The Axiverse and Moduli Stabilisation for Chiral Global Models

MICHELE CICOLI

ICTP High Energy Group

PASCOS 2012, 07 Jun 2012

Based on:

- 1. MC, Mayrhofer, Valandro, arXiv:1110.3333 [hep-th]
- 2. MC,Goodsell,Ringwald, arXiv:1206.0819 [hep-th]

 \rightarrow see Ringwald's talk

Introduction

Two longstanding problems of CY compactifications:

- 1. Moduli stabilisation
- 2. Derivation of GUT- or MSSM-like constructions
- Type II theories promising because of D-branes and O-planes
- Moduli stabilisation is a global issue ↔ model building is a local issue ⇒ physics decouples, separate study
- Type IIB: viable mechanisms to fix the moduli and construct semi-realistic models \Rightarrow It is time to combine the two solutions!
- BUT moduli stab and model building are not completely decoupled! Three problems:
 - Tension between moduli stab via NP effects and chirality [Blumenhagen, Moster, Plauschinn]
 - Tension between moduli stab via NP effects and the cancellation of Freed-Witten anomalies [Blumenhagen,Braun,Grimm,Weigand][Collinucci,Kreuzer,Mayrhofer,Walliser]
 - D-term induced shrinking of various divisors (the one supporting the visible sector) [Blumenhagen,Braun,Grimm,Weigand][Collinucci,Kreuzer,Mayrhofer,Walliser][MC,Kreuzer,Mayrhofer]

-Solve them with control over the EFT, mod stab inside the Kähler cone and interesting phenomenological scales!

Main results

- Type IIB/F-theory compactifications with D3/D7-branes and O3/O7-planes
- Explicit description of the compact CY by means of toric geometry [MC,Kreuzer,Mayrhofer]
- **P** Brane set-ups and world-volume fluxes that yield a chiral SU(5)- or MSSM-like model
- Global consistency: D7-tadpole, torsion charges and FW anomaly cancellation (leave space in D3-tadpole to turn on three-form fluxes)
- Kähler moduli fixed within the Kähler cone and the regime of validity of the EFT in a way compatible with chirality + No D-term induced shrinking of any divisor
- Realisation of LVS axiverse for globally consistent chiral models [MC,Goodsell,Ringwald]
- Get a visible sector gauge coupling of the correct size
- Three choices of underlying parameters which give:
 - 1. GUT-scale M_s and TeV-scale SUSY by fine-tuning the background fluxes
 - 2. Intermediate scale M_s and TeV-scale SUSY for natural fluxes
 - 3. TeV-scale M_s and micron-sized EDs for anisotropic CYs [MC,Burgess,Quevedo]
 - dS vacua via D3/E(-1) instantons at a singularity [MC,Maharana,Quevedo,Burgess]

Kähler moduli stabilisation

- Type IIB closed string moduli: axio-dilaton S, cx str moduli U_{\alpha}, \alpha = 1, ..., h^{2,1},
 K\u00e4hler moduli T_i = \alphi_i + i c_i, \alphi_i = \v01(D_i), \alphi_i = \int_{D_i} C_4, \u00e4 = 1, ..., h^{1,1}
- Fluxes $G_3 = F_3 + iSH_3$ generate $W_{tree}(S, U)$ which fixes S and U at $D_{S,U}W = 0$
- No-scale structure $\Rightarrow T$ -moduli flat at tree-level
- S and U fixed at their flux-stabilised values $\Rightarrow W_0 = \langle W_{\text{tree}} \rangle$, $K_{\text{tree}} = -2 \ln \mathcal{V}$
- Sources for Kähler moduli stabilisation:

$$V = V_D + V_F^{\text{tree}} + V_F^{\text{pert}} + V_F^{\text{np}}$$

- $V_D \sim \mathcal{O}(1/\mathcal{V}^2)$: D-term potential (generated by fluxes on D7-branes)
- $V_F^{\text{tree}} \sim \mathcal{O}(1/\mathcal{V}^2) = 0$: no-scale structure
- $V_F^{\text{pert}} \lesssim \mathcal{O}(1/\mathcal{V}^3)$: perturbative (α' and g_s) corrections to K
- $V_F^{np} \sim O(1/\mathcal{V}^3)$: non-perturbative corrections to W (E3-instantons or gaugino condensation on a D7-stack)
- At leading order in $1/\mathcal{V}$: $V_D = 0$
- At subleading order minimise $V_F \Rightarrow$ Break SUSY

NP effects and chirality

Tension between Kähler md stab by NP effects and chirality

- Solution Chirality induced by non-zero flux on intersections of branes \Rightarrow visible sector with $\mathcal{F} \neq 0$
- **P** To preserve visible sector gauge group, $\langle \phi \rangle = 0$ but then $A_i = 0$ and no contribution from *i*-cycle

Constraint on the flux choice: no chirality at possible intersection between NP effect cycle and visible sector

Best place to place NP effects: 'diagonal' del Pezzo divisors [MC,Kreuzer,Mayrhofer]

NP effects and Freed-Witten anomaly

Turn on half-integer flux on any *non-spin* 4-cycle D ($c_1(D)$ is odd) to cancel worldsheet anomalies [Minasian,Moore][Freed,Witten]:

$$F = f^i \eta_i + \frac{1}{2} c_1(D) \quad f^i \in \mathbb{Z} \quad \eta_i \in H^2(D, \mathbb{Z})$$

 $\mathcal{F} = F - B = 0$ on the E3-instanton or gaugino condensation stack, wrapping invariant cycle

$$FW \Rightarrow F \neq 0$$

Need a proper choice of B to cancel F

BUT once *B* is fixed to cancel half-integral *F* on stack *a*, generically forces $\mathcal{F} \neq 0$ on a second non-spin stack *b* (unless they do not intersect)

 \Rightarrow FW anomaly generically prevents to have more than one NP effect to fix Kähler moduli

 \Rightarrow Kähler moduli stabilisation by only one NP effect!

This leads to the LARGE Volume Scenario (\mathcal{V} fixed by interplay of α' -corr and NP effect supported by a single diagonal del Pezzo) [Balasubramanian,Berglund,Conlon,Quevedo] [MC,Conlon,Quevedo]

'D-term problem'

Flux generates FI-term $\xi_a = \frac{1}{\mathcal{V}} \int_{D_a} J \wedge \mathcal{F}_a \quad \Rightarrow \quad V_D = \sum_a \frac{g_a^2}{2} \left(\sum_b q_{ab} |\phi_b|^2 - \xi_a \right)^2$

- If VEV of charged fields $\langle \phi \rangle = 0$, D-term conditions imply $\xi_a = 0$
- $\xi_a = 0 \rightarrow \text{generically some 4-cycles shrink (away sugra approx)}$

 $\xi_a \propto \int_{D_a} J \wedge \mathcal{F}_a = k_{ajk} \mathcal{F}_a^k t^j = 0$ homogeneous linear eqs in the $h^{1,1}$ Kähler md

- P NP cycle does not enter in $\xi_a = 0$ eqs (diag dP, no chiral inters)
- In general we have $n = h^{1,1} 1$ unknowns in eqs $\xi_a = 0$
- **P** The matrix of the system $\xi_a = 0$ will have rank d
- If d = n, then $t^j = 0 \Rightarrow d < n$, (n d) flat directions
- n − d = 1 ⇒ all of the same size:
 $t_j = t_* \forall j$ ⇒ no LVS due to visible gauge coupling:
 $g^{-2} \sim t_*^2$
- $\ \, \bullet \quad n-d=2 \Rightarrow {\rm can \ get \ LVS}$

If d = 1, the minimal n to allow for LVS is $n = 3 \Rightarrow h^{1,1} = 4$ Get LVS by choosing D7-brane config and fluxes such that d = 1

The axiverse and moduli stabilisation

Kähler moduli fixed by combination of different effects for $W_0 \sim \mathcal{O}(1)$:

- d combinations are fixed by leading D-term potential $\Rightarrow d \text{ axions get eaten up by anomalous } U(1) \text{s}$
- 'Diagonal' dP fixed by NP effects $W_{np} = A e^{-aT_{dP}}$ ⇒ Corresponding axion gets the same mass of the order $m_{3/2}$
- **P** Remaining $n_{ax} = h^{1,1} 1 d \ge 2$ moduli fixed perturbatively:
 - Solume mode fixed by α' corrections to K
 - **Solution** Remaining moduli fixed by subleading g_s corrections to K
 - $\Rightarrow n_{\rm ax} \ge 2$ light axions
- **9** For $h^{1,1} \sim \mathcal{O}(100)$ expect n_{ax} very large

• One axion is the QCD axion and the others get a tiny mass via higher order NP effects $W_{np} = A e^{-aT_{dP}} + \sum_{i}^{n_{ax}} A_i e^{-n_i a_i T_i}$

 \Rightarrow Axiverse with many light axions whose masses are logarithmically hierarchical

Explicit example: the Calabi-Yau

The CY_3 X is a hypersurface in a 4D toric ambient variety. Weight matrix:

z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	DX
1	1	1	0	0	0	1	4	8
1	1	0	0	0	1	0	3	6
0	1	1	1	0	0	0	3	6
0	1	0	0	1	0	0	2	4

Toric variety is the moduli space of a GLSM:

$$|z_1|^2 + |z_2|^2 + |z_3|^2 + |z_7|^2 + 4|z_8|^2 = \xi_1, \quad |z_1|^2 + |z_2|^2 + |z_6|^2 + 3|z_8|^2 = \xi_2, \dots$$

CY data obtained from PALP [Kreuzer,Skarke][Braun,Walliser]

B Hodge numbers:
$$h^{1,1}(X) = 4$$
, $h^{1,2}(X) = 106$

Basis of $H_4(X,\mathbb{Z})$:

$$\Gamma_1 = D_7, \qquad \Gamma_2 = D_2 + D_7, \qquad \Gamma_3 = D_1, \qquad \Gamma_4 = D_5$$

Intersection form: $I_3 = 2\Gamma_1^3 + 4\Gamma_2^3 + 4\Gamma_4^3 + 2\Gamma_2^2\Gamma_3 - 2\Gamma_4^2\Gamma_3$

A K3-fibred Calabi-Yau

X is a K3 fibration with a diagonal del Pezzo [MC,Kreuzer,Mayrhofer]

- **Solution** K3 fibre divisor is D_1
- One 'diagonal' dP₇ corresponding to $\Gamma_1 = D_7$
- Three other rigid (non-dP) divisors: D_4 , D_5 , D_6 with $h^{2,0} = h^{1,0} = 0$ Kähler form expanded as $J = \sum_{i=1}^4 t_i \Gamma_i$

Refine to the conduct as $J = \sum_{i=1}^{n} t_i \mathbf{1}_i$

Volume of X: $\mathcal{V} = \frac{1}{3} \left[2t_2^3 + 3t_2^2t_3 + t_4^2(2t_4 - 3t_3) + t_1^3 \right]$

The volume of the 'diagonal' dP is
$$au_7 = t_1^2$$

Kähler cone:

 $r_1 \equiv -t_1 > 0$, $r_2 \equiv t_1 + t_2 + t_4 > 0$, $r_3 \equiv t_3 - t_4 > 0$, $r_4 \equiv -t_4 > 0$

- K3-fibred CYs promising for particle phenomenology and cosmology:
 - 1. Anisotropy: ADD [MC,Burgess,Quevedo 2011], hidden photons [MC,Goodsell,Jäckel,Ringwald]
 - 2. Inflation: single-field [MC,Burgess,Quevedo 2008] [MC,Pedro,Tasinato 2011]; multi-field [Burgess,MC,Gomez-Reino,Quevedo,Tasinato,Zavala] [MC,Tasinato,Zavala,Burgess,Quevedo]
 - 3. Quintessence [MC,Pedro,Tasinato 2012]

Model building with D7-branes

GUT or MSSM on D7-branes wrapped around 4-cycles

Orientifold $O = (-1)^{F_L} \Omega_p \sigma$ where σ is holomorphic involution of X

■ N_a D7-branes (plus images) wrapping invariant divisor $D \Rightarrow Sp(2N_a)$ gauge group Switch on flux \mathcal{F} on the brane wrapping D

$$If diagonal \mathcal{F} \Rightarrow Sp(2N_a) \rightarrow SU(N_a) \times U(1)$$

D7-brane flux generates chiral modes

Solution Number of chiral zero-modes in symmetric and antisymmetric $U(N_a)$ reps:

$$I_a^{(S,A)} = \mp \frac{1}{2} \int_X [D7_a] \wedge [O7] \wedge \mathcal{F}_a - \int_X [D7_a] \wedge [D7_a] \wedge \mathcal{F}_a$$

At intersection, chiral zero-modes in bi-fundamental reps (N_a, \overline{N}_b) and (N_a, N_b) :

$$I_{a\bar{b}} = \int_{X} [D7_a] \wedge [D7_b] \wedge (\mathcal{F}_a - \mathcal{F}_b)$$
$$I_{ab} = \int_{X} [D7_a] \wedge [D7_b] \wedge (\mathcal{F}_a + \mathcal{F}_b)$$

Charge cancellation

Homological charges must be cancelled:

$$\Gamma_{D7} = [D7] + [D7] \wedge \mathcal{F} + [D7] \wedge \left(\frac{1}{2}\mathcal{F} \wedge \mathcal{F} + \frac{\chi(D7)}{24}\right)$$

$$\Gamma_{O7} = -8[O7] + [O7] \wedge \frac{\chi(O7)}{6}$$

- **D7-charge:** $\Sigma_{D7}[D7] = 8[O7]$
- **D**5-charge: $\mathcal{F}' = -\mathcal{F} \Rightarrow$ zero if all branes and image-branes wrap same divisor

D3-charge: contributions from fluxes and geometry: leave space to turn on H_3 and F_3 Also K-theoretic torsion charges must sum to zero:

Probe argument [Uranga]: equivalent to require absence of SU(2) gauge anomaly on any probe Sp-brane \rightarrow even number of chiral fundamental rep

Orientifold projection

Choice for holomorphic orientifold involution σ :

 $\sigma: z_8 \mapsto -z_8$

9 O7-plane at
$$z_8 = 0 \Rightarrow [O7] = D_8$$

No O3-planes

$$\ \, { \ \, I}_{-}^{1,1}(X)=0 \ \, { and so } \ \, h^{1,1}_{+}(X)=h^{1,1}(X)$$

**Equation for
$$CY_3$$
:**

$$z_8^2 = P_{8,6,6,4}(z_1, ..., z_7)$$

D To cancel D7-charge of O7, D7-config on divisor class $8[D_8]$

D7-brane stacks

D7-config described by polynomial (Whitney brane with double intersection with O7):

$$\eta^2 - z_8^2 \chi = 0$$

To have different stacks, this polynomial has to factorise

Special forms for polynomials η and χ :

$$\eta = z_i^m \tilde{\eta}, \quad \chi = z_i^{2m} \tilde{\chi} \qquad \Rightarrow \qquad \eta^2 - z_8^2 \chi = z_i^{2m} \left(\tilde{\eta}^2 - z_8^2 \tilde{\chi} \right)$$

 \rightarrow one Sp(2m) stack along $z_i = 0$ plus a *Whitney brane*

 N_a branes on D_4 , N_b on D_5 , N_{k3} on D_1 and N_{gc} on D_7 (plus images):

$$\eta^2 - z_8^2 \chi \longrightarrow z_1^{2N_{k3}} z_4^{2N_a} z_5^{2N_b} z_7^{2N_{gc}} \left(\tilde{\eta}^2 - z_8^2 \tilde{\chi} \right)$$

No further factorisation if:

$$N_{gc} \le 4 \qquad N_{gc} + N_{k3} \le 4 + N_a \qquad N_a - N_b \le N_{gc}$$

The Whitney brane has zero flux

Set
$$\mathcal{F}_{gc} = 0 \Rightarrow B = F_{gc}$$

K-theory constraints solved if N_b is an even number

Example with one D-term

Choice of set-up:

$$N_a = 3$$
, $N_{k3} = 1$, $N_{gc} = 3$ and $N_b = 0$

Fluxes:

Gauge group broken to:

 $Sp(6) \times SU(2) \times Sp(6) \rightarrow SU(3) \times U(1) \times SU(2) \times Sp(6) \rightarrow SU(3) \times SU(2) \times Sp(6)$,

Also GUT-like example with two D-terms: $SU(5) \times U(1) \times Sp(8)$

Chiral matter and D3-charge

Chiral modes:

 $I_a^{(A)} = 2\beta_a - \nu \qquad I_a^{(S)} = -2\beta_a + 3\nu$ $I_{ak3} = 2\alpha_a \qquad I_{aW} = 4(4\beta_a - \alpha_a) + 8\nu$ $I_{k3W} = 0 \qquad I_{agc} = \nu$

 α_a , β_a and ν are integral combinations of flux numbers Gaugino condensation without chiral intersections $\Rightarrow \nu = 0$.

Choice of flux numbers consistent with requirements:

 $\alpha_a = 1, \qquad \beta_a = -1, \qquad \nu = 0$

• Total D3-charge (including the geometric contribution):

$$Q_{(D3)}^{\rm tot} = -606$$

Non-zero chiral intersections:

$$I_a^{(A)} = -2, \qquad I_a^{(S)} = 2, \qquad I_{ak3} = 2, \qquad I_{aW} = -20$$

D-term potential

Just one non-trivial FI-term:

$$\xi_a = \frac{1}{4\pi\mathcal{V}} \int_X [D7_a] \wedge J \wedge \mathcal{F}_a = \frac{1}{4\pi\mathcal{V}} \left[(\beta_a - \alpha_a)(r_1 + r_2) + 2\alpha_a r_3 \right].$$

Solution of $\xi_a = 0$:

$$r_3 = \left(1 - \frac{\beta_a}{\alpha_a}\right) \frac{r_1 + r_2}{2}$$

Substituting flux choice, following relations between divisor volumes:

$$\tau_4 = 3(\tau_1 - \tau_5) - \tau_7$$

 \Rightarrow Plug them in subleading F-term potential:

$$\mathcal{V} = \frac{1}{6}\sqrt{\tau_1 - \tau_5} \left(10\tau_1 - \tau_5\right) - \frac{1}{3} \tau_7^{3/2}$$

Since $\alpha_{vis}^{-1} = \tau_4$, the combination $(\tau_1 - \tau_5)$ has to be fixed small:

$$\tau_s \equiv \tau_1 - \tau_5 \qquad \tau_b \equiv \frac{10\tau_1 - \tau_5}{2}$$
$$\mathcal{V} = \frac{1}{3} \left(\sqrt{\tau_s} \tau_b - \tau_7^{3/2} \right)$$

F-term potential

F-term potential depends on au_s , au_b and au_7

F-term potential given by NP and α' pert corrections

$$K = -2\ln\left(\mathcal{V} + \frac{\hat{\xi}}{2}\right), \qquad W = W_0 + A \, e^{-\frac{2\pi T_7}{N_{gc} + 1}} = W_0 + A \, e^{-\frac{\pi T_7}{2}}$$

Potential minimised both numerically for given value of parameters A, g_s, W_0 and analytically, using leading approximation

Can find LVS!

$$V \simeq 2\pi^2 A^2 \frac{\sqrt{\tau_7}}{\mathcal{V}} e^{-\pi\tau_7} - 2\pi A W_0 \frac{\tau_7}{\mathcal{V}^2} e^{-\frac{\pi\tau_7}{2}} + \frac{3W_0^2 \hat{\xi}}{4\mathcal{V}^3}$$

V depends only on \mathcal{V} and τ_7 . One flat direction

Solution:

$$\mathcal{V} \simeq \frac{W_0 \sqrt{\tau_7}}{2\pi A} e^{\frac{\pi \tau_7}{2}}$$
 and $\tau_7 \simeq \left(\frac{3\xi}{2}\right)^{2/3} \frac{1}{g_s}$

F-term potential

For choice:

$$W_0 = 1$$
 $A = 0.1$ $g_s = 0.05$

 α' + NP corrections stabilise τ_7 and the product $\sqrt{\tau_s}\tau_b$. Find (both numerically and analytically):

$$\langle \tau_7 \rangle \simeq 16 \qquad \langle \mathcal{V} \rangle \simeq 1 \cdot 10^{12} \qquad$$
 Justify validity of approximations

Get TeV-scale SUSY:

$$m_{3/2} = e^{K/2} W_0 M_P = \sqrt{\frac{g_s}{8\pi}} \frac{W_0 M_P}{\mathcal{V}} \simeq 100 \,\mathrm{TeV}$$

by gravity mediation $M_{\rm soft} \simeq \frac{m_{3/2}}{\ln \left(M_P/m_{3/2}\right)} \simeq 3 \text{ TeV}$

Get intermediate string scale:

$$M_s \simeq \frac{M_P}{\sqrt{4\pi \mathcal{V}}} \simeq 10^{11} \,\mathrm{GeV}$$

Perfect intermediate scale decay constant for local axions: $f_a \sim M_s$

String loop corrections

 g_s corrections can stabilise τ_s small ($\Rightarrow \tau_b$ large) [MC,Conlon,Quevedo]:

-0.03

-0.04

 $< \tau_{\tau}$

$$\delta V_{(g_s)}^{1-loop} = \left(\frac{c_1}{\sqrt{\tau_s}} + \frac{c_2}{5\sqrt{\tau_s} - 2\sqrt{\tau_7}} + \frac{c_3}{19\sqrt{\tau_s} - 8\sqrt{\tau_7}}\right) \frac{W_0^2}{\mathcal{V}^3} + \mathcal{O}\left(\frac{1}{\mathcal{V}^4}\right)$$

$$V_{\text{loop}}$$

$$V_{\text{loop}}$$

100

 τ_s

150

 $\Rightarrow \tau_s \simeq 30$ and $\tau_b \simeq 10^{11}$ well inside the Kähler cone! Anisotropic CY!

- $I his keeps \tau_4 = 3\tau_s \tau_7 \text{ small and } \alpha_{vis}^{-1} = \langle \tau_4 \rangle \frac{1}{2g_s} \int_{D_4} \mathcal{F}_4 \wedge \mathcal{F}_4 \simeq 100$
- Different choice of parameters: $g_s = 0.02$ instead of $g_s = 0.05 \Rightarrow \mathcal{V} \simeq 10^{29}$ \Rightarrow ADD scenarios from strings: $M_s \simeq \frac{M_P}{\sqrt{4\pi\mathcal{V}}} \simeq 2$ TeV + 2 micron-sized extra dimensions
 [MC,Burgess,Quevedo 2011]

Conclusions

We have presented a concrete chiral model with Kähler moduli stabilised

- General strategy to combine Kähler moduli stabilisation with chiral D7-brane models in Type IIB flux compactifications
- Geometric data described by toric geometry. This allowed to make specific choice of brane setup and fluxes that give rise to GUT- or MSSM-like models
- We have checked several consistency constraints
- We have computed the scalar potential and minimised it, obtaining different interesting scenarios
- First realisation of LARGE Volume Scenario in a concrete model
- This mod stab mechanism leads to an axiverse

Outlook

- Explicit analysis of three-form background fluxes to fix the cx str, the dilaton and D7-brane deformation moduli
- Realisation of a fluxed brane set-up that produces the right chiral spectrum and Yukawas
- There is a long list of CY₃ in PALP output: try to automatise the search for a consistent and phenomenological viable model
- Explicit realisation of dS vacua [MC,Maharana,Quevedo,Burgess]
- K3-fibration promising for cosmology: derive the details of the inflationary scenarios [MC,Burgess,Quevedo 2008] [Burgess,MC,Gomez-Reino,Quevedo,Tasinato,Zavala] [MC,Pedro,Tasinato 2011]
 [MC,Tasinato,Zavala,Burgess,Quevedo] [MC,Pedro,Tasinato 2012]
- Consider visible sector on shrinking (by D-term) divisor → quiver theories [Conlon,Maharana,Quevedo][Blumenhagen,Conlon,Krippendorf,Moster,Quevedo] [MC,Krippendorf,Mayrhofer,Quevedo,Valandro in preparation]
- Study of the phenomenology of light hidden sector particles [MC,Goodsell,Jäckel,Ringwald]
 - Applications to F-theory