The axion-photon interaction and gamma ray signals of dark matter

Juan Barranco Monarca

DCI Universidad de Guanajuato In collaboration with David Delepine and Alba Carrillo PASCOS, Merida Yucatán, México. June 5,2012

Outline

- Dark matter detection
- A couple of new proposal for indirect dark matter detection
 - UHE neutrino flux suppression
 - Gamma rays and the axion-photon mixing
 - 1. A galactic halo made of collisionless ensemble of axion stars?
 - 2. A possible flux of high energy photons from the Sun?
- Conclusions

Motivation

Dark matter detection

No Dark matter candidate has been detected so far (?)

Indirect DM searches

Indirect DM searches

Does it exist alternative ways?

Does it exist alternative ways?

If cosmic rays (i.e. v's or photons) interact with DM there could be some effect

Possible suppression

The mean free path

$$\lambda^{mfp} = (n\sigma)^{-1} = \frac{m_{DM}}{\rho_{DM}\sigma},$$

where *n* is the DM density and σ is the elastic cross section ν -DM, and m_{DM} is the mass of the DM particle.

There will be a ν 's UHE flux suppression given by

 $F(L) = F_0 e^{-L/\lambda^{mfp}} ,$

where F(L) is the suppressed flux and F_0 is the flux at the source.

SFDM as a viable model for DM

The Scalar Field Dark Matter model (SFDM) The Dark Matter is modeled by a scalar field with a ultra-light associated particle. $(m \sim 10^{-23} \text{eV})$

At cosmological scales it behaves as cold dark matter
 T. Matos, L.A. Urena-Lopez, Class. Quant. Grav. 17 L75 (2000),
 V. Sahni and L.M. Wang, Phys. Rev D 62, 103517 (2000).

At galactic scales, it does not have its problems: neither a cuspy profile, nor a over-density of satellite galaxies.

A. Bernal, T. Matos, D. Nuñez, Rev. Mex. A.A. 44, 149 (2008)

T. Matos, L.A. Urena-Lopez, Phys. Rev. D 63, 063506 (2001)

Could it be possible that we have already observed this interaction?

The cross section

- Assume $\nu \phi$ interaction as in [D. Hooper *et al.* PRL **93** (2004) 161302, C. Boehm *et al.* PRL **92** (2004) 101301 C. Boehm and P. Fayet NPB **683** (2004) 219]
- If $m_{\nu} \sim 1 \text{eV}$ and $E_{\nu} \sim 10^{18} \text{ eV}$, the cross section is valid for $m_{\phi} >> \mathcal{O} (10^{-18}) \text{ eV}$. Furthermore, in the limit $s, u \ll M_I$ and integrating over solid angle

$$\sigma \simeq \left(\frac{g_{\nu\phi}}{M_I}\right)^4 \frac{m_{\nu}^2}{16\pi} \,.$$

useful limit for ultra-high-energetic neutrinos

$$\begin{aligned} \mathbf{A} &= 16\pi \times 10^{-6} \left(\frac{M_I / g_{\nu\phi}}{\text{GeV}} \right)^4 \left(\frac{\text{eV}}{m_{\nu}} \right)^2 \left(\frac{\text{GeV/cm}^3}{\rho_{\phi}} \right) \left(\frac{m_{\phi}}{10^{-15} \text{eV}} \right) \text{GeV}^2 \text{cm}^3 \\ &\simeq L_0 \left(\frac{M_I / g_{\nu\phi}}{\text{GeV}} \right)^4 \left(\frac{\text{eV}}{m_{\nu}} \right)^2 \left(\frac{\text{GeV/cm}^3}{\rho_{\phi}} \right) \left(\frac{m_{\phi}}{10^{-18} \text{eV}} \right) \,, \end{aligned}$$

where $L_0 \simeq 42$ pc.

Possible suppression

$$F(L) = F_0 e^{-L/\lambda^{mfp}} \,,$$

$$\frac{g_{\nu\phi}}{M_I} \gtrsim \left[\ln\left(\frac{F_0}{F}\right) \frac{L_0 m_\phi}{\rho_\phi m_\nu^2 L} \right]^{\frac{1}{4}}$$

 $L = 5 \times 10^2$ Mpc, $m_{\nu} \sim 1$ eV and $\rho_{\rm DM} = 1.2 \times 10^{-6}$ GeV/cm³ J. Barranco, O. G. Miranda, C. A. Moura, T. I. Rashba, F. Rossi-Torres JCAP 1110 (2011) 007 arXiv:1012.2476 [astro-ph.CO].

Axion

Axion was originally proposed to solve strong CP problem
 There is a remnant $\gamma - a$ interaction

$$\mathcal{L} = \frac{1}{2} (\partial^{\mu} \phi \partial_{\mu} \phi - m^2 \phi^2) - \frac{1}{4} \frac{\phi}{M} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Self-gravitating axion

Axion properties

 $10^{10} \text{GeV} \le f_a \le 10^{12} \text{GeV}$ $10^{-5} \text{eV} \le m \le 10^{-3} \text{eV}$

At late times in the evolution of the universe, the energy density potential of the axion is

$$V(\phi) = m^2 f_a^2 \left[1 - \cos\left(\frac{\phi}{f_a}\right) \right],,$$

which can be expanded as

$$V(\phi) \sim \frac{1}{2}m^2\phi^2 - \frac{1}{4!}m^2\frac{\phi^4}{f_a^2} + \frac{1}{6!}m^2\frac{\phi^6}{f_a^4} - \dots$$

with the identification $\lambda = m^2/6f_a^2$: Hence, we can estimate (incorrectly)

$$M_{max} \sim 10^{27} \sqrt{\lambda} M_{\odot} \approx 10^4 M_{\odot}!$$

F.E. Shunck and W. Mielke. Class. Quantum Grav. 20 (2003)

Axion stars

$$\begin{split} V(\phi) &= m^2 f_a^2 \left[1 - \cos\left(\frac{\phi}{f_a}\right) \right] \\ V(\phi) &\sim \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} \left(\frac{m}{f_a}\right) \phi^4 + \frac{1}{6!} \frac{m^2}{f_a^4} \phi^6 - \dots \\ V(\phi) &\rightarrow \langle Q | V(\hat{\phi}) | Q \rangle \\ \hat{\phi} &= \mu^+ R(r) e^{-iE_1 t} + \mu^- R(r) e^{+iE_1 t} \\ \mu | Q \rangle &= 0 \end{split}$$

$$\begin{array}{lll} \langle Q | \hat{\phi}^2 | Q \rangle & = & R^2 \\ \langle Q | \hat{\phi}^4 | Q \rangle & = & 2R^4 \\ \langle Q | \hat{\phi}^6 | Q \rangle & = & 5R^6 \end{array}$$

Axion star

$$R = \frac{f_a}{\sqrt{m}}\sigma, \quad r = \frac{m_p}{f_a}\sqrt{\frac{m}{4\pi}}x, \quad \alpha = \frac{4\pi f_a^2}{m_p^2 m}$$
$$A(x) = 1 - a(x)$$

$$\begin{aligned} a' + \frac{a(1+a)}{x} + (1-a)^2 x \left[\left(\frac{1}{B} + 1\right) m^2 \sigma^2 - \frac{m\sigma^4}{4} + \alpha \frac{{\sigma'}^2}{(1-a)} + \frac{\sigma^6}{72} \right] &= 0, \\ B' + \frac{aB}{x} - (1-a)Bx \left[\left(\frac{1}{B} - 1\right) m^2 \sigma^2 + \frac{m\sigma^4}{4} + \alpha \frac{{\sigma'}^2}{(1-a)} - \frac{\sigma^6}{72} \right] &= 0, \\ \sigma'' + \left(\frac{2}{x} + \frac{B'}{2B} + \frac{a'}{2(1-a)}\right) \sigma' + (1-a) \left[\left(\frac{1}{B} - 1\right) m^2 \sigma + \frac{m\sigma^3}{3} - \frac{\sigma^5}{24} \right] &= 0 \end{aligned}$$

$$r = \frac{m_p}{f_a} \sqrt{\frac{m}{4\pi}} x$$

$\sigma(0)$	Mass (Kg)	R_{99} (meters)	density $ ho$ (Kg/m 3)
5×10^{-4}	$3,\!90 \times 10^{13}$	$1,\!83$	$6,3 imes 10^{12}$
3×10^{-4}	$6{,}48\times10^{13}$	$2,\!86$	$2,7 imes 10^{12}$
1×10^{-4}	$1{,}94\times10^{14}$	$8,\!54$	$3,1 \times 10^{11}$

[J. Barranco, A. Bernal, PRD83, 043525 (2011)]

Galactic halo as a collisionless ensemble of DM machos

X. Hernandez, T. Matos, R. A. Sussman and Y. Verbin, Phys. Rev. D **70**, 043537 (2004)

Possible γ signal?

$$\mathcal{L} = \frac{1}{2} (\partial^{\mu} a \partial_{\mu} a - m^2 a^2) - \frac{1}{4} \frac{a}{M} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

It is possible axion transform to photons in presence of an external magnetic field!

Possible γ signal?

Strong magnetic fields $\rightarrow NS > 10^8$ Gauss.

- ho $\sim 10^9$ NS in the galaxy
- Does axion stars collision with Neutron Stars produce a visible effect?
 - Start with

$$\mathcal{L}_{a\gamma\gamma} = \frac{c\alpha}{f_{PQ}\pi} a\vec{E} \cdot \vec{B}$$

Obtain "modified" Gauss law:

$$\partial \vec{E} = \frac{-c\alpha}{f_{PQ}\pi} \vec{\partial} \cdot (a\vec{B})$$

Energy dissipated in the magnetized conducting media, with averange σ electric conductivity (Ohm's law)

$$W = \int_{ABS} \sigma E_a^2 d^3 x = 4c^2 \times 10^{54} \text{erg/s} \frac{\sigma}{10^{26/s}} \times \frac{M}{10^{-4} M_{\odot}} \frac{B^2}{(10^8 G)^2}$$

• YES! there could be a signal

HE Gamma rays from the Sun?

Remember the Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial^{\mu} \phi \partial_{\mu} \phi - m^2 \phi^2) - \frac{1}{4} \frac{\phi}{M} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

If the magnetic field changes on length scales larger than the wavelength of the particles, the equation of motion will be

$$i\partial_{z}\Psi = -(\omega + \mathcal{M})\Psi; \quad \Psi = (A_{x}, A_{y}, \phi)$$

$$\mathcal{M} = \begin{pmatrix} \Delta_{p} & 0 & \Delta_{M_{x}} \\ 0 & \Delta_{p} & \Delta_{M_{y}} \\ \Delta_{M_{x}} & \Delta_{M_{y}} & \Delta_{m} \end{pmatrix}.$$

$$\Delta_{M_{i}} = \frac{B_{i}}{2M} = 1,755 \times 10^{-11} \left(\frac{B_{i}}{1\text{G}}\right) \left(\frac{10^{5}\text{GeV}}{M}\right) \text{cm}^{-1}$$

$$\Delta_{m} = \frac{m^{2}}{2\omega} = 2,534 \times 10^{-11} \left(\frac{m}{10^{-3}\text{eV}}\right) \left(\frac{1\text{GeV}}{\omega}\right) \text{cm}^{-1}$$

$$\Delta_{p} = \frac{\omega_{p}^{2}}{2\omega} = 3,494 \times 10^{-11} \left(\frac{n_{e}}{10^{15}\text{cm}^{-3}}\right) \left(\frac{1\text{GeV}}{\omega}\right) \text{cm}^{-1}$$

HE Gamma rays from the sun?

$$P = \frac{4B^2 \omega^2}{M^2 (\omega_p^2 - m^2)^2 + 4B^2 \omega^2} \sin^2 \left(\pi \frac{z}{l_{osc}} \right)$$
$$l_{osc} = \frac{4\pi \omega M}{\sqrt{M^2 (\omega_p^2 - m^2)^2 + 4B^2 \omega^2}}$$

HE Gamma rays from the sun?

The axion-photon interaction and gamma ray signals of dark matter- p. 23

Conclusions

- Dark matter detection
- A couple of new proposal for indirect dark matter detection
 - UHE neutrino flux suppression
 - Gamma rays and the axion-photon mixing
 - 1. A galactic halo made of collisionless ensemble of axion stars?
 - 2. A possible flux of high energy photons from the Sun?