A new neutrino mass sum-rule from inverse seesaw.

Alma D. Rojas Pacheco¹

Universidad de Colima México PASCOS2012 Mérida, México

June 5, 2012

¹ L. Dorame, S. Morisi, E. Peinado, J. W. F. Valle and A. D. Rojas, arXiv:1203.0155 [hep-ph].

2 Model

3 Phenomenology

- $0\nu\beta\beta$
- Quark sector
- Finite θ_{13} value

4 Conclusions

5 Appendix

- Some flavor models based in non-Abelian discrete symmetries, implying the TBM mixing matrix, predict a two-parameter neutrino mass matrix.
- Four mass relations can arise ²

$$\begin{split} \chi m_2^\nu + \xi m_3^\nu &= m_1^\nu, \\ \frac{\chi}{m_2^\nu} + \frac{\xi}{m_3^\nu} &= \frac{1}{m_1^\nu}, \\ \chi \sqrt{m_2^\nu} + \xi \sqrt{m_3^\nu} &= \sqrt{m_1^\nu}, \end{split}$$

$$\frac{\chi}{\sqrt{m_{2}^{\nu}}} + \frac{\xi}{\sqrt{m_{3}^{\nu}}} = \frac{1}{\sqrt{m_{1}^{\nu}}}.$$

²L. Dorame, D. Meloni, S. Morisi, E. Peinado and J. W. F. Valle, Nucl. Phys. B 861, 259 (2012) [arXiv:1111.5614 [hep-ph]].

The inverse seesaw mechanism

- First example of a low-scale seesaw scheme with naturally light neutrinos.
- Particle content= SM + ν_i^c and S_i .
- In the ν , ν^c , S basis:

$$M_{\nu} = \left(\begin{array}{ccc} 0 & m_D^{T} & 0 \\ m_D & 0 & M^{T} \\ 0 & M & \mu \end{array} \right)$$

From diagonalization³ one obtains the effective light neutrino mass matrix as:

$$m_{\nu} \sim m_D^T rac{1}{M^T} \mu rac{1}{M} m_D,$$

with the entry μ being very small.

 $^{^3}$ J. Schechter and J. W. F. Valle, Phys. Rev. $\textbf{D25},\,774$ (1982).

Inverse Seesaw schemes

Possible schemes realizing the TBM pattern for the inverse seesaw case⁴

	m_D	M	μ]		
	\mathcal{I}	\mathcal{I}	M_0			
	${\mathcal I}$	<i>M</i> ₀	\mathcal{I}			
	M_0	\mathcal{I}	\mathcal{I}			
$\mathcal{I}=Identity$ ma	trix,	M	$l_0 =$	$ \left(\begin{array}{c} A\\ 0\\ 0 \end{array}\right) $	0 B C	$\left(\begin{array}{c} 0 \\ C \\ B \end{array} \right).$

⁴M. Hirsch, S. Morisi and J. W. F. Valle, Phys. Lett. **B679**, 454 (2009), [0905.3056].

So, if

$$m_D \propto \mathcal{I}, \qquad \mu \propto \mathcal{I}$$

 and

$$M \sim M_{TBM} = \begin{pmatrix} x & y & y \\ y & x+z & y-z \\ y & y-z & x+z \end{pmatrix},$$

then we obtain

$$\frac{\chi}{\sqrt{m_2^{\nu}}} + \frac{\xi}{\sqrt{m_3^{\nu}}} = \frac{1}{\sqrt{m_1^{\nu}}}.$$
 (1)

L Model

Field particles content

In order to obtain the S_4 based inverse seesaw model we assign the quantum numbers of the SM fields (plus the pair of gauge singlets ν_i^c, S_i) under the extra symmetries as

	Ī	ν_R	l _R	h	S
<i>SU</i> (2)	2	1	1	2	1
<i>S</i> ₄	31	31	31	1_1	31
$U_l(1)$	-1	1	1	0	-1

- Model

Required couplings

We keep renormalizability of the Lagrangian by adding a Frogatt-Nielsen fermion χ and its conjugate χ^c .

Model

Required extra fields

We introduce five flavon fields supplemented by the extra symmetries Z3 and Z2 $\,$

	$\phi_{ u}$	ϕ'_{ν}	ϕ_I	ϕ'_I	ϕ_l''	σ	χ	χ^{c}
<i>SU</i> (2)	1	1	1	1	1	1	1	1
<i>S</i> ₄	31	1_1	31	32	1_1	1_1	31	31
$U_l(1)$	0	0	0	0	0	2	1	-1

└─ Model

Fields and their transformation properties under the Z_3 , and Z_2 flavor symmetries

	Ī	ν_R	I_R	h	S	$\phi_{ u}$	ϕ'_{ν}	ϕ_{I}	ϕ'_{I}	ϕ_l''	σ	χ	χ^{c}
<i>Z</i> ₃	ω^2	ω	1	1	1	ω^2	ω^2	ω	ω	ω	1	ω	ω^2
<i>Z</i> ₂	+	+	+	+	-	_	_	+	+	+	+	+	+

L Model

Alignments

Flavon fields alignments:

$$egin{aligned} &\langle \phi_{
u}
angle &= v_{
u}(1,0,0), \ &\langle \phi_{I}
angle &= v_{I}(1,1,1), \ &\langle \phi_{I}^{\prime}
angle &= v_{I}^{\prime}(1,1,1), \end{aligned}$$

and also

$$\begin{split} \langle \phi'_{\nu} \rangle &= v'_{\nu}, \\ \langle \phi''_{I} \rangle &= v''_{I}, \\ \langle \sigma \rangle &= v_{\sigma}, \\ \langle h \rangle &= v. \end{split}$$

L Model

With these alignments the three 3×3 blocks are

$$\mu_{ij}S_iS_j\sigma \qquad \longrightarrow \qquad (\mu) = \begin{pmatrix} \mu v_\sigma & 0 & 0 \\ 0 & \mu v_\sigma & 0 \\ 0 & 0 & \mu v_\sigma \end{pmatrix}$$

$$Y_{D_{ij}}\overline{L}_{i}\nu_{R_{j}}h \longrightarrow M_{D} = \begin{pmatrix} Y_{D}v & 0 & 0\\ 0 & Y_{D}v & 0\\ 0 & 0 & Y_{D}v \end{pmatrix},$$

$$Y_{\nu i j}^{k} \nu_{R_{i}} S_{j} \phi_{\nu_{k}} + Y_{\nu i j} \nu_{R_{i}} S_{j} \phi_{\nu'} \longrightarrow M = \begin{pmatrix} Y_{\nu}' v_{\nu}' & 0 & 0 \\ 0 & Y_{\nu}' v_{\nu}' & Y_{\nu} v_{\nu} \\ 0 & Y_{\nu} v_{\nu} & Y_{\nu}' v_{\nu}' \end{pmatrix},$$

- Model

 and

$$M_{I} = \begin{pmatrix} \alpha & \beta & \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{pmatrix}, \qquad \begin{array}{l} \alpha = y_{I}^{\prime\prime} v_{I}^{\prime\prime} \frac{v}{\Lambda}, \\ \beta = y_{I} v_{I} - y_{I}^{\prime} v_{I}^{\prime} \frac{v}{\Lambda}, \\ \gamma = y_{I} v_{I} + y_{I}^{\prime} v_{I}^{\prime} \frac{v}{\Lambda}, \end{array}$$

which is diagonalized by the "magic" matrix

$$U_{\omega} = rac{1}{\sqrt{3}} \left(egin{array}{cccc} 1 & 1 & 1 \ 1 & \omega & \omega^2 \ 1 & \omega^2 & \omega \end{array}
ight), \qquad \omega^3 = 1, \ 1 + \omega + \omega^2 = 0.$$

Model

After diagonalization, the light neutrino mass matrix takes the form

$$M_{\nu} = \begin{pmatrix} \frac{1}{a^2} & 0 & 0\\ 0 & \frac{a^2 + b^2}{(b^2 - a^2)^2} & -\frac{2ab}{(b^2 - a^2)^2}\\ 0 & -\frac{2ab}{(b^2 - a^2)^2} & \frac{a^2 + b^2}{(b^2 - a^2)^2} \end{pmatrix}$$

where

$$a=Y_{
u}^{\prime}v_{
u}^{\prime}/(\sqrt{\mu v_{\sigma}}Y_{D}v),$$

and

$$b = Y_{\nu} v_{\nu} / (\sqrt{\mu v_{\sigma}} Y_D v).$$

Model

The corresponding eigenvalues are

$$m_1 = \frac{1}{(a+b)^2},$$

$$m_2 = \frac{1}{(a-b)^2},$$

$$m_3 = \frac{1}{a^2}.$$

With these eigenvalues we obtain the desired neutrino mass sum-rule

$$\frac{1}{\sqrt{m_1}} = \frac{2}{\sqrt{m_3}} - \frac{1}{\sqrt{m_2}}$$

i.e.

 $(\xi,\chi)=(1,2)$

A new neutrino mass sum-rule from inverse seesaw.

Phenomenology

 $L_{0\nu\beta\beta}$

Neutrinoless double beta decay

$$|m_{ee}| = \left| c_{12}^2 c_{13}^2 \, m_1 + s_{12}^2 c_{13}^2 \, m_2 \, \mathrm{e}^{2i\phi_{12}} + s_{13}^2 \, m_3 \, \mathrm{e}^{2i\phi_{13}} \right| \quad (\text{symmetrical}).$$

We can interpret geometrically the neutrino mass sum-rule

 $|m_{ee}|$ as a function of the lightest neutrino mass corresponding to our mass sum-rule

A new neutrino mass sum-rule from inverse seesaw.

- Phenomenology

Quark sector

S₄ charge assignments:

$$egin{aligned} Q_D &= (Q_1,Q_2) \sim \mathbf{2} & \oplus & Q_s = Q_3 \sim \mathbf{1}_1 \ q_{R_D} &= (q_{R_1},q_{R_2}) \sim \mathbf{2} & \oplus & q_{R_3} \sim \mathbf{1}_1 \ \phi_D &\sim \mathbf{2} & \oplus & \phi_S \sim \mathbf{1}_1 \end{aligned}$$

Quark sector and their transformation properties under the Z_3 , and Z_2 flavor symmetries

	\overline{Q}_D	\overline{Q}_S	u _{RD}	u _{Rs}	d_{R_D}	d _{Rs}	ϕ_D	ϕ_{S}
<i>SU</i> (2)	2	2	1	1	1	1	1	1
<i>S</i> ₄	2	1_1	2	1_1	2	1_1	2	1_1
<i>Z</i> ₃	ω	ω	ω^2	ω^2	ω	ω	ω	ω
<i>Z</i> ₂	+	+	_	_	_	—	—	_

The effective lagrangian terms for quarks are

$$\mathcal{L}_{q}^{d} = (Y_{1}^{d}\overline{Q}_{S}d_{R_{S}}\phi_{S} + Y_{2}^{d}\overline{Q}_{D}\phi_{D}d_{R_{D}} + Y_{3}^{d}\overline{Q}_{D}d_{R_{D}}\phi_{S} + Y_{4}^{d}\overline{Q}_{D}\phi_{D}d_{R_{S}} + Y_{5}^{d}\overline{Q}_{S}\phi_{D}d_{R_{D}})h/\Lambda + h.c.,$$

$$\mathcal{L}_{q}^{u} = (Y_{1}^{u}\overline{Q}_{S}u_{R_{S}}\tilde{\phi}_{S} + Y_{2}^{u}\overline{Q}_{D}\tilde{\phi}_{D}u_{R_{D}} + Y_{3}^{u}\overline{Q}_{D}u_{R_{D}}\tilde{\phi}_{S} + Y_{4}^{u}\overline{Q}_{D}\tilde{\phi}_{D}u_{R_{S}} + Y_{5}^{u}\overline{Q}_{S}\tilde{\phi}_{D}u_{R_{D}})\tilde{h}/\Lambda + h.c.$$

The dimension five operators can be given in terms of renormalizable interaction by introducing suitable messenger fields. └─ Phenomenology └─ Quark sector

Taking the VEV of ϕ_D in the direction

$$\langle \phi_D
angle \sim (-\sqrt{3},1) \; ,$$

the mass matrix for quarks is⁵

$$\mathbf{M}_{u(d)} = \begin{pmatrix} m_1^{u(d)} + m_2^{u(d)} & -\sqrt{3} \ m_2^{u(d)} & -\sqrt{3} \ m_5^{u(d)} \\ -\sqrt{3} \ m_2^{u(d)} & m_1^{u(d)} - m_2^{u(d)} & m_5^{u(d)} \\ -\sqrt{3} \ m_4^{u(d)} & m_4^{u(d)} & m_3^{u(d)} \end{pmatrix}$$

٠

⁵Similar to the one in reference J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, Prog. Theor. Phys. **109**, 795 (2003), [hep-ph/0302196]

- Phenomenology

Finite θ_{13} value

Finite θ_{13} value

We can obtain corrections from the charged lepton sector by coupling an extra S_4 -doublet flavon field inducing nonzero values of θ_{13} .

For example, consider

$$\phi \sim \mathbf{2}$$
, with $(\omega, +)$ under $Z_3 \times Z_2$

then, we must include the term

 $(\overline{L}I_R)h\phi.$

A new neutrino mass sum-rule from inverse seesaw.

- Phenomenology

 \square Finite θ_{13} value

Assuming

$$\langle \phi \rangle = (u_1, u_2),$$

a natural vacuum alignment is

$$u_1=-\sqrt{3}u_2.$$

The contribution from term $(\bar{L}I_R)h\phi$ to the charged lepton mass matrix is

$$\delta M_{I} = \begin{pmatrix} -\sqrt{\frac{2}{3}}vu_{2} & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}}vu_{1} + \sqrt{\frac{1}{6}}vu_{2} & 0 \\ 0 & 0 & -\sqrt{\frac{1}{2}}vu_{1} + \sqrt{\frac{1}{6}}vu_{2} \end{pmatrix}$$

Then, the total $M_I + \delta M_I$ is no longer diagonalized by U_{ω} .

Correlations between reactor and solar neutrino mixing angles.

Conclusions

Conclusions

- We have constructed an S₄ based model, implementing the inverse seesaw mechanism, which predicts the TBM mixing matrix and renders a new mass sum-rule.
- Corrections to the θ₁₃ value can be obtained from the charged sector introducing a flavon doublet with appropriate alignmnet.
- The deviation of θ₁₃ from zero can be substantial provided the departure of θ₁₂ from its TBM value is also large.
- The model is consistent with the measurements of the two recent reactor experiments, only if the solar angle lies substantially below the TBM prediction (at 2σ).

Appendix

Lepton sector Lagrangians

The renormalizable Lagrangian relevant for neutrinos is

$$\mathcal{L}_{\nu} = Y_{D_{ij}}\overline{L}_{i}\nu_{R_{j}}h + Y_{\nu ij}^{k}\nu_{R_{i}}S_{j}\phi_{\nu_{k}} + Y_{\nu ij}^{\prime}\nu_{R_{i}}S_{j}\phi_{\nu}^{\prime} + \mu_{ij}S_{i}S_{j}\sigma,$$

while the renormalizable Yukawa terms involving the messenger fields are

$$\mathcal{L}_{\chi} = M_{\chi}\chi\chi^{c} + \bar{L}h\chi + \chi^{c}I_{R}\phi_{I} + \chi^{c}I_{R}\phi_{I}' + \chi^{c}I_{R}\phi_{I}''.$$

After integrating out the messenger fields χ , the effective Lagrangian for charged leptons takes the form

$$\mathcal{L}_{I} = \frac{y_{I}}{\Lambda}(\bar{L}l_{R})h\phi_{I} + \frac{y_{I}'}{\Lambda}(\bar{L}l_{R})h\phi_{I}' + \frac{y_{I}''}{\Lambda}(\bar{L}l_{R})h\phi_{I}''$$

where Λ is the effective scale.