Hunting for de Sitter String Vacua
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String theory landscape®

... sSeems so 5BC



String theory landscape®
... seems so 5SBLHC









In the year 15AD ...



D for Dark Energy
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A challenge:

Still, while Riess and his team made a striking discovery, the findings also revealed a new mystery. The universe’s acceleration is thought
to be driven by an immensely powerful force that since has been labeled “dark energy” — but precisely what that is remains an enigma,
“‘perhaps the greatest in physics today,” according to the academy that annually awards Nobel Prizes.

Riess called dark energy the “leading candidate” to explain the acceleration of the universe’s expansion, but said he and others in his field
have plenty of work to do before they determine how it works.

“You’ll win a Nobel Prize if you figure it out,” Riess said. “In fact, I'll give you mine.”



Cosmic Acceleration & String Theory

The zero of the vacuum energy:

“*is immaterial in the absence of gravity,

Science

. . ACCELERATING
“* can be tuned at will classically. UNIVERSE

Solution to the dark energy problem likely
requires quantum gravity!

IR
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"The Landscape” (Picture from Scientific American)

SELF-REPRODUCING COSMOS appears as an extended branching of inflationary
bubbles. Changes in color represent “mutations” in the laws of physics from par-
ent universes. The properties of space in each bubble do not depend on the time
when the bubble formed. In this sense, the universe as a whole may be stationary,
even though the interior of each bubble is described by the big bang theory.
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"The Landscape” (Picture from Scientific American)

SELF-REPRODUCING COSMOS appears as an extended branching of_ inflationary
bubbles. Changes in color represent “mutations” in the laws of physics from par-
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e ivrss, Thepropceicof spuc o bl do ot depn o e e A landscape of string vacua!

even though the interior of each bubble is described by the big bang theory.



Outline of this talk

+ The case for the lanclscape

+ No-go theorems and attempts to construct explicit models

15 5. Haque) Eroli Unclerwoocl) T. Van Riet, Phgs. Rev. D79, 086005 (2009).
+ U.H. Danielsson, S.5. Haque, GS, T. Van Riet, JHEP 0909, 1i4- (2009).
e Danielsson, SIS Haque, = Koerber, GS, T. Van Riet, T. Wrase, Fortsch.

Phys. 59, 897 (2011).
+ Stability & Random (Super) gravities

+ ES Slitene  JBIERIIOS. 052 (2011).
+ X Chen, GS, Y. Sumitomo, H. Tye, JHEP 1204, 026 (2012).



STRING ITHEORY LANDSCAPE

11-D Supergravty

ES X E8 Hetero

» Many perturbative formulations:

O(32) Heter

* In each perturbative imit, many topologies:

* For a fixed topology, many choices of fluxes.



STRING THEORY LANDSCAPE

» String theory has many solutions ...

BlIPESRceniiriolUte To energy density;

1
S—— /dlox\ﬁ—g R - =iy

C]'

» Quantization of fluxes: / el
>

* A large number of moduli (hence possible fluxes) allows

[@@Ene fife-tuning of the cc. 1
0 — Abare i 5 Zn?%?



Bousso Polchinski

® A large discretuum: A

L],

1
A:Abare"l_ 52”?@1@2

® # solutions ~ (# flux quanta)#meduli ~mN~](0>00



Bousso Polchinski

® A large discretuum: A

L],

1
A:Abare"l_ 52”?@1@2

® # solutions ~ (# flux quanta)#meduli ~mN~](0>00



Bousso Polchinski

® A large discretuum:

L],

we are here
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Bousso Polchinski

® A large discretuum:

L],

we are here

1
A:Abare"l_ 52”?@1@2

® # solutions ~ (# flux quanta)#meduli ~mN~](>00

But how many of them are actually (meta)stable?



Explicit Constructions
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Flux Compactification

® Fluxes stabilize complex structure moduli but Kahler
moduli remain unfixed.

® Non-perturbative effects (D7 gauge instantons or ED3
instantons) stabilize the Kahler moduli.

® Anti-branes and/or AKpert to “uplift” vacuum energy.

\Y%




But ....

e Non-perturbative effects: difficult to compute
explicitly. Most work aims to illustrate their existence,
rather than to compute the actual contributions:

= Wy, = A(G)e™™

Moreover, the full moduli dependence is suppressed.

e Anti D3-branes: backreaction on the 10D SUGRA
proves to be very challenging.

Whp = Ae ™%




Classical de Sitter solutions

@ In Type IIA, fluxes alone can stabilize all
moduli; known examples so far are AdS vacua.

® Absence of np effects, and explicit SUSY
breaking localized sources, e.g., anti-branes.

@ Explicitly computable within classical SUGRA.
@ Solve 10D equations of motion (c.f., 4D EFT).

@ Readily amenable to statistical studies (later).



Our Ingredients

“* Fluxes: contribute positively to energy and tend to make the
Internal space expands:

S=—L | JGF

2t | H1fip4l

1. fipt1
F

“* Branes: contribute positively to energy and tend to shrink the
internal space (reverse for O-plane which has negative tension):

S = _.Tbrmm / \/ Jbrane
brane

Positively (negatively) curved spaces tend to shrink
(expand) and contribute a negative (positive) energy:

/ V 1910/ R0 :/ m@((/ x,/g_ﬁJRat‘l'/u@Rﬁ)
10 4 6 G



Universal Moduli

* Consider metric in 10D string frame and 4d Einstein frame:
dsj, = 7 %ds; + pds; T = p3/2e_¢ ,
P, T are the universal moduili.

* The various ingredients contribute to V in some specific way:

Ve =Ugrp '77%, Ug(p) ~ /\/576 (—HRs),
Vir = Unp™772 Unlo)~ [ Vi I
V= qug_q7_4, Uq(p) ~ /\/976Fq2 > 0

V}? — Uppp%T_Sa Up(gp) = Up VO](Mp—?))'

* The full 4D potential V(p,T,®i) = VR + V1 + Vq + Vp.



Intersecting Brane Models

theory with intersecting D6-branes/

* Consider Type lIA string

O6-planes in a Calabi-Yau space
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a popular framework for building the Standard Model (and

beyond) from string theory.



No-go Theorem(s)

* For Calabi-Yau, Vg =0, we have: V =Vg+)» Vi+ Vps + Vos
q

“* The universal moduli dependence leads to an inequality:

oV oV
P =3 =V Y gV, > 9V
,Oap 7_37' ‘|—qqq_

** This excludes a de Sitter vacuum:

ov. oV
9 = or = 0and V >0 Hertzberg, Kachru,

Taylor, Tegmark

as well as slow-roll inflation since ¢> 0Q).

“* More general no-goes were found for Type |IIA/B theories with

various D-branes/O-planes. [Haque, GS, Underwood,Van Riet, 08];
[Danielsson, Haque, GS, van Riet, 09];[Wrase, Zagermann, 10].



No-go Theorem(s)

“* Evading these no-goes: O-planes [introduced in any case
because of ], fluxes,
often also negative curvature.

N Heuristically: negative internal
e scalar curvature acts as an

--._-
— — —

== uplifting term.

“* Classical AdS vacua from llA flux compactifications with D6/06
were found

“* Minimal ingredients needed for dS

|) O6-planes 2) Romans mass 3) H-flux 4) Negatively curved internal space.



Minimal Constraints for Stabillity

“ Sylvester’s Criterion: An N x N Hermitian matrix is positive definite
Iff all upper-left n x n submatrices (n<N) are positive definite.

* Mass matrix M of 2D universal moduli subspace must satisfy:
detM >0, trM >0
“* The minimal ingredients for classical dS extrema tabulated in

Curvature No-go, if No no-go in ITA with No no-go in IIB with
q+p—-620,Vp,q,
Ve, ~ —Re <0 (34q)2 — 12 O4-planes and H, Fp-flux | O3-planes and H, F-flux
q+p—82=>0,Vp,q, O4-planes and Fy-flux 8;:1)}23:2 zﬁg ?:gﬁi
ViRe ~ —Rg >0 (exceptq = 3,p = 5) O4-planes and F5-flux p 3
> @3 51 O6-planes and Fj-flux O3-planes and F5-flux
€= P—8¢+19 = 3 0 O5-planes and F1-flux

all turn out to

nave an unstable mode!




Minimal Ingredients

* A negatively curved internal space:

/v

Ricci-flat Negatively curved

“* Backreaction of NS-NS & RR fluxes including the Romans mass.

* Orientifold planes



Generalized Complex Geometry

* Interestingly, such extensions were considered before in the
context of generalized complex geometry (GCGQG).

“* Among these GCG, many are negatively curved (e.g., twisted

tori), at least in some region of the moduli space [Lust et al; Grana
et al; Kachru et al; ...].

 Attempts to construct explicit dS models were made soon

after NO-goesS [Haque,GS,Underwood,Van Riet];[Flauger,Paban,Robbins,

Wrase]; [Caviezel,Koerber,Lust,Wrase,Zagermann];[Danielsson,Haque,GS,van Riet]; [de
Carlos,Guarino,Moreno];[Caviezel,Wrase,Zagermann];[Danielsson, Koerber,Van Riet]; ....

“* A systematic search within a broad class of such manifolds

[Danielsson, Haque, Koerber, GS, van Riet,Wrase].



Two Approaches

SUSY broken
@ or above
KK scale

Do not lead to an effective
SUGRA in dim. reduced theory

SUSY broken
below
KK scale

Lead to a 4d SUGRA (N=1):

= Spontaneous SUSY state
= Potentially lower §U§Y scale
= Much more control on the EFT

= c.f. dS searches within SUGRA



Search Strategy

“ GCG: natural framework for N=1 SUSY compactifications
when backreaction from fluxes are taken into account.

 Type IIA SUSY AdS vacua arise from specific SU(3) structure
manifolds [Lust, Tsimpis];[Caviezel et al];[Koerber, Lust, Tsimpsis]; ...

“* Modify the AdS ansatz for the fluxes (which solves the flux
eoms from the outset) and search for dS solutions.

* Spontaneously SUSY breaking state in a 4D SUGRA: powerful
results & tools from SUSY, GCG.



SU(3) Structure

* SUSY implies the existence of a nowhere vanishing internal 6d
spinor n+ (and complex conjugate n.).

* Characterized by a real 2-form J and a complex 3-form Q:

i . .
J = —nT YirioNaedz’t A da*?
2|27

1

3!"77"277—711@22377—#(137 LAdae™ Ade'

() =

satisfying QAaJ =0, QAQ = 4i/3)JAJAJ=S8ivols.

“J, Q define SU(3) structure, not SU(3) holonomy: generically
dJ=0 and dQ=0.



SU(3) Torsion Classes

The non-closure of the exterior derivatives characterized by:

3
dJ = §Im(Wlﬁ*) + Wi N J+ W5

dQ=WiJANJ+Wa AJ+W5 AQ

Torsion classes Name

Wi =Wy =0 Complex

Wo=W3=W4=Ws5=0 Nearly Kahler

ImW, =ImWy =W, =W5 =0 Half-flat

Wi=Wo=W3=Ws=Ws=0 Calabi-Yau



SU(3) Torsion Classes

The non-closure of the exterior derivatives characterized by:

3
dJ = §Im(W1Q*) + Wi N J+ W5

dQ=WiJANJ+Wa AJ+W5 AQ

Torsion classes Name
Wiy =Ws =0 Complex

Wo=W3=W4=Ws5=0 Nearly Kahler

ImW, =ImWy =W, =W5 =0 Half-flat

Calabi-Yau

compatible with the orbifold/orientifold symmetries considered



Universal Ansatz

“* Ricci tensor can be expressed explicitly in terms of J, Q and
the torsion forms

¢ |In terms of the universal forms: {J,Q, W17W2>W3}

one finds a natural ansatz for the fluxes:

q)FO f17

ePFy = fod + f3Wo,
L, = fLIANT+ Wa A g, Sameansatzin finding SUSY
e® Fr — fovolg . AdS vacua

H = f?QR+f8W37
j=11Qx + j2Ws.

“* Universal ansatz: forms appear in all SU(3) structure (in this
case, half flat) manifolds.



O-planes

“* To simplify, we take the smeared approximation:

0 — constant

l.e., we solve the eoms in an “average sense”. If backreaction
IS ignored, eoms are not satisfied pointwise [Douglas, Kallosh].

“* Finding backeacted solutions with localized sources proves to

be challenging (more later) [Blaback, Danielsson, Junghans, Van
Riet, Wrase, Zagermann].

“* The Bianchi identity becomes:
dFy + HFy = —j, ej = j10r + j2Ws.

* The source terms of smeared O-planes in dilaton/Einstein
eoms can be found in [Koerber, Tsimpis, 07].



Finding Solutions

“* The dilaton/Einstein/flux eoms and Bianchi identities can be
expressed as algebraic equations (skip details).

* To find solutions other than the SUSY AdS, impose constraints:

dWQ = ClﬂR + d1W3 ,
WQ/\WQZCQJAJ_l_dQWQ/\J,
dosg Wy =csJ ANJ 4+ csWa A J,
1, A .
§<W3ile3jkl)+ = dy JWo"; .

for some c’sand d’s.
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Finding Solutions
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Explicit Model Building

“* Bottom-up approach: we found necessary constraints on fluxes
& torsion classes for universal dS solutions, a useful first step.

* Bottom-up constraints (with W2=0) can be satisfied with an
explicit model: an SU(2) x SU(2) group manifold.

M?/(f1)?
of— ‘_zf2/f1

Unfortunately, out .. /\ -
of 14 scalars, one .. |
s tachyonic! & ..

[Danielsson, Koerber, Van Riet]




A Systematic Search

“* Focus on homogenous spaces (G/H, H € SU(3)) where we can
explicitly construct the SU(3) structure.

G=Semi-simple

Cosets G/H, H in . .
SU(3) and G semi- Nilmanifold

simple

Solmanifold

Unexplored!

= \\e cover all group manifolds, by classifying 6d groups.



Group Manifolds

+ A coframe of left-invariant forms: ¢ 'dg = T,
that obeys the Maurer-Cartan relations:  de® = —1f%.e” A e
** From these MC forms, we can construct J, 2, and the metric:
ds® = Mye* @ e’
“*Levi'stheorem: g=sKxrt
semi-simple S ; radical T = largest solvable ideal
|deal: g.i €

Solvable: ¢" =[g"',¢""'] vanishes at some point



Group Manifolds

.. C
e Semi-simple: =
50(3) X s0(3)
50(3) x s0(2,1)
s0(2,1) x s0(2,1)
50(3,1)
® Semi-direct product of semi-simple algebra & radical: g=sxt
Case Representations
" Unimodular algebra: A 50(3) ¢, u(1)” p=101&1andp=3
s0(3)x ,Heis; p=191d1
[ = for all b s0(3) X, 150(2) =19141
. 50(3) X, is0(1,1) p=191d1
necessary condition for s0(2,1) ), u(1) p=1@1@1, p=1®2and p—3
non-compact group space 50( )%, He1s3 p=1®1dland p=1¢2
to be made compact. 50(2,1) X, is0(2) p=1lo1d1
7 s0(2,1) X, 150(1,1) p=101d1

-




Group Manifolds

® Solvable groups:

‘ Name Algebra 05 | 06 ‘ Sp ‘
954 O R3 (¢123,¢213,0,0,0,0) q1,q2 >0 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, v
26, 34, 35, 36 246, 256, 345, 346, 356
08 ®R3 (—-23,13,0,0,0,0) 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, v
26, 34, 35, 36 246, 256, 345, 346, 356
93.1 D 034 (—23,0,0,¢156, 246,0)  q1,q2 > 0 14, 15, 16, 24, 25, - v
26, 34, 35, 36
g3.1 P 09 5 (—23,0,0,—56,46,0) 14, 15, 16, 24, 25, R v
26, 34, 35, 36
934 D 09 5 (4123, ¢213,0,—56,46,0) q1,q2 > 0 14, 15, 16, 24, 25, - v
26, 34, 35, 36
054D 054 (¢123,¢213,0, 356, q446,0)  q1,G2,93,94 > 0 14, 15, 16, 24, 25, - v
26, 34, 35, 36
995 D gl 5 (—23,13,0, —56,46,0) 14, 15, 16, 24, 25, - v
26, 34, 35, 36
ois R ! -
0" O R’ ? :
g, OR? (—23,q134,¢224,0,0,0)  q1,q2 > 0 14, 25, 26, 35, 36 145, 146, 256, 356 -
989 ®R? (—23,-34,24,0,0,0) 14, 25, 26, 35, 36 145, 146, 256, 356 -
a. T TeR (125, g215, ¢245, 135,0,0)  q1,q2 > 0 13, 14, 23, 24, 56 | 125, 136, 146, 236, 246, 345 |
g:s OR (25,0, q145, 235,0,0)  ¢1,¢2 > 0 13, 14, 23, 24, 56 | 125, 136, 146, 236, 246, 345 |
o015 ©R (¢125, 215, —qard5, ¢1735,0,0) 7 £ 0, q1,¢2 > 0 13, 14, 23, 24, 56 | 125, 136, 146, 236, 246, 345 | v
ol LOR (—25,0, —45,35,0,0) 13, 14, 23, 24, 56 | 125, 136, 146, 236, 246, 345 | «
g;15 O R (q1(25 — 35), q2(15 — 45), 245, ¢135,0,0)  q1,q2 > 0 14, 23, 56 146, 236 v
gb DT e R | (q1(p25 + 35), q2(p15 + 45), g2(p45 — 15), 1 (p35 — 25),0,0) 14, 23, 56 146, 236 v
r2=1, qi,q2 >0 p=0:12, 34 p = 0: 126, 135, 245, 346
gl c®OR (—25 — 35,15 — 45, —45,35,0,0) 14, 23, 56 146, 236 v
g5 (=26, —36,0, 156, ¢246,0)  q1,q2 > 0 24, 25 134, 135, 456 v
9610 (—26,—36,0, —56, 46, 0) 24, 25 134, 135, 456 v




Orientifolding

“» dS critical point of effective N=1 SUGRA from group manifolds.
» Orbifolding further by discrete ' ¢ SU(3).

*» Among the Abelian orbifolds of (twisted) T°, only two Z> x Z>
orientifolds can evade € > O(1)

“» Consider Z> x Z2 orientifolds of the group spaces we classified.

( 1 (

A
|

Ld i 44
Q
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|

QO DD DD



Constructing SU(3) Structure

1 2 3 4

ot

*O-planes:  Jjs=jae™ + jpe* + joe' + jpe'® RIR ]| -
Rl -1 - 1R X| -
“*J and Qr are odd under orientifolding: - (5_9 é é ‘5_9 %

J = ae'® + be** + ce®®
Y

456 236 134 125

Orp = v1™° 4+ 1e”° + v3e 7" + v4e |
* The metric fluxes are even:  de' = flye® + fluse®,  de? = f215e" + f256e™

de’ = fP10e"? + fPi6e™, de' = fl36e™ + f15€",

d€5 _ f514614 i f5266267 d66 — f634€34 4 f625€25 .

“* Metric g and Qi can be expressed in terms of the “moduli”:

1
(avgv4, —buyvy , cUoU3, —bUivs, CcU1Vy avlvg) /01090303 = —abc
v/ U1U2030U4

g:

~1,123 | —1 145 _  —1 256 _  —1_346
Q]:\/U1U2U3U4(Ul e +uv, e —v; e —uv, e )



Constructing SU(3) Structure

“ Parity under orientifolding implies Im Wi= Im Wz2= W4 = W5=0
= Half-flat SU(3) Structure Manifold

» Construct the remaining torsion classes:

W1 = _%*6 (dJ/\Q]),
W2 — —*dQ]+2W1J,
W3 — dj — %WlﬁR.

“* Search for dS solutions satisfying constraints obtained earlier.



A Mini Landscape

“*# of unipotent 6D group spaces ~ O(50). Among them, only a
handful have de Sitter critical points that are compatible with
orbifold/orientifold symmetries.

“* Each of these group spaces has O(10) left-invariant modes.
adpole constraints restrict flux quanta on each cycle < O(10).

» A sample space of O(10'9) solutions, no dS that is tachyon free.

“* Flux quantization:

Pictorially | ® .
L ® For SU(2)xSU(2) examples,
& can explicitly check flux
@P °© . quantization demands
’ N solutions outside SUGRA.




Probability Estimate

N

Consider V(¢)=> V;(¢;)
j=1

Then Vimin(P) = 2 Vjmin(P)).IfVj has nj minima, then

there are | | nj classical minima. For nj ~ n,# minima =
nN This is implicit in BP.

Say Vj has 2nj extrema, roughly half of which are minima.

Probability for an extremum to be a minimum is
7) — 1/2N — 6_N1n2

Still, there are P x (# extrema) = eN'" " minima.



Probability for de Sitter Vacua

® We are interested in dS vacua from string theory.

® The various ®jinteract with each other. It is difficult to
estimate how many minima there are.

® Explicit form ofV is typically very complicated, e.g., in llA:

) _ — - 1 o
Vo o (K’&JDtiWDth + K5TD WD W — 3|W|2) +5 (Ref)”! " DuDy

i (2—
K:—2ln(—i/e_2¢§2/\ﬂ*)—1n(§/]/\J/\J> J =K'y

o O =FrYP) 2Ky
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Random Matrices

The Hessian mass matrix H=Vjjat an extremum V; =0
must be positive definite for (meta)stability.

We can use Sylvester’s criterion to check whether there
are tachyons, but time-consuming for a large Hessian H.

If the Hessian is large and complicated, how do we
estimate the probability of an extremum to be a min.?

Random matrix Theory (RMT) provides an estimate.



Random Matrix Theory

A tool to study a large complicated matrix statistically

Given a random H, the theory of fluctuation of extreme
eigenvalues allows one to compute the probability of
drawing a positive definite matrix from the ensemble.

Eigenvalue repulsion: probability for H to have no
negative eigenvalue is Gaussianly suppressed.

Some initial foray in applying these RMT results to
cosmology was made



Wigner Ensemble

P(N)

M=A+ AT

Dyso n -2 -1 0 1 2 >\

Wigner’s semi-circle

Elements of A are independent identically distributed
variables drawn from some statistical distribution.



Tracy-Widom & Beyond

WIGNER SEMI-CIRCLE

-(2N)"” 0 A= (2N)"?

Study of the fluctuations of the smallest (largest) eigenvalue
was initiated by Tracy-VVidom, and generalized to large
fluctuations by Dean and Majumdar



Probability of Stability

Consider a Gaussian orthogonal ensemble

Probability of the form:

7) _ ae—bNQ—cN

seems to work well, and agrees with:

1n3N2

The large N analytic result of Dean & Mujumdar P ~ ¢~ 4
and further refinement by Borot et al:

In 3 In(2v/3 — 3 1
P = exp —HTN2+ o ‘g )N—2—41nN—O.0172

If the probability is Gaussianly suppressed, while # extrema
goes like eN (recall 10°%), unlikely to find metastable vacua.



Random Supergravities

Consider the SUGRA potential:
V =e" (DAWDAW — 3|W|?)

and its Hessian, which is a function of DAV, DaDgVY, and
DaDgDcWY, as well as W.

Instead of randomizing elements of H, one can randomize
K, W, and its covariant derivatives

This approach is applicable to F-term breaking, but not to
D-term breaking, and models with explicit SUSY breaking.

Also a different ansatz P = ae~ %"V was used. Quantitative

details differ, but P less likely than exponential also found.



Random Supergravities

The Hessian is well approximated by a sum of
a Wigner matrix and two Wishart matrices.

) -1 0 1 2

Figure 1: The eigenvalue spectra for the Wigner ensemble (left panel), and the Wishart ensem-
ble with N = @ (right panel), from 10° trials with N = 200.



1A Flux Vacua

An infinite family of AdS vacua are known to arise from flux
compactiﬁcations of IIA SUGRA [Derendinger et al;Villadoro et al;
De Wolfe et al; Camara et al].

Attempts to construct lIA dS flux vacua often start with
similar setups as SUSY AdS ones and then introduce new
ingredients to uplift (e.g., negative curvature of internal space).

We can model the Hessian as H = A + B where A= diagonal
mass matrix at AdS min., B is uplift contribution.

A does not have to be positive definite for stability, as long as
the BF bound is satisfied. To play it safe, we start with a SUSY
AdS vacuum with A=positive definite diagonal matrix.



1A Flux Vacua

® We take B to be a randomized real symmetric matrix.

® A and B have variances Oaand OB. The relative ratio y=
OB/OA determines the amount of uplift.

_ 2_
@ The ansatz P = a e V" =" works well when the mass

matrix is hot completely random, but has a hierarchy:

b b/c

' b = 0.000395y + 1.05y* — 2.39y°, sl
b 9 3 1.00 -
ol - = 0.0120 + 2.99y — 12.2y* + 1650y°.
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A Type lIA Example

Return to the SU(2)xSU(2) group manifold studied earlier

in the systematic search of [Danielsson, Haque, Koerber, GS, Van
Riet, Wrasej

This model evades the no-goes for dS extrema and stability
in the universal moduli subspace. There are 14 moduli.

1 2\ 1/2
. . S M
Evaluating the variance: v~ (14 e AB) =0.2m4. >> 0.025.
11 2a=1 Mia

There is no surprise that tachyon appears.

Tachyon appears in a 3x3 sub-Hessian. Chen, GS, Sumitomo, Tye

In this model, N =V”/V = -2.4 at the extremum, so the
tachyon becomes more tachyonic as the CC increases.



CC and Stability

As we lift the CC, the off-diagonal terms become bigger
and the extremum becomes unstable.

In general, we expect some moduli to be very heavy and
essentially decouple from the light sector, so N= Ny + NL

The # of extrema is controlled by N, while the fraction of
stable critical points is controlled by NL_

Example: a 2-sector SUGR where some moduli have very
large SUSY masses while SUSY is broken in a decoupled
sector involving only the light moduli.

As we go to higher energies, more moduli come into play
(larger eff. N) = probability more Gaussianly suppressed.



Less Democratic Landscape

Raising the CC destabilizes the classically stable vacua.

Stabilization: Before After

_________ -

[Bousso, Polchinski, 00]



Implications to the Landscape!
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Summary

“* No-go theorems for de Sitter vacua from string theory, and the
minimal ingredients to evade them.

“* Finding de Sitter solutions is hard.

“* A systematic search for IIA dS vacua within a broad class of
SU(3) structure manifolds has so far come up empty.

“* Finding de Sitter vacua is even harder.

“*In some situations, the probability of finding de Sitter vacua is
Gaussianly suppressed.

“* This may point to a different picture of the landscape.
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