36, 0, q156, q246, 0) q1, q2 > 0 24, 25 134, 135, 456 !

g
0,0

6.10 (−26, −36, 0, −56, 46, 0) 24, 25 134, 135, 456 !

Table 4: Six-dimensional solvmanifolds considered in this paper, in terms of globally defined one-forms

50



Orientifolding
✤dS critical point of effective N=1 SUGRA from group manifolds.

✤Orbifolding further by discrete Γ ⊂ SU(3).

✤Among the Abelian orbifolds of (twisted) T6, only two Z2 x Z2 
orientifolds can evade ε ≥ O(1) [Flauger, Paban, Robbins, Wrase]

✤Consider Z2 x Z2 orientifolds of the group spaces we classified.
action is generated by θ1 and θ2 that act as

θ1 :































e1 → −e1

e2 → −e2

e3 → e3

e4 → −e4

e5 → e5

e6 → −e6

, θ2 :































e1 → −e1

e2 → e2

e3 → −e3

e4 → e4

e5 → −e5

e6 → −e6

. (4.5)

For this orbifold there are two possible orientifold projections [9]. Here we will focus on the
so called standard orientifold projection σ : zi → z̄i, i = 1, 2, 3. We will present the relevant
results for a classification for the non-standard orientifold projection σns : (z1, z2, z3) →
(z̄1, z̄3, z̄2) in the next subsection.

An orientifold action always projects out half of the complex structure moduli. For the
standard orientifold projection this simply results in Re(τi) = 0, ∀i. The explicit action of
σ on the ei is given by

σ :































e1 → e1

e2 → e2

e3 → e3

e4 → −e4

e5 → −e5

e6 → −e6

. (4.6)

This restricts the Lie algebra to be of the particular form

de1 = f 1
23e

23 + f 1
45e

45 , de2 = f 2
13e

13 + f 2
56e

56 ,

de3 = f 3
12e

12 + f 3
46e

46 , de4 = f 4
36e

36 + f 4
15e

15 ,

de5 = f 5
14e

14 + f 5
26e

26 , de6 = f 6
34e

34 + f 6
25e

25 .

(4.7)

We find that the algebra is automatically unipotent.
From the combination of the orientifold with the orbifold elements we find four inter-

secting O6 planes in the covering space G

e1 e2 e3 e4 e5 e6
⊗ ⊗ ⊗

– – –

– –
⊗ ⊗

–
⊗

–
⊗

– –
⊗ ⊗

⊗

– –
⊗ ⊗

–

where each entry denotes a left-invariant direction of G.
We want to determine all the unipotent algebras in our classification that are consistent

with the Z2 × Z2 orbifold and the standard orientifold. Let us first do this on the level of
the structure constants and later link it to the algebras in our classification tables. From
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[Other Z2 x Z2 orientifold has a different σ]



Constructing SU(3) Structure
✤O-planes:

✤J and ΩR are odd under orientifolding:

✤The metric fluxes are even:

✤Metric g and ΩI  can be expressed in terms of the “moduli”:

e1 e2 e3 e4 e5 e6
⊗ ⊗ ⊗

– – –
⊗

– –
⊗ ⊗

–

–
⊗

– –
⊗ ⊗

– –
⊗ ⊗

–
⊗

where each entry denotes a left-invariant direction. This intersection is unique up to
relabeling of the O6-planes and relabeling the Maurer–Cartan forms. From this we find
that the smeared orientifold source is given by

j6 = jAe
456 + jBe

236 + jCe
134 + jDe

125 , (30)

with the corresponding involutions

A : (e4, e5, e6) → −(e4, e5, e6) ,

B : (e2, e3, e6) → −(e2, e3, e6) ,

C : (e1, e3, e4) → −(e1, e3, e4) ,

D : (e1, e2, e5) → −(e1, e2, e5) .

(31)

Note that
A.B.C = D . (32)

This shows that three O6-involutions, in this setting, imply the fourth. Alternatively, one
can look at this as one orientifold involution (say A) together with the orbifold group
Z2 × Z2 generated by AB and BC. Therefore our compactification space is

G

Γ× Z2 × Z2
. (33)

When the orbifold singularities are blown up, we generate new moduli commonly denoted
as the twisted sector. We do not discuss this any further, but a thorough analysis of moduli
stabilisation should also include these modes.

There are no one-forms that have the same parity under A,B,C and D. Further-
more, the only two-forms with a fixed parity all have negative parity and are spanned by
{

e16 , e24 , e35
}

. The odd three-forms are spanned by
{

e456 , e236 , e134 , e125
}

. Since J and
ΩR must be odd under orientifold involutions preserving the SU(3)-structure, we find that
they must be of the form

J = ae16 + be24 + ce35 , (34a)

ΩR = v1e
456 + v2e

236 + v3e
134 + v4e

125 , (34b)

with a, b, c, v1, . . . , v4 real coefficients. With some abuse of language we name a, b, c the
Kähler moduli and v1, . . . , v4 the complex structure moduli. Note that this implies the
calibration conditions

j6 ∧ ΩR = 0 = j6 ∧ J . (35)
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B : (e2, e3, e6) → −(e2, e3, e6) ,

C : (e1, e3, e4) → −(e1, e3, e4) ,

D : (e1, e2, e5) → −(e1, e2, e5) .

(31)

Note that
A.B.C = D . (32)

This shows that three O6-involutions, in this setting, imply the fourth. Alternatively, one
can look at this as one orientifold involution (say A) together with the orbifold group
Z2 × Z2 generated by AB and BC. Therefore our compactification space is

G

Γ× Z2 × Z2
. (33)

When the orbifold singularities are blown up, we generate new moduli commonly denoted
as the twisted sector. We do not discuss this any further, but a thorough analysis of moduli
stabilisation should also include these modes.

There are no one-forms that have the same parity under A,B,C and D. Further-
more, the only two-forms with a fixed parity all have negative parity and are spanned by
{

e16 , e24 , e35
}

. The odd three-forms are spanned by
{

e456 , e236 , e134 , e125
}

. Since J and
ΩR must be odd under orientifold involutions preserving the SU(3)-structure, we find that
they must be of the form

J = ae16 + be24 + ce35 , (34a)

ΩR = v1e
456 + v2e

236 + v3e
134 + v4e

125 , (34b)

with a, b, c, v1, . . . , v4 real coefficients. With some abuse of language we name a, b, c the
Kähler moduli and v1, . . . , v4 the complex structure moduli. Note that this implies the
calibration conditions

j6 ∧ ΩR = 0 = j6 ∧ J . (35)
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The orientifold involutions also restrict the possible metric flux, which must be even, or
equivalently the possible group manifolds. In particular, the Lie algebra should be of the
following form

de1 = f 1
23e

23 + f 1
45e

45 , de2 = f 2
13e

13 + f 2
56e

56 ,

de3 = f 3
12e

12 + f 3
46e

46 , de4 = f 4
36e

36 + f 4
15e

15 ,

de5 = f 5
14e

14 + f 5
26e

26 , de6 = f 6
34e

34 + f 6
25e

25 .

(36)

As a consistency check one finds that dJ indeed gives only rise to odd three-forms and that
dΩR = 0 automatically. Furthermore, the algebra is unipotent (fa

ab = 0) automatically.
Unipotence is a necessary condition for having a compact group manifold (after the quotient
by a discrete subgroup Γ if need be). The Jacobi identities, which are equivalent to the
nilpotence d2ei = 0, impose further quadratic constraints on the f ’s.

From
J ∧ J ∧ J = −6 abc e123456 , (37)

we find that (for our choice of orientation) abc < 0 rendering all or one of the coefficients
a, b, c negative. In order to be able to properly normalise I2 = − with real c in (2) we
need furthermore v1v2v3v4 > 0. From equation (3) we obtain the metric, which turns out
to be diagonal, consistent with even parity under the orientifold involutions

g =
1

√
v1v2v3v4

(

av3v4 , −bv2v4 , cv2v3 , −bv1v3 , cv1v4 , av1v2
)

. (38)

With the metric available we can compute ΩI = !ΩR

ΩI =
√
v1v2v3v4

(

v−1
1 e123 + v−1

2 e145 − v−1
3 e256 − v−1

4 e346
)

. (39)

The normalisation condition (1) leads to
√
v1v2v3v4 = −abc . (40)

The required parity under the orientifold involutions (31) will automatically imply
that W4 = W5 = 0 and W1,W2 real so that we indeed obtain a half-flat SU(3)-structure as
advertised. Furthermore, we can construct the remaining torsion classes from the identities8

W1 = −1
6 !6 (dJ ∧ ΩI) , (41a)

W2 = − ! dΩI + 2W1J , (41b)

W3 = dJ − 3
2W1ΩR . (41c)

The parity properties further imply the following relations

dW3 = 0 , dW2 ∧W3 = 0 ,

W2 ∧W3 = 0 , W2 ∧ !6W3 = 0 .
(42)

8To understand how the torsion classes depend on all moduli is not too hard for these simple examples,
but formulae for more general cases have been derived in [30].
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Constructing SU(3) Structure
✤Parity under orientifolding implies Im W1= Im W2= W4 = W5=0

➡Half-flat SU(3) Structure Manifold

✤Construct the remaining torsion classes:

✤Search for dS solutions satisfying constraints obtained earlier.

The orientifold involutions also restrict the possible metric flux, which must be even, or
equivalently the possible group manifolds. In particular, the Lie algebra should be of the
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but formulae for more general cases have been derived in [30].
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A Mini Landscape
✤# of unipotent 6D group spaces ~ O(50). Among them, only a 

handful have de Sitter critical points that are compatible with 
orbifold/orientifold symmetries. 

✤Each of these group spaces has O(10) left-invariant modes. 
Tadpole constraints restrict flux quanta on each cycle ≤ O(10).

✤A sample space of O(1010) solutions, no dS that is tachyon free.

✤Flux quantization:

Pictorially                                              

PROBLEM(2.((Flux(quantisation:(pictorally

For(the(SU2(X(SU2(solutions(we(
could(do(explicit(check:
quantisation of(fluxes(only(works(
outside(SUGRA(regime(�.

��	���������	��
���susy AdS�

PROBLEM(1.(((Always(at(least(1(tachyon.(Why?

PROBLEM(3.(Backreaction of(sources:(what(about(localised O(planes?

1. Douglas(&(Kallosh,(2010
2. arXiv !  &�!%$$�����	��	���	�����localised sources(in(flux(compactifications��
3. arXiv !! #�"%$&������	������	�����backreaction of(SUSYT��	���������	���

For SU(2)xSU(2) examples, 
can explicitly check flux 
quant izat ion demands 
solutions outside SUGRA.



Probability Estimate

• Consider 

• Then Vmin(ϕ) = ∑j Vj,min(ϕj). If Vj has nj minima, then 
there are ∏ nj classical minima. For nj ~ n, # minima = 
nN [Susskind].This is implicit in BP.

• Say Vj has 2nj extrema, roughly half of which are minima. 

• Probability for an extremum to be a minimum is

• Still, there are P x (# extrema) = eN ln n minima.

V (�) =
NX

j=1

Vj(�j)

P = 1/2N = e�N ln2



Probability for de Sitter Vacua

• We are interested in dS vacua from string theory. 

• The various Φj interact with each other. It is difficult to 
estimate how many minima there are. 

• Explicit form of V is typically very complicated, e.g., in IIA:

the complex 3-form ⌦ = ⌦R + i⌦I can be constructed from such a spinor; they define an SU(3)

structure (and not an SU(3) holonomy in general) and are not necessarily closed:

dJ =� 3

2
Im(W

1

⌦) +W
4

^ J +W
3

d⌦ =W
1

J ^ J +W
2

^ J +W
5

^ ⌦
(3.1)

The torsion classes W
1

, . . . ,W
5

correspond to the expansion of the derivatives of J and ⌦ in

terms of SU(3) representations: W
1

is a complex scalar, W
2

is a complex primitive (1, 1) form,

W
3

is a real primitive (1, 2)+(2, 1) form, W
4

is a real one-form, and W
5

is a complex (1, 0) form.

An SU(3) structure (that is not also an SU(2) structure) manifold has no nowhere-vanishing

one-forms. If we restrict to such torsion classes, W
4

and W
5

must vanish.

When the internal space is a non-Ricci flat SU(3) structure manifold, there are some sub-

tleties with the identification of the light fields and the associated low-energy e↵ective ac-

tion [41, 42]. However, for group manifolds (and coset spaces) which we will focus on, we

can restrict to expansion forms that are left-invariant under the group action. This leads to a

4D theory that is a consistent truncation [43], i.e., a solution to the 4D equations of motion will

also be a solution to the 10D equations of motion. Under the orientifold symmetry, ⌦ ! �⌦⇤,

and J ! �J . Hence, we can expand J and ⌦ in terms of a representative basis of forms:

J =kiY
(2�)

i

⌦ =FKY
(3�)

K + iZKY
(3+)

K

(3.2)

where Y
(2±)

i , i = 1, . . . , h(1,1)
� is a set of two-forms even (odd) under the orientifold parity, and

Y
(3±)

K , K = 1, . . . , h(2,1) + 1 is a set of three forms which are even (odd) under orientifolding.

Note that FK are functions of the ZK and therefore not independent.

The e↵ective 4D SUGRA resulting from reduction on an SU(3)-structure space is completely

specified by the superpotential W, the Kahler potential K, a set of gauge kinetic functions f↵,�,

and their associated D-terms D↵.

K =� 2 ln

✓
�i

Z
e�2�⌦ ^ ⌦⇤

◆
� ln

✓
4

3

Z
J ^ J ^ J

◆
= 4�

4

� ln (8vol
6

) ,

p
2W =

Z ⇣
⌦c ^ (�iH + dJc) + eiJc ^ F̂

⌘

f↵� =� ̂i↵�t
i,

D↵ =� e�4

p
2vol

6

r̂K↵ FK ,

(3.3)

where �
4

is the 4D dilaton defined by e��4 = e��
p
vol

6

with ⌦^⌦⇤ = (4i/3)J ^ J ^ J = 8ivol
6

,

and F̂ = F̂
0

+ F̂
2

+ F̂
4

+ F̂
6

is the sum of the RR fluxes. The 2-form Jc and 3-form ⌦c that

appear in the superpotential above are given by combinations with other supergravity fields,
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namely, the dilaton �, the Kalb-Ramond two-form B, and the RR three-form C
3

:

Jc =J � iB = tiY
(2�)

i

⌦c =e��Im(⌦) + iC
3

= NKY
(3+)

K

(3.4)

The triple intersection numbers which enter into the gauge kinetic function are defined in terms

of the basis forms:

ijk =

Z
Y

(2�)

i ^ Y
(2�)

j ^ Y
(2�)

k , ̂i↵� =

Z
Y

(2�)

i ^ Y (2+)

↵ ^ Y
(2+)

� , (3.5)

The D-terms contain information about the metric fluxes. The matrices riK and r̂K↵ are defined

as follows:

dY
(2�)

i = riKY
(3�)K , dY (2+)

↵ = r̂↵
KY

(3+)

K . (3.6)

On an SU(3) structure group/coset manifold (the type of SU(3) structure manifolds where

explicit examples have been constructed), there exist six global left-invariant one-forms ea,

a = 1, . . . , 6 and the metric fluxes fa
bc are introduced through dea = �1

2

fa
bce

b ^ ec. The matrices

riK and r̂K↵ are therefore linear functions of the metric fluxes.

The 4D scalar potential for the left-invariant modes then follows from the usual supergravity

expression:

V = eK
⇣
KijDtiWDtjW +KKLDNKWDNLW � 3|W |2

⌘
+

1

2
(Ref)�1

↵�

D↵D� (3.7)

where the derivatives DtiW = @tiW +W@tiK (and analogously for DNK ).

Even though the 4D e↵ective action of SU(3) structure compactifications may appear to

be more complicated in form than their Calabi-Yau counterpart, each individual term in the

action can be explicitly computed given the geometric and flux data. This is an advantage

over the more well studied Type IIB scenarios where non-perturbative instanton corrections

and the e↵ects of SUSY breaking localized sources are often not computed in explicit detail.

In particular, useful results can be readily obtained by analyzing how various contributions to
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Random Matrices

• The Hessian mass matrix H= Vij at an extremum Vi =0 
must be positive definite for (meta)stability.

• We can use Sylvester’s criterion to check whether there 
are tachyons, but time-consuming for a large Hessian H.

• If the Hessian is large and complicated, how do we 
estimate the probability of an extremum to be a min.?

• Random matrix Theory (RMT) provides an estimate.



Random Matrix Theory

• A tool to study a large complicated matrix statistically  
[Wigner, Tracy-Widom, ....]

• Given a random H, the theory of fluctuation of extreme 
eigenvalues allows one to compute the probability of 
drawing a positive definite matrix from the ensemble.

• Eigenvalue repulsion: probability for H to have no 
negative eigenvalue is Gaussianly suppressed.

• Some initial foray in applying these RMT results to 
cosmology was made [Aazami, Easther (2005)].



Wigner Ensemble
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Figure 1: The eigenvalue spectra for the Wigner ensemble (left panel), and the Wishart ensem-
ble with N = Q (right panel), from 103 trials with N = 200.

As a Wishart matrix is the Hermitian square of another matrix, it is necessarily positive
semidefinite. The joint probability density of a complex Wishart matrix is (cf. e.g. [10])

f(�
1

, . . . ,�N) = C exp
⇣
� 1

�

NX

i=1

�i + 2
NX

i<j

ln|�i � �j|+ (Q�N)
NX

i

ln�i

⌘
. (3.6)

In the Coulomb gas picture, the non-negativity of a Wishart matrix corresponds to the presence
of a hard wall at � = 0.

The eigenvalue distribution in the Wishart ensemble is given by the Marčenko-Pastur law
[18], which takes the form

⇢(�) =
1

2⇡N�

2

�

p
(4N�

2 � �)� , (3.7)

for the special case N = Q that will be relevant in our analysis, cf. Figure 1.
The probability density function of the smallest eigenvalue �

1

was first computed by Edel-
man [17], and for our purposes it su�ces to note that for N = Q and � = 1p

N
, its average

position h�
1

i scales as 1

N2 .

3.1.3 The Altland-Zirnbauer CI ensemble

The matrix M appearing in the critical point equation (2.4) has an eigenvalue spectrum that
is broadly reminiscent of the Wigner semicircle law, but the 2N eigenvalues of M come in
opposite-sign pairs ±�a, with 0  �

1

 . . .  �N . As observed in [2], matrices M of the form
(2.5) belong to the Altland-Zirnbauer CI ensemble [19]. For normally-distributed entries of M,
the joint probability density of the eigenvalues is

f(�
1

, . . . ,�N) = C exp
⇣
� 1

�

2

NX

i=1

�

2

i +
NX

i 6=j

ln|�2

i � �

2

j |+
NX

i=1

ln |�i|
⌘
. (3.8)
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3.1.1 The Wigner ensemble

One of the simplest and best-known ensembles of random matrices is the Wigner ensemble of
Hermitian matrices, also referred to as the Gaussian Unitary Ensemble [12, 13, 14]. Elements
of this ensemble, which we refer to as Wigner matrices, are N ⇥N Hermitian matrices M given
by

M = A+ A

†
, (3.1)

where Aij for i, j = 1, . . . , N are i.i.d. variables drawn from ⌦(0, �), and the dagger denotes
Hermitian conjugation.

The measure on the space of matrices is

dP (M) =
Y

1ijN

f(Mij) dMij , (3.2)

where f(Mij) denotes the probability density of observing Mij. For normally-distributed entries
of M , the joint probability density of the eigenvalues �

1

, . . . ,�N is obtained by a unitary change
of coordinates,

f(�
1

, . . . ,�N) = C exp
⇣
� 1

�

2

NX

i=1

�

2

i + 2
NX

i<j

ln|�i � �j|
⌘
, (3.3)

where C is an N -dependent normalization constant. As conceived in the famous work of Dyson
[15], this joint probability density can be given a physical interpretation in terms of a one-
dimensional Coulomb gas of N charged particles executing Brownian motion under the influ-
ences of a confining quadratic potential and of mutual electrostatic repulsion. This physical
picture has proved to be very fruitful in deriving exact results for a variety of properties of the
eigenvalue spectrum (see e.g. [4, 5]), and in §4 and §5 we will see that repulsion between pairs
of eigenvalues significantly impacts the stability of critical points in supergravity.

At large N , the eigenvalue spectrum of a Wigner matrix converges to the celebrated Wigner
semicircle law,

⇢(�) =
1

2⇡N�

2

p
4N�

2 � �

2

. (3.4)

where ⇢ is the eigenvalue density. Setting � = 1p
N
, the eigenvalue spectrum has support in the

interval [�2, 2], cf. Figure 1.

3.1.2 The Wishart ensemble

The second class of random matrices we will need are complex Wishart matrices, which take
the form

M = AA

†
, (3.5)

where A is an N ⇥Q complex matrix with entries drawn from ⌦(0, �), and Q � N . The study
of this ensemble dates back to Wishart’s investigation of sample covariance matrices [16], and
the universality evident in the Wishart ensemble provided some of the inspiration for Wigner’s
subsequent development of random matrix theory.
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Dyson

Wigner’s semi-circle

Elements of A are independent identically distributed 
variables drawn from some statistical distribution.

ρ(λ)

λ
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Large Deviations of Extreme Eigenvalues of Random Matrices

David S. Dean1 and Satya N. Majumdar2
1 Laboratoire de Physique Théorique (UMR 5152 du CNRS),

Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 4, France
2 Laboratoire de Physique Théorique et Modèles Statistiques (UMR 8626 du CNRS),

Université Paris-Sud, Bât. 100, 91405 Orsay Cedex, France

We calculate analytically the probability of large deviations from its mean of the largest (smallest) eigenvalue
of random matrices belonging to the Gaussian orthogonal, unitary and symplectic ensembles. In particular,
we show that the probability that all the eigenvalues of an (N × N) random matrix are positive (negative)
decreases for large N as ∼ exp[−βθ(0)N2] where the parameter β characterizes the ensemble and the exponent
θ(0) = (ln 3)/4 = 0.274653 . . . is universal. We also calculate exactly the average density of states in matrices
whose eigenvalues are restricted to be larger than a fixed number ζ, thus generalizing the celebrated Wigner
semi-circle law. The density of states generically exhibits an inverse square-root singularity at ζ.

PACS numbers: 02.50.-r, 02.50.Sk, 02.10.Yn, 24.60.-k, 21.10.Ft

Studies of the statistics of the eigenvalues of random ma-
trices have a long history going back to the seminal work
of Wigner [1]. Since then, random matrices have found ap-
plications in multiple fields including nuclear physics, quan-
tum chaos, disordered systems, string theory and number the-
ory [2]. Three classes of matrices with Gaussian entries have
played important roles [2]: (N × N) real symmetric (Gaus-
sian Orthogonal Ensemble (GOE)), (N × N) complex Her-
mitian (Gaussian Unitary Ensemble (GUE)) and (2N × 2N)
self-dual Hermitian matrices (Gaussian Symplectic Ensemble
(GSE)). A central result in the theory of random matrices is
the celebrated Wigner semi-circle law. It states that for large
N and on an average, the N eigenvalues (suitably scaled) lie
within a finite interval

[

−
√

2N,
√

2N
]

, often referred to as
the Wigner ‘sea’. Within this sea, the average density of states
has a semi-circular form (see Fig. 1) that vanishes at the two
edges −

√
2N and

√
2N

ρsc(λ, N) =

√

2

Nπ2

[

1 −
λ2

2N

]1/2

. (1)

(2N)1/2(2N)1/2− 0

ρ (λ, Ν)
sc

N−1/6

TRACY−WIDOM
WIGNER  SEMI−CIRCLE

λ

SEA

FIG. 1: The dashed line shows the semi-circular form of the aver-
age density of states. The largest eigenvalue is centered around its
mean

√
2N and fluctuates over a scale of width N−1/6. The proba-

bility of fluctuations on this scale is described by the Tracy-Widom
distribution (shown schematically).

Thus, the average of the maximum (minimum) eigenvalue
is
√

2N (-
√

2N ). However, for finite but large N , the maxi-
mum eigenvalue fluctuates, around its mean

√
2N , from one

sample to another. Relatively recently Tracy and Widom [3]
proved that these fluctuations typically occur over a narrow
scale of ∼ O(N−1/6) around the upper edge

√
2N of the

Wigner sea (see Fig. 1). More precisely, they showed [3]
that asymptotically for large N , the scaling variable ξ =√

2N1/6 [λmax −
√

2N ] has a limiting N -independent prob-
ability distribution, Prob[ξ ≤ x] = Fβ(x) whose form de-
pends on the value of the parameter β = 1, 2 and 4 char-
acterizing respectively the GOE, GUE and GSE. The func-
tion Fβ(x), computed as a solution of a nonlinear differential
equation [3], approaches to 1 as x → ∞ and decays rapidly
to zero as x → −∞. For example, for β = 2, F2(x) has the
following tails [3],

F2(x) → 1 − O
(

exp[−4x3/2/3]
)

as x → ∞

→ exp[−|x|3/12] as x → −∞. (2)

The probability density function dFβ/dx thus has highly
asymmetric tails. The distribution of the minimum eigen-
value simply follows from the fact that Prob[λmin ≥ ζ] =
Prob[λmax ≤ −ζ]. Amazingly, the Tracy-Widom distribu-
tion has since emerged in a number of seemingly unrelated
problems such as the longest increasing subsequence prob-
lem [4], directed polymers in (1 + 1)-dimensions [5], various
(1 + 1)-dimensional growth models [6], a class of sequence
alignment problems [7] and in finance [8]. Recently, it has
been shown that the statistics of the largest eigenvalue is also
of importance in population growth of organisms in fluctuat-
ing environments [9].

The Tracy-Widom distribution describes the probability of
typical and small fluctuations of λmax over a very narrow re-
gion of width ∼ O(N−1/6) around the mean 〈λmax〉 ≈

√
2N .

A natural question is how to describe the probability of atypi-
cal and large fluctuations of λmax around its mean, say over a
wider region of width ∼ O(N1/2)? For example, what is the
probability that all the eigenvalues of a random matrix are neg-

Study of the fluctuations of the smallest (largest) eigenvalue 
was initiated by Tracy-Widom, and generalized to large 

fluctuations by Dean and Majumdar (cond-mat/0609651).



Probability of Stability

If the probability is Gaussianly suppressed, while # extrema 
goes like ecN (recall 10500), unlikely to find metastable vacua.

The large N analytic result of Dean & Mujumdar
and further refinement by Borot et al:

2 3 4 5 6 7 8
N
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10!5

0.001

0.1

P
a "!b N2!c N

tribution to model the statistical distribution of the diagonal elements at leading order. The

di↵erence between �A and �B = 1 introduces the hierarchy between the diagonal elements and

o↵-diagonal elements.

The basic idea for this modeling is the following: first we consider moduli stabilization at

AdS minima by some mechanism, and then add an uplifting potential(s) to attain a positive

cosmological constant. The diagonal mass matrix A is given at AdS and the real-symmetric

mass matrix B comes from the uplifting term since the stabilized moduli masses are generically

mixed in the presence of additional sources. In the previous section, we consider situations in

which the mixing term is comparable to the diagonal terms in the potential. Here, we consider

scenarios where the mixing is suppressed, such that the diagonal entries are more likely to be

positive.

We simulate the probabilities of positive definite mass matrix for N = 4� 20 while varying

the variance of diagonal matrix between �A = 10, 15, 20, · · · , 100. We choose the fitting function

to be still of the form

P = a e�bN2�cN , (2.3)

but now the b and c are both functions of �A. The motivation for this choice is as follows.

For random matrices that we studied in the previous subsection, the Wigner semicircle law

implies that the eigenvalues are mostly distributed within [�2
p
N, 2

p
N ]. Now we have added

some additional positive diagonal elements. If we fix the hierarchy between the diagonal and

o↵-diagonal terms, but increase the dimension N , the above range will keep increasing and

eventually swamp the fixed hierarchy we introduced. Namely we expect to recover the Gaussian

suppression in the large N limit. This is why we choose the leading term in the exponential to

be still proportional to N2. For smaller N , we expect it to be less Gaussian, and this is modeled

by the linear term.

For example, for �A = 10, we get

P = 0.950 e�0.00810N2�0.00442N ; (2.4)

for �A = 100, we get

P = 1.00 e�0.000111N2�0.00277N . (2.5)

The coe�cients b and c as functions of �A (or equivalently y ⌘ �B/�A) can be fitted by the

following formulae, (see figure 2),

b = 0.000395y + 1.05y2 � 2.39y3,

b

c
= 0.0120 + 2.99y � 12.2y2 + 1650y3.

(2.6)

The extrapolation of these fitting functions to larger values of N works quite well. For example,

for N = 30, y = 1/10, the expected probability from (2.4) is P
exp

= 0.00056, while the numerical

6

Probability of the form: 

seems to work well, and agrees with:

Consider a Gaussian orthogonal ensemble

[Chen, GS, Sumitomo, Tye] 

P ⇡ e�
ln 3
4 N2

complete form of analytical expression was achieved recently in [11] 1. For GOE, the probability

function is given by

P =exp

"
� ln 3

4
N2 +

ln(2
p
3� 3)

2
N � 1

24
lnN � 0.0172

#

⇠0.983 e�0.275N2�0.384N�0.0417 lnN .

(2.2)

Therefore our numerical simulation mostly agrees with the analytical expression, not only for the

coe�cient of leading N2 term, but also for the linear dependence and constant term, although

we neglected lnN dependence which is actually small even between N = 2�7. For simplicity, if

we fit a form P = e�
ln 3
4 (N+d)2 , then the choice of d ' 0.7 provides a good fit for P for all N > 1.

2.2 A random matrix with suppressed o↵-diagonal components

As we start from an AdS vacuum with only positive mass-squared eigenvalues and raise the

vacuum energy in the search for a dS vacuum, couplings among the moduli introduces terms

into the Hessian, in particular o↵-diagonal terms. We like to estimate P as a function of the

relative size of the o↵-diagonal terms emerging in the Hessian. In particular, we like to see when

P , as a function of N , is Gaussianly suppressed versus exponentially suppressed. This leads us

to consider a mass-squared matrix in which the magnitudes of diagonal components is larger

than that of the o↵-diagonal components. We again introduce randomness to mimic some of

the features in the Hessian generically.

We consider the following mass-squared matrix:

M = A+B (2.3)

where the matrix A only has real diagonal components which obey half-normal distribution

(positive definite) with variance �A, while each component of a real-symmetric matrix B obeys

Gaussian orthogonal ensemble with variance 1, same as before. We use the half-normal dis-

tribution to model the statistical distribution of the diagonal elements at leading order. The

di↵erence between �A and �B = 1 introduces the hierarchy between the diagonal elements and

o↵-diagonal elements.

The basic idea for this modeling is the following: first we consider moduli stabilization at

AdS minima by some mechanism, and then add an uplifting potential(s) to attain a positive

cosmological constant. The diagonal mass matrix A is given at AdS and the real-symmetric

mass matrix B comes from the uplifting term since the stabilized moduli masses are generically

mixed in the presence of additional sources. In the previous section, we consider situations in

which the mixing term is comparable to the diagonal terms in the potential. Here, we consider

1 We would like to thank David Marsh and Timm Wrase for bringing our attention to the paper.
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Random Supergravities
• Consider the SUGRA potential:

and its Hessian, which is a function of DAW, DADBW, and 
DADBDCW, as well as W.

• Instead of randomizing elements of H, one can randomize 
K, W, and its covariant derivatives [Denef, Douglas];[Marsh, 
McAllister, Wrase]

• This approach is applicable to F-term breaking, but not to 
D-term breaking, and models with explicit SUSY breaking. 

• Also a different ansatz                    was used.  Quantitative 
details differ, but 𝒫  less likely than exponential also found.

V = eK
�
DAWDAW � 3|W |2

�

P = ae�bNc



Random Supergravities
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Figure 1: The eigenvalue spectra for the Wigner ensemble (left panel), and the Wishart ensem-
ble with N = Q (right panel), from 103 trials with N = 200.

As a Wishart matrix is the Hermitian square of another matrix, it is necessarily positive
semidefinite. The joint probability density of a complex Wishart matrix is (cf. e.g. [10])

f(�
1

, . . . ,�N) = C exp
⇣
� 1

�

NX

i=1

�i + 2
NX

i<j

ln|�i � �j|+ (Q�N)
NX

i

ln�i

⌘
. (3.6)

In the Coulomb gas picture, the non-negativity of a Wishart matrix corresponds to the presence
of a hard wall at � = 0.

The eigenvalue distribution in the Wishart ensemble is given by the Marčenko-Pastur law
[18], which takes the form

⇢(�) =
1

2⇡N�

2

�

p
(4N�

2 � �)� , (3.7)

for the special case N = Q that will be relevant in our analysis, cf. Figure 1.
The probability density function of the smallest eigenvalue �

1

was first computed by Edel-
man [17], and for our purposes it su�ces to note that for N = Q and � = 1p

N
, its average

position h�
1

i scales as 1

N2 .

3.1.3 The Altland-Zirnbauer CI ensemble

The matrix M appearing in the critical point equation (2.4) has an eigenvalue spectrum that
is broadly reminiscent of the Wigner semicircle law, but the 2N eigenvalues of M come in
opposite-sign pairs ±�a, with 0  �

1

 . . .  �N . As observed in [2], matrices M of the form
(2.5) belong to the Altland-Zirnbauer CI ensemble [19]. For normally-distributed entries of M,
the joint probability density of the eigenvalues is

f(�
1

, . . . ,�N) = C exp
⇣
� 1

�

2

NX

i=1

�

2

i +
NX

i 6=j

ln|�2

i � �

2

j |+
NX

i=1

ln |�i|
⌘
. (3.8)
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3.1.1 The Wigner ensemble

One of the simplest and best-known ensembles of random matrices is the Wigner ensemble of
Hermitian matrices, also referred to as the Gaussian Unitary Ensemble [12, 13, 14]. Elements
of this ensemble, which we refer to as Wigner matrices, are N ⇥N Hermitian matrices M given
by

M = A+ A

†
, (3.1)

where Aij for i, j = 1, . . . , N are i.i.d. variables drawn from ⌦(0, �), and the dagger denotes
Hermitian conjugation.

The measure on the space of matrices is

dP (M) =
Y

1ijN

f(Mij) dMij , (3.2)

where f(Mij) denotes the probability density of observing Mij. For normally-distributed entries
of M , the joint probability density of the eigenvalues �

1

, . . . ,�N is obtained by a unitary change
of coordinates,

f(�
1

, . . . ,�N) = C exp
⇣
� 1

�

2

NX

i=1

�

2

i + 2
NX

i<j

ln|�i � �j|
⌘
, (3.3)

where C is an N -dependent normalization constant. As conceived in the famous work of Dyson
[15], this joint probability density can be given a physical interpretation in terms of a one-
dimensional Coulomb gas of N charged particles executing Brownian motion under the influ-
ences of a confining quadratic potential and of mutual electrostatic repulsion. This physical
picture has proved to be very fruitful in deriving exact results for a variety of properties of the
eigenvalue spectrum (see e.g. [4, 5]), and in §4 and §5 we will see that repulsion between pairs
of eigenvalues significantly impacts the stability of critical points in supergravity.

At large N , the eigenvalue spectrum of a Wigner matrix converges to the celebrated Wigner
semicircle law,

⇢(�) =
1

2⇡N�

2

p
4N�

2 � �

2

. (3.4)

where ⇢ is the eigenvalue density. Setting � = 1p
N
, the eigenvalue spectrum has support in the

interval [�2, 2], cf. Figure 1.

3.1.2 The Wishart ensemble

The second class of random matrices we will need are complex Wishart matrices, which take
the form

M = AA

†
, (3.5)

where A is an N ⇥Q complex matrix with entries drawn from ⌦(0, �), and Q � N . The study
of this ensemble dates back to Wishart’s investigation of sample covariance matrices [16], and
the universality evident in the Wishart ensemble provided some of the inspiration for Wigner’s
subsequent development of random matrix theory.
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The Hessian is well approximated by a sum of 
a Wigner matrix and two Wishart matrices.



IIA Flux Vacua

• An infinite family of AdS vacua are known to arise from flux 
compactifications of IIA SUGRA [Derendinger et al; Villadoro et al;    

De Wolfe et al; Camara et al].

• Attempts to construct IIA dS flux vacua often start with 
similar setups as SUSY AdS ones and then introduce new 
ingredients to uplift (e.g., negative curvature of internal space).

• We can model the Hessian as H = A + B where A= diagonal 
mass matrix at AdS min., B is uplift contribution.

• A does not have to be positive definite for stability, as long as 
the BF bound is satisfied. To play it safe, we start with a SUSY 
AdS vacuum with A=positive definite diagonal matrix.



IIA Flux Vacua

• We take B to be a randomized real symmetric matrix.

• A and B have variances σA and σB.  The relative ratio y= 
σB/σA determines the amount of uplift.

• The ansatz                        works well when the mass 
matrix is not completely random, but has a hierarchy:
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Gaussianly suppressed
when y ~ 0.025 for N=10

tribution to model the statistical distribution of the diagonal elements at leading order. The

di↵erence between �A and �B = 1 introduces the hierarchy between the diagonal elements and

o↵-diagonal elements.

The basic idea for this modeling is the following: first we consider moduli stabilization at

AdS minima by some mechanism, and then add an uplifting potential(s) to attain a positive

cosmological constant. The diagonal mass matrix A is given at AdS and the real-symmetric

mass matrix B comes from the uplifting term since the stabilized moduli masses are generically

mixed in the presence of additional sources. In the previous section, we consider situations in

which the mixing term is comparable to the diagonal terms in the potential. Here, we consider

scenarios where the mixing is suppressed, such that the diagonal entries are more likely to be

positive.

We simulate the probabilities of positive definite mass matrix for N = 4� 20 while varying

the variance of diagonal matrix between �A = 10, 15, 20, · · · , 100. We choose the fitting function

to be still of the form

P = a e�bN2�cN , (2.3)

but now the b and c are both functions of �A. The motivation for this choice is as follows.

For random matrices that we studied in the previous subsection, the Wigner semicircle law

implies that the eigenvalues are mostly distributed within [�2
p
N, 2

p
N ]. Now we have added

some additional positive diagonal elements. If we fix the hierarchy between the diagonal and

o↵-diagonal terms, but increase the dimension N , the above range will keep increasing and

eventually swamp the fixed hierarchy we introduced. Namely we expect to recover the Gaussian

suppression in the large N limit. This is why we choose the leading term in the exponential to

be still proportional to N2. For smaller N , we expect it to be less Gaussian, and this is modeled

by the linear term.

For example, for �A = 10, we get

P = 0.950 e�0.00810N2�0.00442N ; (2.4)

for �A = 100, we get

P = 1.00 e�0.000111N2�0.00277N . (2.5)

The coe�cients b and c as functions of �A (or equivalently y ⌘ �B/�A) can be fitted by the

following formulae, (see figure 2),

b = 0.000395y + 1.05y2 � 2.39y3,

b

c
= 0.0120 + 2.99y � 12.2y2 + 1650y3.

(2.6)

The extrapolation of these fitting functions to larger values of N works quite well. For example,

for N = 30, y = 1/10, the expected probability from (2.4) is P
exp

= 0.00056, while the numerical
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A Type IIA Example
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• Return to the SU(2)xSU(2) group manifold studied earlier 
in the systematic search of [Danielsson, Haque, Koerber, GS, Van 
Riet, Wrase] 

• This model evades the no-goes for dS extrema and stability 
in the universal moduli subspace. There are 14 moduli.

• Evaluating the variance:                                   >> 0.025. 

• There is no surprise that tachyon appears.

• Tachyon appears in a 3x3 sub-Hessian.

• In this model, η = V’’/V ≲ -2.4 at the extremum, so the 
tachyon becomes more tachyonic as the CC increases.

In this 14 moduli system which consists of ti = ki � ibi and N I = uI + icI , a positive

extremum was found by [8]

m1 = m2 = m3 = L, m = 2L�1, p = 3L2,

k1 = k2 = k3 ⇠ 0.8974L2, b1 = b2 = b3 ⇠ �0.8167L2,

u1 ⇠ 2.496L3, u2 = �u3 = u4 ⇠ �0.5667L3,

c1 ⇠ �2.574L3, c2 = �c3 = c4 ⇠ 0.3935L3,

(3.14)

where L is a parameter assigned for the solution. The solution contains one tachyonic direction

which shows up after diagonalizing the mass matrix. It turns out that all 2 ⇥ 2 and 3 ⇥ 3

sub-matrices have positive determinants. The tachyon first appears in the 4⇥ 4 sub-matrix for

the real parts of the complex moduli.

Let us compare the mass matrix of this model with the random matrix considered in section

2.2. Changing the basis of the mass matrix to the canonical one: X i,I , Y i,I through the relations

dX i = 1/2ki(dki+dbi), dXI = 1/2uI(duI+dcI), dY i = 1/2ki(dki�dbi), dY I = 1/2uI(duI�dcI)

at the extrema, we see that only the overall factor of the mass matrix depends on the parameter

L. After calculating the deviations of the mass matrix MAB assuming the center value to be

zero, we get 6

y ⇠
 

1

14⇥13/2

P
A<B M2

AB

1

14

P
14

A=1

M2

AA

!
1/2

= 0.274. (3.15)

The numerical value of the relative ratio b/c obtained from (2.6) may not be applicable here

since y = 0.274 is already outside the domain of our random matrix estimation for small y.

However, we know that the probability P is Gaussianly suppressed already at y = 0.1 in (2.6),

where b/c ' 1.8. So we expect that, for y = 0.274, P is Gaussianly suppressed even around

small N > 1. Thus it is not so surprising to have a tachyon at N = 14 in this model.

Let us make a couple of comments here :

• The axionic directions with oscillating type potentials typically will have many minima.

This tends to provide stability along those directions. So one may exclude the number of

axions in the e↵ective N used in the estimate of P . In the above model with 4 complex

moduli, we may include the real parts of the Kahler (and dilation) moduli and both the

real and imaginary parts of the complex moduli: N = 3 + 2(4) = 11, instead of N = 14.

• The inflationary slow-roll parameter ⌘ of the above model is given in [8]. For the potential

V > 0,

⌘ = (min eigenvalue)⇥ rA@AV

V
. �2.4 (3.16)

6The relative ratio calculated here is slightly di↵erent from the ratio y considered in section 2.2. This is

because the uplifting matrix B also includes diagonal entries, therefore deviation of diagonal components in the

total matrix is not the one for A. However, since the deviation of B is smaller than that of A, this is not a bad

approximation.
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CC and Stability
• As we lift the CC, the off-diagonal terms become bigger 

and the extremum becomes unstable.

• In general, we expect some moduli to be very heavy and 
essentially decouple from the light sector, so N= NH + NL. 

• The # of extrema is controlled by N, while the fraction of 
stable critical points is controlled by NL.

• Example: a 2-sector SUGR where some moduli have very 
large SUSY masses while SUSY is broken in a decoupled 
sector involving only the light moduli.

• As we go to higher energies, more moduli come into play 
(larger eff. N) ➱ probability more Gaussianly suppressed.



Less Democratic Landscape

37 

CC = 0 

Before After Stabilization: 

[Bousso, Polchinski, 00] 

Raising the CC destabilizes the classically stable vacua.



Implications to the Landscape?

















Summary

✤No-go theorems for de Sitter vacua from string theory, and the 
minimal ingredients to evade them.

✤Finding de Sitter solutions is hard.

✤A systematic search for IIA dS vacua within a broad class of 
SU(3) structure manifolds has so far come up empty.

✤Finding de Sitter vacua is even harder.

✤ In some situations, the probability of finding de Sitter vacua is 
Gaussianly suppressed. 

✤This may point to a different picture of the landscape.
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