Phenomenology of hidden photons from heterotic orbifolds

Saúl Ramos-Sánchez UNAM

PASCOS 2012

June 5, 2012

In collaboration with M. Goodsell & A. Ringwald: arXiv:1110.6901 and with H.P. Nilles, P. Vaudrevange, & A. Wingerter: arXiv:1110.5229

Some of today's challenges

- dark matter
- SM hierarchy problem (even with SUSY, μ problem) \odot
- why only 3 fundamental forces ?
- anomalous muon $g_{\mu} 2$
- baryon asymmetry

 \Rightarrow new U(1)s

 (\dot{z})

 (\vdots)

Some of today's challenges

- dark matter
- why only 3 fundamental forces ?
- anomalous muon $g_{\mu} 2$
- baryon asymmetry

\Rightarrow new U(1)s

 (\dot{z})

(:)

Appear naturally in

- GUTs 🙂
- Large extra dimensions
- Brane-worlds
- string compactifications

(:)

dark matter

- SM hierarchy problem (even with SUSY, μ problem) \odot
- why only 3 fundamental forces ?
- anomalous muon $g_{\mu} 2$
- baryon asymmetry

\Rightarrow new U(1)s

 (\dot{z})

(:)

Appear naturally in

- GUTs 🙂
- Large extra dimensions
- Brane-worlds
- string compactifications 🙂

(:)

$$\mathcal{L} \supset -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} - \frac{1}{2} \chi F^{\mu\nu} B_{\mu\nu} + \frac{1}{2} m_{\gamma'}^2 B^{\mu} B_{\mu}$$

extra: suppressed couplings to SM matter

still "alive"

Goodsell, Jaeckel, Redondo, Ringwald (2009)

Heterotic strings

Heterotic strings

- 5 consistent superstring theories
 - type I
 - type IIA
 - type IIB
 - Heterotic $E_8 \times E_8$
 - Heterotic SO(32)
 - opporties:
 - gauge bosons
 - quantum gravity (2)
 10D (2)

 \odot

- $\mathcal{N} = 1$ SUGRA
- no D-branes

Heterotic strings

- 5 consistent superstring theories
 - type I
 - type IIA
 - type IIB
 - Heterotic $E_8 \times E_8$
 - Heterotic SO(32)
 - opporties:
 - gauge bosons
 - quantum gravity (2)
 10D (2)

 - $\mathcal{N} = 1$ SUGRA

 \odot

compactifications

no D-branes

Orbifolds

Dixon, Harvey, Vafa, Witten ('85-'86) Ibáñez, Nilles, Quevedo ('87) Font, Ibáñez, Quevedo, Sierra (1990) Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka ('90) Kobayashi, Raby, Zhang ('04) Förste, Nilles, Vaudrevange, Wingerter ('04) Buchmüller, Hamaguchi, Lebedev, Ratz ('04-'06) Kobayashi, Nilles, Plőger, Raby, Ratz ('06) Faraggi, Förste, Timirgaziu ('06) Förste, Kobayashi, Ohki, Takahashi ('06) Kim, Kyae ('06-'07) Choi, Kim ('06-'08)

....

Heterotic Orbifolds

6D \mathbb{Z}_2 orbifold in 10D

Heterotic Orbifolds: strings and states

Heterotic Orbifolds: strings and states

Input and Output

• Starting point: heterotic string

 $\mathbb{M}^4 \times \mathbb{R}^6 \times T^{16}$ $SO(9,1)_{Lorentz} \times \mathbb{E}_8 \times \mathbb{E}_{8gauge}$

Input

- Geometry: T^6 , \mathbb{Z}_N
- Embedding: $\mathcal{O}_6 = \mathbb{R}^6 / T^6 \rtimes \mathbb{Z}_N \quad \hookrightarrow \quad \mathcal{O}_{16}$

(subject to modular invariance (CFT) conditions)

• Output

 $\mathbb{M}^{4} \times \mathcal{O}_{6} \times \mathcal{O}_{16}$ SO(3,1)× $\bigotimes \mathbb{Z}_{n_{i}Lorentz}^{R} \times \mathcal{G}_{4D} \subset \mathbb{E}_{8} \times \mathbb{E}_{8gauge}$ + 4D matter (quarks, leptons, exotics)

Input and Output

• Starting point: heterotic string

 $\begin{array}{cccc} \mathbb{M}^4 & \times & \mathbb{R}^6 & \times & T^{16} \\ & & & \\ \mathrm{SO}(9,1)_{Lorentz} & \times & & \mathrm{E}_8 \times \mathrm{E}_{8gauge} \end{array}$

- Input
 - Geometry: T^6 , \mathbb{Z}_N
 - Embedding: $\mathcal{O}_6 = \mathbb{R}^6 / T^6 \rtimes \mathbb{Z}_N \quad \hookrightarrow \quad \mathcal{O}_{16}$

(subject to modular invariance (CFT) conditions)

• Output

 $\mathbb{M}^{4} \times \mathcal{O}_{6} \times \mathcal{O}_{16}$ SO(3,1)× $\bigotimes \mathbb{Z}_{n_{i}Lorentz}^{R} \times \mathcal{G}_{4D} \subset \mathbb{E}_{8} \times \mathbb{E}_{8gauge}$ + 4D matter (quarks, leptons, exotics)

Input and Output

• Starting point: heterotic string

 $\begin{array}{cccc} \mathbb{M}^4 & \times & \mathbb{R}^6 & \times & T^{16} \\ & & & \\ \mathrm{SO}(9,1)_{Lorentz} & \times & & \mathrm{E}_8 \times \mathrm{E}_{8\,gauge} \end{array}$

- Input
 - Geometry: T^6 , \mathbb{Z}_N
 - Embedding: $\mathcal{O}_6 = \mathbb{R}^6 / T^6 \rtimes \mathbb{Z}_N \quad \hookrightarrow \quad \mathcal{O}_{16}$

(subject to modular invariance (CFT) conditions)

• Output

$$\begin{split} \mathbb{M}^4 &\times \mathcal{O}_6 &\times \mathcal{O}_{16} \\ \mathrm{SO}(3,1) \times \bigotimes \mathbb{Z}_{n_i Lorentz}^R &\times \mathcal{G}_{4D} \subset \mathrm{E}_8 \times \mathrm{E}_{8gauge} \\ &+ 4 \mathrm{D} \; \mathrm{matter} \; (\mathrm{quarks, \, leptons, \, exotics}) \end{split}$$

Orbifolder (arXiv:1110.5229 Nilles, SR-S, Vaudrevange, Wingerter)

Image: Second state Image: Second state File Edit View Higtory Bookmarks Tools Help Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state			Ŧ
🗲 🔛 stringpheno.fisica.unam.mx/orbifoldei/orbi.html	\\$ - C	Soogle 🗸	۹ 🏠
📷 Most Visited 👻 💩 Getting Started 🔊 Latest Headlines 👻	S Van De Graaff	CCT UNAM	»
javascript://	orbifolder download download compleme help abo	on-line compiled prompt source code entary notes ut contact us Orbifolder version: 1.2 (res 29, 2012) platform: linux dependencies: Boost, GSL license: GNU GPL by: Hans Peter Nilles, Saŭl Ramos-Sánchez, Patrick K.S. Vaudrevange Akin Wingerter	a

"Program" example:

```
create orbifold(myZ6II) with point group(6,1)
1
2
    cd myZ6II
    set heterotic string type(E8xE8)
3
    print available space groups
4
    use space group(3)
5
    set shift V = (1/3 1/2 1/2 0^5 1/3 0^7)
6
    cd ~
7
    create random orbifold from(myZ6II) load when done print info if(SM)
8
                                          use(1,1,1,1,0,0,0,1) #models(1)
9
   wait(1)
10
   cd Model_SM1
11
   cd vev-config
12
    analyze config
13
```

\mathbb{Z}_6 –II Minilandscape

 $\sim 300~\rm MSSM$ candidates:

- supergravity multiplet
- $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times \mathcal{G}_{hid}$
- 3 SM families + Higgses
- vectorlike exotics
- gauge unification
- heavy top
- TeV gravitino mass
- seesaw
- *R*-parity
- flavor symmetries

Lebedev, Nilles, Raby, Ramos-Sanchez, Vaudrevange, Wingerter (2006-2008)

\mathbb{Z}_6 –II Minilandscape

 $\sim 300~\rm MSSM$ candidates:

- supergravity multiplet
- $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times \mathcal{G}_{hid}$
- 3 SM families + Higgses
- vectorlike exotics
- gauge unification
- heavy top
- TeV gravitino mass
- seesaw
- *R*-parity
- flavor symmetries

demanded

Lebedev, Nilles, Raby, Ramos-Sanchez, Vaudrevange, Wingerter (2006-2008)

\mathbb{Z}_6 –II Minilandscape

 $\sim 300~{\rm MSSM}$ candidates:

supergravity multiplet

Lebedev, Nilles, Raby, Ramos-Sanchez, Vaudrevange, Wingerter (2006-2008)

Hidden Photons in heterotic orbifolds

$$\mathcal{L} \supset -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu,a} - \frac{1}{4} F_b^{\mu\nu} F_{\mu\nu,b} - \frac{1}{2} \chi_{ab} F_a^{\mu\nu} F_{\mu\nu,b} + \frac{1}{2} m_b^2 A_b^{\mu} A_{\mu,b}$$

In SUSY theories

$$\mathcal{L}_{\text{canonical}} \supset \int d^2\theta \left\{ \frac{1}{4} W_a W_a + \frac{1}{4} W_b W_b - \frac{1}{2} \chi_{ab} W_a W_b \right\}$$

with

$$\frac{\chi_{ab}}{g_a g_b} = \frac{b_{ab}}{16\pi^2} \log \frac{M_S^2}{\mu^2} + \Delta_{ab}$$

In heterotic orbifolds, string threshold:

$$\Delta_{ab} = \sum_{i} \frac{b_{ab}^{i} |G^{i}|}{16\pi^{2} |G|} \left[\log \left(|\eta(T_{i})|^{4} \operatorname{Im}(T_{i}) \right) + \log \left(|\eta(U_{i})|^{4} \operatorname{Im}(U_{i}) \right) \right]$$
$$b_{ab}^{i} = \frac{1}{2} \left(-2 \operatorname{tr}_{V,\mathcal{N}=2}^{i} (Q_{a}Q_{b}) + \operatorname{tr}_{H,\mathcal{N}=2}^{i} (Q_{a}Q_{b}) \right)$$

3 (net) generations							
3 + 1	$({f 3},{f 2};{f 1})_{1/6,0}$	q_i	1	$\left(\overline{3},2;1 ight)_{-1/6,0}$	\bar{q}_i		
3 + 2	$\left(\overline{3},1;1 ight)_{-2/3,0}$	\bar{u}_i	2	$(3,1;1)_{2/3,0}$	u_i		
3 + 2	$(1,1;1)_{1,0}$	\bar{e}_i	2	$({f 1},{f 1};{f 1})_{-1,0}$	e_i		
3 + 7	$(\overline{\bf 3},{f 1};{f 1})_{1/3,0}$	\bar{d}_i	7	$({f 3},{f 1};{f 1})_{-1/3,0}$	d_i		
3	$(1,2;1)_{-1/2,0}^{-1/2,0}$	ℓ_i		, ,			
	Higgses						
1 + 9	$({f 1},{f 2};{f 1})_{-1/2,0}$	h_d	1 + 9	$({f 1},{f 2};{f 1})_{1/2,0}$	h_u		
SM Singlets							
45	$({f 1},{f 1};{f 1})_{0,0}$	n_i	8	$({f 1},{f 1};{f 1})_{0,*}$	ξ_i^{\pm}		
7	$({f 1},{f 1};{f 8})_{0,*}$	h_i	7	$\left(1,1;\overline{8} ight)_{0,*}$	\bar{h}_i		
Exotics							
8	$({f 3},{f 1};{f 1})_{1/6,*}$	w_i	8	$({f \overline{3}},{f 1};{f 1})_{-1/6,*}$	\overline{w}_i		
8	$({f 1},{f 1};{f 1})_{1/2,\pm\sqrt{2}/3}$	$s_i^{\pm\pm}$	8	$({f 1},{f 1};{f 1})_{-1/2,\pm\sqrt{2}/3}$	$s_i^{-\pm}$		
4	$({f 1},{f 2};{f 1})_{0,\sqrt{2}/3}$	m_i^+	4	$({f 1},{f 2};{f 1})_{0,-\sqrt{2}/3}$	m_i^-		

3 (net) generations							
3 + 1	$({f 3},{f 2};{f 1})_{1/6,0}$	q_i	1	$ig(\overline{f 3},{f 2};{f 1}ig)_{-1/6,0}$	\bar{q}_i		
3 + 2	$\left(\overline{3},1;1 ight)_{-2/3,0}$	\bar{u}_i	2	$(3,1;1)_{2/3,0}$	u_i		
3 + 2	$({f 1},{f 1};{f 1})_{1,0}$	\bar{e}_i	2	$({f 1},{f 1};{f 1})_{-1,0}$	e_i		
3 + 7	$\left(\overline{3},1;1 ight)_{1/3,0}$	\bar{d}_i	7	$({f 3},{f 1};{f 1})_{-1/3,0}$	d_i		
3	$({f 1},{f 2};{f 1})_{-1/2,0}$	ℓ_i					
	Higgses						
1 + 9	$({f 1},{f 2};{f 1})_{-1/2,0}$	h_d	1 + 9	$({f 1},{f 2};{f 1})_{1/2,0}$	h_u		
SM Singlets							
45	$({f 1},{f 1};{f 1})_{0,0}$	n_i	8	$({f 1},{f 1};{f 1})_{0,*}$	ξ_i^{\pm}		
7	$({f 1},{f 1};{f 8})_{0,*}$	h_i	7	$(1,1;\overline{8})_{0,*}$	$ar{h}_i$		
Exotics							
8	$(3,1;1)_{1/6,*}$	w_i	8	$({\overline{f 3}},{f 1};{f 1})_{-1/6,*}$	\bar{w}_i		
8	$({f 1},{f 1};{f 1})_{1/2,\pm\sqrt{2}/2}$	3 $s_i^{\pm\pm}$	ø	$({f 1},{f 1};{f 1})_{-1/2,\pm\sqrt{2}/3}$	$s_i^{-\pm}$		
4 (1, 2; SU(8) strong int. $\Lambda \sim 10^{11}$ GeV $\sqrt{2}/3$ m_i^-							

Kinetic mixing in a realistic model

In our model $b_{ab} = b_{YX} = 0$ and

$$\frac{\chi_{XY}}{g_X g_Y} = \Delta_{YX} = \frac{1}{16\pi^2} \frac{8\sqrt{2}}{3} \log\left(|\eta(3T_2)|^4 \text{Im}(T_2)\right) \neq 0$$

Contrary to previous findings

Dienes, Kolda, March-Russell ('96)

Dark force scenario

If $\langle n_i \rangle \sim \mathcal{O}(0,1)$, then

$$W = \frac{10^{-5}}{M_S} (\xi^+ \xi^-) (h\bar{h}) + 10^{-8} M_S (h\bar{h})$$

Through SU(8) strong interactions, SUSY breaking with $m_{3/2} \sim 1$ TeV and $(122)^{1/7}$

$$W_{np} = 7 \left(\frac{\Lambda^{23}}{\langle h\bar{h} \rangle}\right)^{1/2}$$

Since $\langle h\bar{h}\rangle = \Lambda^2 (10^{-8} \textit{z})^{-7/8}$, dark matter mass

$$W \supset 10^2 M_S z^{-23/8} \xi^+ \xi^-$$

yielding $m_{\xi} \sim 10$ GeV for $z \sim 10^7$.

Good Dark Matter

- Many interesting stringy MSSM candidates \checkmark
- $\bullet~{\rm Extra}~{\rm U}(1){\rm s}$ solve some problems and are natural in these models $~\checkmark~$
- Possible to obtain nice dark matter \checkmark