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Outline. We construct self/anti-self charge conjugate (Majorana-like)
states for the (1/2, 0)⊕ (0, 1/2) representation of the Lorentz group, and
their analogs for higher spins within the quantum field theory. The
problem of the basis rotations and that of the selection of phases in the
Dirac-like and Majorana-like field operators are considered. The discrete
symmetries properties (P, C, T) are studied. The corresponding
dynamical equations are presented. In the (1/2, 0)⊕ (0, 1/2)
representation they obey the Dirac-like equation with eight components,
which has been first introduced by Markov. Thus, the Fock space for
corresponding quantum fields is doubled (as shown by Ziino). The
particular attention has been paid to the questions of chirality and
helicity (two concepts which are frequently confused in the literature) for
Dirac and Majorana states. We further review several experimental
consequences which follow from the previous works of M.Kirchbach et al.
on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
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I. MAJORANA SPINORS IN THE MOMENTUM
REPRESENTATION.
During the 20th century various authors introduced self/anti-self
charge-conjugate 4-spinors (including in the momentum representation),
see, e. g., [Majorana, Bilenky, Ziino, Ahluwalia2]. Later
[Lounesto, Dvoeglazov, Dvoeglazov2, Kirchbach, Rocha1] etc studied
these spinors, they found corresponding dynamical equations, gauge
transformations and other specific features of them. The definitions are:

C = e iθ


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

K = −e iθγ2K (1)

is the anti-linear operator of charge conjugation. K is the complex
conjugation operator. We define the self/anti-self charge-conjugate
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4-spinors in the momentum space

CλS,A(p) = ±λS,A(p) , (2)

CρS,A(p) = ±ρS,A(p) , (3)

where

λS,A(pµ) =

(
±iΘφ∗L(p)

φL(p)

)
, (4)

and

ρS,A(p) =

(
φR(p)
∓iΘφ∗R(p)

)
. (5)

The Wigner matrix is

Θ[1/2] = −iσ2 =

(
0 −1
1 0

)
, (6)

and φL, φR can be boosted with ΛL,R matrices.
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Such definitions of 4-spinors differ, of course, from the original Majorana
definition in x-representation:

ν(x) =
1√
2

(ΨD(x) + Ψc
D(x)) , (7)

Cν(x) = ν(x) that represents the positive real C− parity field operator
only. However, the momentum-space Majorana-like spinors open various
possibilities for description of neutral particles (with experimental
consequences, see [Kirchbach]). For instance,“for imaginary C parities,
the neutrino mass can drop out from the single β decay trace and
reappear in 0νββ, a curious and in principle experimentally testable
signature for a non-trivial impact of Majorana framework in experiments
with polarized sources.”
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The rest λ and ρ spinors can be defined conforming with (4,5) in
analogious way with the Dirac spinors:

λS
↑(0) =

√
m

2


0
i
1
0

 , λS
↓(0) =

√
m

2


−i
0
0
1

 , (8)

λA
↑ (0) =

√
m

2


0
−i
1
0

 , λA
↓ (0) =

√
m

2


i
0
0
1

 , (9)
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ρS
↑(0) =

√
m

2


1
0
0
−i

 , ρS
↓(0) =

√
m

2


0
1
i
0

 , (10)

ρA
↑ (0) =

√
m

2


1
0
0
i

 , ρA
↓ (0) =

√
m

2


0
1
−i
0

 . (11)
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Thus, in this basis with the appropriate normalization (“mass
dimension”) the explicite forms of the 4-spinors of the second kind

λS,A
↑↓ (p) and ρS,A

↑↓ (p) are:

λS
↑(p) =

1

2
√

E + m


ipl

i(p− + m)
p− + m
−pr

 , λS
↓(p) =

1

2
√

E + m


−i(p+ + m)
−ipr

−pl

(p+ + m)


(12)

λA
↑ (p) =

1

2
√

E + m


−ipl

−i(p− + m)
(p− + m)
−pr

 , λA
↓ (p) =

1

2
√

E + m


i(p+ + m)

ipr

−pl

(p+ + m)


(13)
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ρS
↑(p) =

1

2
√

E + m


p+ + m

pr

ipl

−i(p+ + m)

 , ρS
↓(p) =

1

2
√

E + m


pl

(p− + m)
i(p− + m)
−ipr


(14)

ρA
↑ (p) =

1

2
√

E + m


p+ + m

pr

−ipl

i(p+ + m)

 , ρA
↓ (p) =

1

2
√

E + m


pl

(p− + m)
−i(p− + m)

ipr

 .

(15)

As claimed by [Ahluwalia2] λ and ρ 4-spinors are not the eigenspinors of
the helicity. Moreover, λ and ρ are NOT the eigenspinors of the parity, as

opposed to the Dirac case (in this representation P =

(
0 1
1 0

)
R, where

R = (x→ −x)). The indices ↑↓ should be referred to the chiral helicity
quantum number introduced in the 60s, η = −γ5h, Ref. [SenGupta].
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While
Puσ(p) = +uσ(p) ,Pvσ(p) = −vσ(p) , (16)

we have
PλS,A(p) = ρA,S(p) ,PρS,A(p) = λA,S(p) , (17)

for the Majorana-like momentum-space 4-spinors on the first quantization
level. In this basis one has also the relations between the above-defined
4-spinors:

ρS
↑(p) = −iλA

↓ (p) , ρS
↓(p) = +iλA

↑ (p) , (18)

ρA
↑ (p) = +iλS

↓(p) , ρA
↓ (p) = −iλS

↑(p) . (19)
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The normalizations of the spinors λS,A
↑↓ (p) and ρS,A

↑↓ (p) are the following
ones:

λ
S

↑(p)λS
↓(p) = −im , λ

S

↓(p)λS
↑(p) = +im , (20)

λ
A

↑ (p)λA
↓ (p) = +im , λ

A

↓ (p)λA
↑ (p) = −im , (21)

ρS
↑(p)ρS

↓(p) = +im , ρS
↓(p)ρS

↑(p) = −im , (22)

ρA
↑ (p)ρA

↓ (p) = −im , ρA
↓ (p)ρA

↑ (p) = +im . (23)

All other conditions are equal to zero.
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The dynamical coordinate-space equations are:

iγµ∂µλS(x)−mρA(x) = 0 , (24)

iγµ∂µρA(x)−mλS(x) = 0 , (25)

iγµ∂µλA(x) + mρS(x) = 0 , (26)

iγµ∂µρS(x) + mλA(x) = 0 . (27)

These are NOT the Dirac equation. However, they can be written in the
8-component form as follows:

[iΓµ∂µ −m] Ψ
(+)

(x) = 0 , (28)

[iΓµ∂µ + m] Ψ
(−)

(x) = 0 , (29)

with

Ψ(+)(x) =

(
ρA(x)
λS(x)

)
, Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, and Γµ =

(
0 γµ

γµ 0

)
(30)
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One can also re-write the equations into the two-component form. Thus,
one obtains the [Feynman-Gell-Mann] equations. Similar formulations
have been presented by M. [Markov], and by A. Barut and G. [Ziino].
The group-theoretical basis for such doubling has been given in the
papers by Gelfand, Tsetlin and Sokolik [Gelfand], who first presented the
theory in the 2-dimensional representation of the inversion group in 1956
(later called as “the Bargmann-Wightman-Wigner-type quantum field
theory” in 1993).
The Lagrangian is

L =
i

2

[
λ̄Sγµ∂µλS − (∂µλ̄S)γµλS + ρ̄Aγµ∂µρA − (∂µρ̄A)γµρA+

λ̄Aγµ∂µλA − (∂µλ̄A)γµλA + ρ̄Sγµ∂µρS − (∂µρ̄S)γµρS−
−m(λ̄SρA + λ̄SρA − λ̄SρA − λ̄SρA)

]
(31)
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The connection with the Dirac spinors has been
found [Dvoeglazov, Kirchbach]. For instance,

λS
↑(p)

λS
↓(p)

λA
↑ (p)

λA
↓ (p)

 =
1

2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1




u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 . (32)

See also ref. [Gelfand, Ziino] and the discussion below. Thus, we can see
that the two sets are connnected by the unitary transformations, and this
represents itself the rotation of the spin-parity basis.
The sets of λ spinors and of ρ spinors are claimed to be bi-orthonormal
sets each in the mathematical sense [Ahluwalia2], provided that overall
phase factors of 2-spinors θ1 + θ2 = 0 or π. For instance, on the classical
level λ̄S

↑λ
S
↓ = 2iN2 cos(θ1 + θ2).
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Several remarks have been given in the previous works:

I While in the massive case there are four λ-type spinors, two λS and
two λA (the ρ spinors are connected by certain relations with the λ
spinors for any spin case), in the massless case λS

↑ and λA
↑ may

identically vanish, provided that one takes into account that φ
±1/2
L

may be the eigenspinors of σ · n̂, the 2× 2 helicity operator.

I It was noted that there exist the possibility of the generalization of
the concept of the Fock space, which leads to the “doubling” Fock
space [Gelfand, Ziino].

Valeriy V. Dvoeglazov How to construct self/anti-self charge conjugate states for higher spins?



Table of Content
Outline.

I. Majorana Spinors in the Momentum Representation.
II. Chirality and Helicity.

III. Charge Conjugation and Parity for S = 1.
IV. Conclusions.

It was shown [Dvoeglazov] that the covariant derivative (and, hence, the
interaction) can be introduced in this construct in the following way:

∂µ → ∇µ = ∂µ − ig  L5Aµ , (33)

where  L5 = diag(γ5 − γ5), the 8× 8 matrix. In other words, with
respect to the transformations

λ′(x)→ (cos α− iγ5 sin α)λ(x) , (34)

λ
′
(x)→ λ(x)(cos α− iγ5 sin α) , (35)

ρ′(x)→ (cos α + iγ5 sin α)ρ(x) , (36)

ρ ′(x)→ ρ(x)(cos α + iγ5 sin α) (37)

the spinors retain their properties to be self/anti-self charge conjugate
spinors and the proposed Lagrangian [Dvoeglazov, p.1472] remains to be
invariant.
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This tells us that while self/anti-self charge conjugate states have zero
eigenvalues of the ordinary (scalar) charge operator but they can possess
the axial charge (cf. with the discussion of [Ziino] and the old idea of R.
E. Marshak – they claimed the same).
In fact, from this consideration one can recover the Feynman-Gell-Mann
equation (and its charge-conjugate equation). It is re-written in the
two-component form [Feynman-Gell-Mann]:

[
π−µ πµ− −m2 − g

2
σµνFµν

]
χ(x) = 0 , (38)[

π+
µ πµ + −m2 +

g

2
σ̃µνFµν

]
φ(x) = 0 , (39)

where already one has π±µ = i∂µ ± gAµ, σ0i = −σ̃0i = iσi ,

σij = σ̃ij = εijkσ
k and ν

DL

(x) = column(χ φ).
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Next, due to the transformations

λ′S(p) =

(
Ξ 0
0 Ξ

)
λS(p) ≡ λ∗A(p), (40)

λ′′S(p) =

(
iΞ 0
0 −iΞ

)
λS(p) ≡ −iλ∗S(p), (41)

λ′′′S (p) =

(
0 iΞ
iΞ 0

)
λS(p) ≡ iγ0λ∗A(p), (42)

λIV
S (p) =

(
0 Ξ
−Ξ 0

)
λS(p) ≡ γ0λ∗S(p) (43)

with the 2× 2 matrix Ξ defined as (φ is the azimuthal angle related with
p)

Ξ =

(
e iφ 0
0 e−iφ

)
, ΞΛR,L(p← 0)Ξ−1 = Λ∗R,L(p← 0) , (44)

and corresponding transformations for λA, do not change the properties
of bispinors to be in the self/anti-self charge-conjugate spaces, the
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Majorana-like field operator (b† ≡ a†) admits additional phase (and, in
general, normalization) transformations:

νML ′(xµ) = [c0 + i(τ · c)] νML †(xµ) , (45)

where cα are arbitrary parameters. The τ matrices are defined over the
field of 2× 2 matrices and the Hermitian conjugation operation is
assumed to act on the c- numbers as the complex conjugation. One can
parametrize c0 = cos φ and c = n sin φ and, thus, define the SU(2) group
of phase transformations. One can select the Lagrangian which is
composed from the both field operators (with λ spinors and ρ spinors)
and which remains to be invariant with respect to this kind of
transformations. The conclusion is: it is permitted the non-Abelian
construct which is based on the spinors of the Lorentz group only (cf.
with the old ideas of T. W. Kibble and R. Utiyama) . This is not
surprising because both the SU(2) group and U(1) group are the
sub-groups of the extended Poincaré group (cf. [Ryder]).
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The Dirac-like and Majorana-like field operators can be built from both
λS,A(p) and ρS,A(p), or their combinations. For instance,

Ψ(xµ) ≡
∫

d3p

(2π)3

1

2Ep

∑
η

[
λS

η(p) aη(p) exp(−ip · x)+

+ λA
η (p) b†η(p) exp(+ip · x)

]
. (46)

The anticommutation relations are the following ones (due to the
bi-orthonormality):

[aη′(p
′), a†η(p)]± = (2π)32Epδ(p− p′)δη,−η′ (47)

and

[bη′(p
′), b†η(p)]± = (2π)32Epδ(p− p′)δη,−η′ (48)

Other (anti)commutators are equal to zero: ([aη′(p′), b†η(p)] = 0).
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Finally, it is interesting to note that[
ν

ML

(xµ) + Cν
ML †

(xµ)
]
/2 =

∫
d3p

(2π)3

1

2Ep

∑
η

[(
iΘφ∗ η

L
(pµ)

0

)
aη(pµ)e−ip·x+

+

(
0

φη
L(pµ)

)
a†η(pµ)e ip·x

]
, (49)[

ν
ML

(xµ)− Cν
ML †

(xµ)
]
/2 =

∫
d3p

(2π)3

1

2Ep

∑
η

[(
0

φη
L

(pµ)

)
aη(pµ)e−ip·x+

+

(
−iΘφ∗ η

L
(pµ)

0

)
a†η(pµ)e ip·x

]
, (50)

thus naturally leading to the Ziino-Barut scheme of massive chiral fields,
ref. [Ziino].
The content of this Section is mainly based on the previous works of the
90s by D. V. Ahluwalia and by me (V. V. Dvoeglazov) dedicated to the
Majorana-like momentum-representation 4-spinors. However, recently the
interest to this model raised again [Rocha1, Rocha2].
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II. CHIRALITY AND HELICITY.

I [Ahluwalia2] claimed ”Incompatibility of Self-Charge Conjugation
with Helicity Eignestates and Gauge Interactions”. I showed that
the gauge interactions of λ and ρ 4-spinors are different. As for the
self/anti-self charge-conjugate states and their relations to helicity
eigenstates the question is much more difficult, see below. Either we
should accept that the rotations would have physical significance,
or, due to some reasons, we should not apply the equivalence
transformation to the discrete symmetry operators. As far as I
understood [Ahluwalia2] paper, the latter standpoint is precisely his
standpoint. He claimed [Ahluwalia2]: “Just as the operator of parity
in the (j , 0)⊕ (0, j) representation space is independent of which
wave equation is under study, similarly the operations of charge
conjugation and time reversal do not depend on a specific wave
equation. Within the context of the logical framework of the
present paper, without this being true we would not even know how
to define self-/anti self conjugate (j , 0)⊕ (0, j) spinors.”
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I Z.-Q. Shi and G. J. Ni promote a very extreme standpoint. Namely, “‘the
spin states, the helicity states and the chirality states of fermions in
Relativistic Quantum Mechanics are entirely different: a spin state is
helicity degenerate; a helicity state can be expanded as linear
combination of the chirality states; the polarization of fermions in flight
must be described by the helicity states” (see also his Conclusion
Section [Shi]). In fact, they showed experimental consequences of their
statement: “the lifetime of RH polarized fermions is always greater than
of LH ones with the same speed in flight”. However, we showed that the
helicity, chiral helicity and chirality operators are connected by the unitary
transformations. Do rotations have physical significance in their opinion?
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I M. Markov wrote long ago [Markov] two Dirac equations with opposite
signs at the mass term.

[iγµ∂µ −m] Ψ1(x) = 0 , (51)

[iγµ∂µ + m] Ψ2(x) = 0 . (52)

In fact, he studied all properties of this relativistic quantum model (while
he did not know yet the quantum field theory in 1937). Next, he added
and subtracted these equations. What did he obtain?

iγµ∂µχ(x)−mη(x) = 0 , (53)

iγµ∂µη(x)−mχ(x) = 0 , (54)

thus, χ and η solutions can be presented as some superpositions of the
Dirac 4-spinors u− and v−. These equations, of course, can be identified
with the equations for λ and ρ we presented above. As he wrote himself
he was expecting “new physics” from these equations.
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I [SenGupta] and others claimed that the solutions of the equation (which
follows from the general Sakurai method of derivation of relativistic
quantum equations and it may describe both massive and massless
m1 = ±m2 states): [

iγµ∂µ −m1 −m2γ
5
]

Ψ = 0 (55)

are not the eigenstates of chiral [helicity] operator
γ0(γ · p)/p in the massless limit. However, in the massive case the
equation (55) has been obtained by the equivalence transformation of γ
matrices.
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I Barut and Ziino [Ziino] proposed yet another model. They considered γ5

operator as the operator of charge-conjugation. Thus, the
charge-conjugated Dirac equation has the different sign comparing with
the ordinary formulation:

[iγµ∂µ + m]Ψc
BZ = 0 , (56)

and the so-defined charge conjugation applies to the whole system,
fermions+electromagnetic field, e → −e in the covariant derivative. The
concept of the doubling of the Fock space has been developed in Ziino
works (cf. [Gelfand, Dvoeglazov5]). In their case, see above, their charge
conjugate states are at the same time the eigenstates of the chirality.
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Let us analize the above statements.

I The helicity operator is:

ĥ =
1

2

(
(σ · p̂) 0

0 (σ · p̂)

)
(57)

However, we can do the equivalence transformation of the helicity
h-operator by the unitary matrix. It is known [Berg] that one can

U1(σ · a)U−1
1 = σ3|a| . (58)

In the case of the momentum vector, one has

U1 =

(
1 pl/(p + p3)

−pr/(p + p3) 1

)
(59)

and

U1 =

(
U1 0
0 U1

)
. (60)
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Thus, we obtain:

U1ĥU−1
1 = |n

2
|
(

σ3 0
0 σ3

)
(61)

Then, applying other unitary matrix U3:
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (
σ3 0
0 σ3

) 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 =

= γ5
chiral . (62)

we transform to the basis, where helicity is equal (within the factor
1
2 ) to γ5, the chirality operator.

I [SenGupta] and others introduced the chiral helicity η = −γ5h,
which is equal (within the sign and the factor 1

2 ) to the well-known
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matrix α multiplied by n. Again,

U1(α · n)U−1
1 = |n|


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 = α3|n| . (63)

with the same matrix U1. And applying the second unitary
transformation:

U2α3U
†
2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 α3


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = γ5
chiral ,

(64)
we again come to the γ5 matrix. The determinats are:
DetU1 = 1 6= 0, DetU2,3 = −1 6= 0. Thus, helicity, chirality and
chiral helicity are connected by the unitary transformations.
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I It is not surprising to have such a situation because the different
helicity 2-spinors can be also connected not only by the anti-linear
transformation [Ryder, Ahluwalia2] ξh = (−1)1/2+he iαh Θ[1/2]Kξ−h,
but the unitary transformation too. For isntance, when we
parametrize the 2-spinors as in [Dvoeglazov4]:

ξ↑ = N e iα

(
cos (θ/2)

sin (θ/2) e i φ

)
, (65)

ξ↓ = N e iβ

(
sin (θ/2)

− cos (θ/2) e i φ

)
, (66)

we obtain

ξ↓ = Uξ↑ = e i(β−α)

(
0 e−iφ

−e iφ 0

)
ξ↑ , (67)

and

ξ↑ = U†ξ↓ = e i(α−β)

(
0 −e−iφ

e iφ 0

)
ξ↓ . (68)
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To say that the 4-spinor is the eigenspinor of the chiral helicity, and, at
the same time, it is not! the eigenspinor of the helicity operator (and
that the physical results would depend on this) signifies the same as to
say that rotations have physical significance on the fundamental level.
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III. CHARGE CONJUGATION AND PARITY FOR S = 1.
Several formalisms have been used for higher spin fields,
e. g., [BargmannWigner, Weinberg]. The 2(2S + 1) formalism gives the
equations which are in some sense on an equal footing with the Dirac
equation. For instance, for the spin-1 field the equation is

[γµνpµpν −m2]Ψ(x) = 0 , (69)

with the γµν being the 6x6 covariantly-defined matrices. However, it was
argued later that the signs before the mass terms should be opposite for
charged particles of positive- and negative-
frequencies [SankaranarayananGood, Ahluwalia1]:

[γµνpµpν − (
i∂/∂t

E
)m2]Ψ(x) = 0 . (70)

Hence, Ahluwalia et al. write: ”the charge conjugation operation C must
be carried through with a little greater care for bosons than for fermions
within [this] framework because of ℘u,v = ±1 factor in the mass term.
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For the (1, 0)⊕ (0, 1) case, at the classical level we want

C :
(
γµν Dµ

+ Dν
+ + m2

)
u(x) = 0 →

(
γµν Dµ

− Dν
− − m2

)
v(x) = 0,

(71)
where the local U(1) gauge covariant derivatives are defined as:
Dµ

+ = ∂µ + i q Aµ(x) , Dµ
− = ∂µ − i q Aµ(x) ”, Ref. [Ahluwalia1].

”These results read [Ref. [Ahluwalia2]]:

Sc
[1] = e iϑc

[1]

(
0 Θ[1]

−Θ[1] 0

)
K ≡ C[1]K, (72)

S s
[1] = e iϑs

[1]

(
0 I3

I3 0

)
= e iϑs

[1] γ00 . (73)

Note that neither Sc
[1/2] nor Sc

[1] are unitary (or even linear).” Θ[1] is the
3x3 representation of the Θ[1/2] = −iσ2.
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”For spin-1 ... the requirement of self/anti-self charge conjugacy cannot
be satisfied. That is, there does not exist a ζ [the phase factors between
right- and left- 3-”spinors”] that can satisfy the spin-1 ... requirement”

Sc
[1] λ(pµ) = ±λ(pµ) , Sc

[1] ρ(pµ) = ± ρ(pµ) (?). (74)

This is due to the fact that C 2 = −I within this definition of the charge
conjugation operator.
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”We find, however, that the requirement of self/anti-self conjugacy under
charge conjugation can be replaced by the requirement of self/anti-self
conjugacy under the operation of Γ5 Sc

[1] [precisely, which was used by

Weinberg in Ref. [Weinberg] due to the different choice of the equation
for the negative-frequency 6-”bispinors”], where Γ5 is the chirality
operator for the (1, 0)⊕ (0, 1) representation space and reads:

Γ5 =

(
I3 0
0 −I3

)
, with similar expressions for other spins.

The requirement[
Γ5 Sc

[1]

]
λ(pµ) = ±λ(pµ) ,

[
Γ5 Sc

[1]

]
ρ(pµ) = ± ρ(pµ) (75)

determines ζS
λ = + 1 = ζS

ρ for the self
[
Γ5 Sc

[1]

]
-conjugate spinors

λS(pµ) and ρS(pµ); and ζA
λ = − 1 = ζA

ρ for the anti-self[
Γ5 Sc

[1]

]
-conjugate spinors λA(pµ) and ρA(pµ)”.
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The covariant equations for λ− and ρ− objects in the (1, 0)⊕ (0, 1)
representation have been obtained in Ref. [Dvoeglazov1]:

γµνpµpνλS
↑(pµ)−m2λS

↓(pµ) = 0, γµνpµpνρS
↑(pµ)−m2ρS

↓(pµ) = 0,

(76)

γµνpµpνλS
↓(pµ)−m2λS

↑(pµ) = 0, γµνpµpνρS
↓(pµ)−m2ρS

↑(pµ) = 0,

(77)

γµνpµpνλS
→(pµ) + m2λS

→(pµ) = 0, γµνpµpνρS
→(pµ) + m2ρS

→(pµ) = 0,

(78)

γµνpµpνλA
↑ (pµ) + m2λA

↓ (pµ) = 0, γµνpµpνρA
↑ (pµ) + m2ρA

↓ (pµ) = 0,

(79)

γµνpµpνλA
↓ (pµ) + m2λA

↑ (pµ) = 0, γµνpµpνρA
↓ (pµ) + m2ρA

↑ (pµ) = 0,

(80)

γµνpµpνλA
→(pµ)−m2λA

→(pµ) = 0, γµνpµpνρA
→(pµ)−m2ρA

→(pµ) = 0,

(81)
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under the certain choice of the phase factors in the definition of left- and
right- 3-objects.
On the quantum-field level we have to introduce the unitary operators for
the charge conjugation and the parity in the Fock space:

Uc
[S]Ψ[S](x

µ)(Uc
[S])

−1 = C[S]Ψ
†
[S](x

µ), (82)

Us
[S]Ψ[S](x

µ)(Us
[S])

−1 = γ0Ψ[S](x
′µ

). (83)

For the spin S = 1/2 they can be find in the most
textbooks [ItsyksonZuber].
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Next, let us return to the (1/2, 0)⊕ (0, 1/2) representation. Roldao da
Rocha et al. write [Rocha2]: ”Now let one denotes the eigenspinors of
the Dirac operator for particles and antiparticles respectively by u±(p)
and v±(p). The subindex ± regards the eigenvalues of the helicity
operator (σ · p̂). The parity operator acts as

Pu±(p) = + u±(p), Pv±(p) = − v±(p), (84)

which implies that P2 = I in this case. The action of C on these spinors
is given by

C (u±1/2(p)) = ∓v∓(p), C (v±1/2(p)) = ±u∓1/2(p). (85)

which implies that {C ,P} = 0.
On the another hand the parity operator P acts on ELKO by

PλS
∓,±(p) = ± i λA

±,∓(p) , PλA
∓,±(p) = ∓ i λS

±,∓(p), (86)

and it follows that [C ,P] = 0 [when acting on the Majorana-like states].”
In the previous works of the 50s-60s, Ref. [NigamFoldy] it is this case
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which has been attributed to the Q = 0 eigenvalues (the truly neutral
particles). You may compare these results with those of
Refs. [Ahluwalia2, Dvoeglazov2, Dvoeglazov4], where the same
statements have been done on the quantum-field level even at the earlier
time comparing with [Rocha2]. The notation for 4-spinors used in the
cited papers is a bit different. The acronym ”ELKO” is (almost) the
synonym for the self/anti-self charge conjugated states (the
Majorana-like spinors). So, why the difference appeared in Eqs. (86)
comparing with my previous results on the classical level?
In my papers, see, e.g., Ref. [Dvoeglazov1, Dvoeglazov2, Dvoeglazov4], I
presented the explicite forms of the λ− and ρ− 2-spinors in the basis
Ŝ3λ

S,A(0) = ± 1
2λS,A(0). The corresponding properties with respect to

the parity (on the classical level) are different:

γ0λS
↑(pµ′) = +iλS

↓(pµ), γ0λS
↓(pµ′) = −iλS

↓(pµ), (87)

γ0λA
↑ (pµ′) = −iλA

↓ (pµ), γ0λA
↓ (pµ′) = +iλA

↓ (pµ). (88)

They have been presented in my previous works (and the corresponding
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ones for ρ− 4-spinors).
It is easy to find the correspondence between ”the new notation”,
Refs. [Ahluwalia3, Rocha2] and the previous one. Namely, λS,A

↑ → λS,A
−,+,

λS,A
↓ → λS,A

+,−. However, the difference is also in the choice of the basis
for the 2-spinors (!). As in Ref. [Dvoeglazov3], Ahluwalia, Grumiller and
da Rocha have chosen the well-known helicity basis
(cf. [Varshalovich, Dvoeglazov4]). In my work of 2002 (published in
2004) I have shown that the helicity-basis 4-spinors satisfies the same
Dirac equation, the parity matrix can be defined in the similar fashion as
in the spinorial basis (according to the Itzykson-Zuber textbook
procedure), but the helicity-basis 4-spinors are not the eigenspinors of the
parity (in full accordance with the claims made in the 4th volume of the
Landau course of theoretical physics and with the fact that [ĥ, P̂]+ = 0,
Ref. [BLP]).
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In this basis, the parity transformation (θ → π − θ, φ→ π + φ) lead to
the properties:

Pφ−L (0) = −ie i(θ2−θ1)φ+
L (0), (89)

Pφ+
L (0) = −ie i(θ1−θ2)φ−L (0), (90)

PΘ(φ−L (0))∗ = −ie−2iθ2φ−L (0), (91)

PΘ(φ+
L (0))∗ = +ie−2iθ1φ+

L (0). (92)

This opposes to the spinorial basis, where, for instance: Pφ±L (0) = φ±L (0).
Further calculations are straightforward, and they indeed can lead to
[C ,P]− = 0 when acting on the ”ELKO” states, due to [C , γ5]+ = 0.
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In the (1, 0)⊕ (0, 1) representation the situation is similar. If we would
like to extend the Nigam-Foldy conclusion, Ref. [NigamFoldy] (about
[C ,P]− = 0 corresponds to the neutral particles even in the higher spin
case (?)) then we should use the helicity basis on the classical level.
However, on the level of the quantum-field theory (the ”secondary”
quantization) the situation is self-consistent. As shown in 1997,
Ref. [Dvoeglazov2, Dvoeglazov4], we can obtain easily both cases
(commutation and anti-commutation) on using λS,A 4-spinors, which
have been used earlier (in the basis column(1 0) column(0 1).
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IV. CONCLUSIONS.
We presented a review of the formalism for the momentum-space
Majorana-like particles in the (S , 0)⊕ (0,S) representation of the Lorentz
Group. The λ− and ρ− 4-spinors satisfy the 8- component analogue of
the Dirac equation. Apart, they have different gauge transformations
comparing with the usual Dirac 4-spinors. Their helicity, chirality and
chiral helicity properties have been investigated in detail. These operators
are connected by the given unitary transformations. At the same time,
we showed that the Majorana-like 4-spinors can be obtained by the
rotation of the spin-parity basis. Meanwhile, several authors have claimed
that the physical results would be different on using calculations with
these Majorana-like spinors. Thus, the (S , 0)⊕ (0,S) representation
space (even in the case of S = 1/2) has additional mathematical
structures leading to deep physical consequences, which have not yet
been explored before.
However, several claims made by other researchers concerning with
chirality, helicity, chiral helicity should not be considered to be true until
the time when experiments confirm them. Usually, it is considered that
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the rotations (unitary transformations) have no any physical
consequences on the level of the Lorentz-covariant theories.
Next, we discussed the [C ,P]± = 0 dilemma for neutral and charged
particles on using the analysis of the basis rotations and phases.
I am grateful to the participants of recent Conferences for useful
discussions.
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