The Majorana Demonstrator

Progress towards showing the feasibility of a tonne-scale ⁷⁶Ge neutrinoless double-beta decay experiment

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Padraic Finnerty on behalf of the MAJORANA Collaboration

Open Questions in Neutrino Physics

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL 2

- What is the absolute mass scale and hierarchy?
- How have neutrinos shaped the evolution of the Universe? matter/anti-matter asymmetry?
- How do neutrinos have mass?
- What is the nature of the neutrino? Dirac or Majorana?
 - o Neutrinoless double-beta decay $(0v\beta\beta)$

ββ-decay Overview

THE UNIVERSITY f NORTH CAROLINA of CHAPEL HILL

- Energetically allowed in several even-even nuclei
- Prefer nuclei stable against β⁻ decay

 $0\nu\beta\beta: M(A,Z) \rightarrow D(A,Z+2) + 2e^{-}$

 $2\nu\beta\beta$: M(A,Z) \rightarrow D(A,Z+2) + $2e^- + 2\bar{\nu_e}$

ββ-decay Experimental Signature

Implications

- Lepton number conservation violated
- Neutrinos are Majorana particles
- Provide insight into the neutrino mass

 $(T_{1/2})^{-1}_{0\nu} = G_{0\nu} | M_{0\nu} |^2 m_{\beta\beta}^2$

 $T_{1/2}^{0v} > 10^{25}$ years

 $T_{1/2}^{2\nu} \sim 10^{21}$ years

Daunting task ahead

THE UNIVERSITY of NORTH CAROLIN. at CHAPEL HILL

- Searching for $0\nu\beta\beta$ in ⁷⁶Ge, Q = 2039 keV difficult due to intrinsic backgrounds
 - o materials contaminated with U/Th, ⁶⁰Co, ⁴⁰K, ...
 - o ⁶⁸Ge in Ge detector (cosmogenics)
 - o Muons from cosmic rays

GERDA and MAJORANA

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Detector array: enriched Ge crystals submerged in LAr **Shield**: high-purity LAr, H₂O

http://www.mpi-hd.mpg.de/gerda/

Detector array: enriched Ge crystals in vacuum cryostats Shield: lead, copper http://www.npl.washington.edu/majorana/

Goal: select best techniques from GERDA and MAJORANA for a joint tonne-scale Ge experiment

The MAJORANA DEMONSTRATOR

Support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from collaborating institutions.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Technique

- Located at 4850L of the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA
- 40 kg of Ge detectors
 - Baseline: 30 kg of 86% enriched ⁷⁶Ge crystals and 10 kg of ^{nat}Ge
 - o p-type point contact HPGe detectors
- Two independent cryostats
 - o ultra-clean, electroformed Copper
 - 20 kg of detectors per cryostat
 - o naturally scalable
- Compact shield
 - low-background passive Copper and Lead shield with active muon veto

Implementation

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Prototype cryostat December 2012
 - o 2 strings, ^{nat}Ge
 - Same design as Cryostat 1 & 2, but constructed out of OFHC Copper, not electroformed
- Cryostat 1 October 2013
 - o 3 strings, enrGe, 4 strings natGe
- Cryostat 2 August 2014
 - o 7 strings enrGe

The MAJORANA DEMONSTRATOR

Support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from collaborating institutions.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Goals

- Demonstrate backgrounds low enough to justify building a tonne scale experiment with GERDA.
- Background goal in 0vββ peak ROI (4 keV at 2039 keV):
 - o 3 counts/ROI/t/y (after analysis cuts)
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Test Klapdor-Kleingrothaus claim*.
- Light WIMP search (< 10 GeV)
- * H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A21, 1547 (2006).

Recent Progress

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Prototype Cryostat

• Clean machining and etching of prototype cryostat underway.

Infrastructure

- Preparations ongoing in main MJD lab.
- Electroforming facility at 4850L Ross campus since Oct 2010

NORTH CAROLINA

at CHAPEL HILI

Electroformed Cu

- Pure Cu → CuSO₄ bath + current → Plate out on Cu cathode → Removes ⁶⁰Co, U, Th
- Operating 16 baths at SURF 4850L, 6 at PNNL with ultra-pure chemicals and in an underground cleanroom environment
- Currently fabricating parts from electroformed Copper

Simulations

 Full simulation, incorporating radioactivity of our components, shows we should meet our background requirement.

Simulated spectra, 40 kg yrs, detector resolution applied

2 year expected spectrum

Recent Progress

Enrichment

 Successful reduction and refinement of first 20 kg of ^{enr}Ge with 97.3% yield

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Detectors

- 33 ^{nat}Ge detectors underground at SURF
- ORTEC vendor for ^{enr}Ge detectors
- Detectors operated in string configuration with custom electronics

3 Andres

P-type Point-Contact (PPC) Ge Detectors

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Source = Detector
- Distinguish between single/multi-site interactions
- Excellent energy resolution: 0.16% @ 2039 keV (Q value)
- Simple, easy to handle, commercially available
 investigated all major vendors ORTEC, Canberra, PHDs, PGT
- Low Capacitance → Low Noise → Low thresholds (< 1 keV):
 - o allows for novel background rejection techniques
 - o extends physics reach of MJD

R.J. Cooper et al., Nucl. Instr. and Meth. A 829, (2010) 11. P. S. Barbeau, J. I. Collar, and O. Tench, J. Cosm. Astro. Phys. 0709 (2007). Luke et al., IEEE trans. Nucl. Sci. 36 , 926(1989).

The MAJORANA Low-Background BEGe @ KURF (MALBEK)

- Canberra 455 g ^{nat}Ge modified BEGe PPC
- Located at 1450 m.w.e. in Ripplemead, Virginia, USA at the Kimballton Underground Research Facility (KURF)
- Low-background, low-noise
 - o geometry designed for optimal charge collection
 - × small point contact
 - × larger passivation ditch
- Goals:
 - o validate simulations
 - o study geometry optimization
 - o characterization of low-energy spectrum
 - light WIMP search (<10 GeV)

14

P. Finnerty et al., Nucl. Instr. and Meth. A 652, (2011) 692-695. P. Finnerty et al. IEEE NSS-MIC, (2010) 671-673.

The MAJORANA Low-Background BEGe @ KURF (MALBEK)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- 455 g ^{nat}Ge modified BEGe PPC (CANBERRA)
- Located at 1450 m.w.e. in Ripplemead, Virginia, USA.
- Low-background, low-noise
 - o geometry designed for optimal charge collection
 - small point contact
 - larger passivation ditch
- Goals:
 - o validate simulations
 - o study geometry optimization
 - characterization of low-energy spectrum
 - o direct dark matter search

15

P. Finnerty et al., Nucl. Instr. and Meth. A 652, (2011) 692-695. P. Finnerty et al. IEEE NSS-MIC, (2010) 671-673.

MALBEK and Slow Signals

• Slow, energy-degraded events

+	
· · · ·	

active volume

n+ dead layer

transition region – partial charge collection

 Currently investigating contribution to low-energy spectrum – possible contamination in DM search ROI

> P. Finnerty et al., Nucl. Instr. and Meth. A 652, (2011) 692-695. P. Finnerty et al. IEEE NSS-MIC, (2010) 671-673.

P. Finnerty – PASCOS 2012

16

Thank you

HOMESTAK

