Particle Physics & String Theory: Type II/F-Theory Perspective

Mirjam Cvetič

Outline:

Focus on particle physics & D-branes:

I. Type II (w/ D-branes at small string coupling)
→ Standard Model & GUT's
Recent developments: Non-perturbative effects (D-instantons)
→ new hierarchy for couplings

II. F-theory (string theory w/ D-branes at finite coupling)
→ primarily (local) SU(5) GUT's
→ instantons
c.f. J. Heckman's talk
time permitting

III. Conclusions/outlook

I. Particle Physics implications (Type II):

Recent focus: landscape of realistic D-brane quivers w/ D-instantons

String Consistent MSSM Quivers w/ realistic fermion textures M.C., J. Halverson, R. Richter; & P. Langacker '09-'10

Most MSSM Quivers-string inconsistent What are the simplest extensions?

With no additional nodes:

landscape analysis all MSSM quivers & additional matter (compatible with string constraints) → stringy inputs on exotic matter M.C., J. Halverson & P. Langaceker, 1108.5187

With additional U(1)'s or U(N) node: implications for SUSY breaking, dark matter, Z' M.C., J. Halverson & H. Piragua, to appear II. D-instantons – formal developments

Recent focus on F-theory (finite string coupling) → multi pronged approach: (a) string junctions (b) anomaly inflow (c) via dualities (F-theory/Heterotic; F-theory/M-theory)

Goals: Zero modes and superpotential structure (Pffafians): \rightarrow

Pfaffians via heterotic duality:

Geometric interpretation of zero loci (including E8 symmetric point) M.C., I. Garcia-Etxebarria & J. Halverson, 1107.2388 Inclusion of fluxes & direct F-theory results M.C., R. Donagi, J. Halverson & J. Marsano, to appear

Superpotential via N=2 D=3 M-theory M.C., T. Grimm, J. Halverson & D. Klevers, to appear

Perturbative String Theories → (finite) theory of quantum gravity Green&Schwarz'84

Phenomenologically promising Recent (MSSM): Bouchard,M.C., Donagi'05

....Anderson,Gray,Lukas`09-'12

Lebedev, Nilles, Raby, Ramos, Ratz Vaudrevange, Wingerter '07-'10

Type IIA superstring (closed)

> Type IIB superstring (closed)

Heterotic SO(32) string

Type I superstring (open)

Different String Theories related to each other by Weak-Strong Coupling DUALITY

D-branes & Particle Physics → Beautiful relation to particles & forces of pature

Beautiful relation to particles & forces of nature - geometric

Open strings w/ charges at the ends

Ends ``attached " to boundary Dp – branes Polchinski'95

Extends in p+1 dim. world-volume

D p-branes – extend in p+1 dimensions: 3+1-our world $M_{(3,1)}$;(p-3)-wrap Π_{p-3} cycles of X_6

Compactification D=9+1 D=3+1X₆ (Calabi-Yau) $M_{(1,3)}$ -flat X X Π_{p-3}

D p-branes – extend in p+1 dimensions: 3+1-our world $M_{(3,1)}$;(p-3)-wrap Π_{p-3} cycles of X_6 D q-branes – extend in q+1 dimensions: 3+1-our world $M_{(3,1)}$;(q-3)-wrap Π_{q-3} cycles of X_6 $\Pi_{q-3} \cap \Pi_{p-3}$ Two sets of D-branes typically Intersect at # of points

matter at each intersection \rightarrow family replication Geometric!

Type II w/ D-branes \rightarrow

fertile ground for particle physics model building

[Pedagogical review: TASI'10 lectures, M.C., Halverson arXiv:1101.2907]

Type IIA w/intersecting D-branes → key features of SM & SU(5) GUT spectrum: non-Abelian gauge symmetry, chirality & family replication Geometric

Representation	Multiplicity
(\overline{a}, b)	$\pi_a \circ \pi_b$
$(\overline{a}, \overline{b})$	$\pi_a \circ \pi'_b$
\Box_a	$\frac{1}{2}(\pi'_a \circ \pi_a + \pi_{O6} \circ \pi_a)$
\square_a	$\frac{1}{2}(\pi'_a \circ \pi_a - \pi_{O6} \circ \pi_a)$

In addition global consistency : Gauss's law for D-brane charge on internal space. → stringy

Large classes (order of 100's) of globally consistent supersymmetric,SM-like & GUT constructions; also couplings

[M.C., Shiu, Uranga'01]...

[M.C. Papadimitriou '03], [Cremades, Ibáñez, Marchesano'03]... Recent developments:

New types of D-instantons: introduced to generate certain perturbatively absent couplings for charged sector matter

[Blumenhagen,M.C.,Weigand, hep-th/0609191] [Ibañez,Uranga, hep-th/0609213]

. . .

- charged matter coupling corrections

[Florea,Kachru,McGreevy,Saulina, 0610003]

- supersymmetry breaking

Review: [Blumenhagen, M.C., Kachru, Weigand, 0902.3251]

Encoded in non-perturbative violation of ``anomalous'' U(1)'s

D-Instanton - Euclidean D-brane background X₆-Calabi-Yau $M_{(1,3)}$ -flat X X Wraps cycle Π_{p+1} cycles of X₆ point-in 3+1 space-time New geometric hierarchies for couplings: $\mathcal{R}e\left(e^{-S_{E2}}\right) = e^{-\frac{2\pi}{\ell_s^3 g_s} \operatorname{Vol}_{E2}} = e^{-\frac{2\pi}{\alpha_{\rm GUT}} \frac{\operatorname{Vol}_{E2}}{\operatorname{Vol}_{D6}}}$ stringy! Instanton can intersect with physical D-brane (charged zero modes)

→ generate non-perturbative couplings of charged matter

Specific Examples:

- i Majorana neutrino masses original papers,...
- ii Nonpert. Dirac neutrino masses [M.C.,Langacker, 0803.2876]
- iii 1010 5 GUT couplings
- [Blumenhagen, M.C., Lüst, Richter, Weigand, 0707.1871]

one-instanton effect $\longrightarrow g_s \rightarrow 1$ (M-theory on G_2)

iv Polonyi-type couplings \longrightarrow

[Aharony,Kachru,Silverstein 0708.0493] [MC,Weigand 0711.0209,0807.3953] [Heckman,Marsano,Saulina,Schafer-Nameki,Vafa 0808.1286] Examples of such instanton induced hierarchical couplings primarily for local Type IIA toroidal orbifolds SU(5) GUT's

Challenge: global models→Type I/IIB/F-theory (algebr. geom.)

- i. Type I GUT's on compact elliptically fibered Calabi-Yau First global chiral (four-family) SU(5) GUT's w/ D-instanton generated Polonyi & Majorana neutrino masses [M.C., T.Weigand,0711.0209,0807.3953]
- ii. Global Type IIB GUT's : 1010 5_H non-perturbative coupling (two family) SU(5) GUT on CY as hypersurface in toric variety [Blumenhagen,Grimm,Jurke,Weigand, 0811.2938]

iii. Global F-theory lift [M.C., I. Garcia-Etxebarria, J. Halverson,003.5337]
[Develop a code to calculate zero modes/spectrum in Type IIB and F-theory on toric varieties; code w/ new efficient technique →

[Blumenhagen, Jurke, Rahn & Roschy, 1003.5217]]

Most examples w/ O (1) instantons addressed SU(5) GUT's How about directly Standard Model?

Adressed for local Madrid quiver [Ibanez,Richter, 0811.1583]

Systematic Analysis of D-Instanton effects for MSSM's quivers (compatible with global constraints)

Landscape analysis of MSSM w/

realistic fermion textures [M.C., J. Halverson, R. Richter, 0905.3379; 0909.4292; 0910.2239]

Stringy Weinberg operator neutrino masses (examples of low string scale) [M.C., J. Halverson, P. Langacker, R. Richter, 1001.3148] Singlet-extended MSSM landscape [M.C. J. Halverson, P. Langacker, 1006.3341]

Bottom-up approach initiated [Aldazabal,Ibanez,Quevedo,Uranga'00].. Related recent works: Specific 3-stack [Leontaris, 0903.3691] Madrid quiver [Anastasopoulos, Kiritsis, Lionetto, 0905.3044] SU(5) GUT's [Kiritsis, Lennek, Schellekens, 0909.0271]... MSSM at toric singularities: [Krippendorf, Dolan,Maharana,Quevedo,1002.1790, 1106.6039] Approach: Bottom-up quivers

Spectrum and couplings geometric efficient classification of key physics [compatible w/ global constraints →stringy, but without delving into specifics of globally defined string compactifications]

Quiver data: massless spectrum & examination of couplings [both perturbative & non-perturbative-instantons] Probe ``quiver landscape'' to identify realistic quivers in the landscape of string vacua

Multi-stack MSSM quivers Employ three-stack MSSM $U(3)_a \times U(2)_b \times U(1)_c$

& four-stack MSSM $U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d$

five-stack....

Four-stack set of MSSM models w/ 3 N_R & potentially viable fermion textures

[M.C., J. Halverson, R. Richter, 0905.3379]

Solution #	q	L		d_R		u_R L		E_R		N _R			H_u			H_d						
Solution #	(a, b)	(a, \overline{b})	(\overline{a}, c)	$(\overline{a}, \overline{d})$	Γ	$(\overline{a}, \overline{c})$	(\overline{a}, d)	(b, \overline{c})	(b, d)	(\bar{b}, d)	(c, \overline{d})	_L_le	$\overline{\sqcup_d}$	7	Π	(c, d)	$(\overline{c}, \overline{d})$	(b, c)	(\overline{b}, c)	(b, \overline{d})	$(\overline{b}, \overline{d})$	$(\overline{b}, \overline{c})$
1	3	0	3	0	0	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
2	3	0	2	0	1	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
3	3	0	1	0	2	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
4	3	0	0	0	3	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
5	3	0	0	0	3	0	3	0	0	3	0	0	3	3	0	0	0	1	0	0	0	1
6	3	0	3	0	0	2	1	0	0	3	0	2	1	2	0	1	0	0	0	0	1	1
7	3	0	3	0	0	3	0	0	0	3	2	1	0	2	0	0	1	0	1	0	0	1
8	3	0	3	0	0	3	0	0	0	3	0	2	1	2	0	0	1	0	1	0	0	1
9	3	0	3	0	0	3	0	0	0	3	1	2	0	2	0	1	0	0	1	0	0	1
10	2	1	3	0	0	1	2	0	0	3	0	0	3	0	0	0	3	1	0	0	0	1
11	2	1	3	0	0	1	2	0	0	3	3	0	0	0	0	3	0	1	0	0	0	1
12	2	1	3	0	0	3	0	0	0	3	3	0	0	0	0	0	3	1	0	0	0	1
13	2	1	3	0	0	3	0	0	1	2	3	0	0	0	0	0	3	0	1	0	0	1
14	1	2	3	0	0	3	0	0	3	0	3	0	0	0	0	0	3	1	0	0	0	1
15	0	3	0	3	0	0	3	3	0	0	0	1	2	0	3	0	0	0	0	1	0	1
16	0	3	0	0	3	0	3	0	3	0	0	0	3	0	3	0	0	1	0	0	0	1
17	0	3	0	0	3	0	3	1	2	0	1	0	2	0	3	0	0	0	0	1	0	1
18	0	3	0	0	3	0	3	3	0	0	2	0	1	0	3	0	0	0	0	1	0	1
19	0	3	0	0	3	0	3	3	0	0	0	1	2	0	3	0	0	0	0	1	0	1
20	0	3	0	0	3	1	2	1	2	0	2	0	1	0	3	0	0	1	0	0	0	1
21	0	3	0	0	3	1	2	1	2	0	0	1	2	0	3	0	0	1	0	0	0	1
22	0	3	0	0	3	1	2	3	0	0	3	0	0	0	3	0	0	1	0	0	0	1
23	0	3	0	0	3	1	2	3	0	0	1	1	1	0	3	0	0	1	0	0	0	1
24	0	3	0	0	3	2	1	0	3	0	3	0	0	0	3	0	0	1	0	0	0	1
25	0	3	0	0	3	2	1	0	3	0	1	1	1	0	3	0	0	1	0	0	0	1
26	0	3	0	0	3	2	1	2	1	0	2	1	0	0	3	0	0	1	0	0	0	1
27	0	3	0	0	3	2	1	2	1	0	0	2	1	0	3	0	0	1	0	0	0	1
28	0	3	0	3	0	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
29	0	3	0	2	1	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
30	0	3	0	1	2	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
31	0	3	0	0	3	3	0	1	2	0	1	2	0	0	3	0	0	1	0	0	0	1

Solutions for hypercharge $U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c - \frac{1}{2}U(1)_d$ - Madrid embedding

Concrete 5-stack model (benchmark)

(w/ three mass scales in top, bottom in charged lepton sector)

Sector	Matter Fields	Transformation	Multiplicity	Hypercharge
ab	q_L	(a, \overline{b})	1	$\frac{1}{6}$
ab'	q_L	(a,b)	2	$\frac{1}{6}$
ac'	u_R	$(\overline{a},\overline{c})$	2	$-\frac{2}{3}$
ad'	u_R	$(\overline{a},\overline{d})$	1	$-\frac{2}{3}$
aa'	d_R		3	$\frac{1}{3}$
bc'	H_u	(b,c)	1	$\frac{1}{2}$
bd'	L	$(\overline{b},\overline{d})$	3	$-\frac{1}{2}$
be'	H_d	$(\overline{b},\overline{e})$	1	$\frac{1}{2}$
ce'	E_R	(c, e)	2	1
ce	N_R	(\overline{c}, e)	1	0
dd'	E_R	\square_d	1	1
de	N_R	(\overline{d},e)	2	0

Allows for full (inter- & intra-) family mass hierarchy via ``factorization of Yukawa matrices'' due to vector-pairs of zero fermion modes-stringy (technical, no time)

Recent: String constraints & matter beyond the MSSM [M.C., J. Halverson, P. Langacker, 1108.5387]

 I. Classify ALL possible MSSM quivers (three & four stacks) irrespective of global conditions→ most quivers inconsistent What is additional matter to be compatible w/ global constraints?
→ stringy inputs on exotic matter

3-stack analysis: global conditions (T_{a,b,c}=0) constraining, e.g., MSSM w/

 $U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c \quad T_a = 0 \qquad T_b = \pm 2n \qquad T_c = 0 \mod 3 \qquad \text{with } n \in \{0, \dots, 7\},$

 w/ preferred additions: quasi-chiral Higgs pairs, MSSM singlets hypercharge-less SU(2) triplets,&
various quark anti-quark pairs, all w/ integer el. ch.; one (massless) Z' quiver

4-stack analysis: richer structure

sizable number of quivers w/ Z', including leptophobic (tuned); additional structures: possible $SH_{\underline{u}}H_{d,;}$ v-masses; exotics w/ fractional el. ch. ...

Possible additions

Trans	formation	Ta	T _b	T_c	M_{a}	M_b	M_{c}
⊞a	$(6,1)_{\frac{1}{2}}$	7	0	0	$-\frac{1}{2}$	0	0
Ξa	$(\overline{6},1)_{-\frac{1}{4}}$	-7	0	0	$\frac{1}{2}$	0	0
Ba	$(\overline{3},1)_{\frac{1}{3}}$	-1	0	0	$-\frac{1}{2}$	0	0
Ēa	$(3,1)_{-\frac{1}{3}}$	1	0	0	$\frac{1}{2}$	0	0
шь	$(1, 3)_0$	0	6	0	0	0	0
шь	$(1, 3)_0$	0	-6	0	0	0	0
Вь	$(1,1)_0$	0	-2	0	0	0	0
Ēь	$(1,1)_0$	0	2	0	0	0	0
(\overline{b}, c)	$(1,2)_{\frac{1}{2}}$	0	-1	2	0	$-\frac{1}{2}$	$-\frac{1}{3}$
(b,\overline{c})	$(1,2)_{-\frac{1}{2}}$	0	1	-2	0	$\frac{1}{2}$	$\frac{1}{3}$
(b,c)	$(1,2)_{\frac{1}{2}}$	0	1	2	0	$-\frac{1}{2}$	$-\frac{1}{3}$
$(\overline{b},\overline{c})$	$(1,2)_{-\frac{1}{2}}$	0	-1	-2	0	$\frac{1}{2}$	$\frac{1}{3}$
шc	$(1,1)_1$	0	0	5	0	0	$-\frac{4}{3}$
Ξc	$(1,1)_{-1}$	0	0	-5	0	0	$\frac{4}{3}$
(a,\overline{b})	$(3,2)_{\frac{1}{6}}$	2	-3	0	0	$-\frac{1}{2}$	0
(\overline{a}, b)	$(\overline{3},2)_{-\frac{1}{6}}$	-2	3	0	0	$\frac{1}{2}$	0
(a,b)	$(3,2)_{\frac{1}{6}}$	2	3	0	0	$-\frac{1}{2}$	0
$(\overline{a},\overline{b})$	$(\overline{3},2)_{-\frac{1}{6}}$	-2	-3	0	0	$\frac{1}{2}$	0
(a,\overline{c})	$(3,1)_{-\frac{1}{3}}$	1	0	-3	$\frac{1}{2}$	0	0
(\overline{a}, c)	$(\overline{3},1)_{\frac{1}{3}}$	-1	0	3	$-\frac{1}{2}$	0	0
(a,c)	$(3,1)_{\frac{2}{3}}$	1	0	3	$-\frac{1}{2}$	0	-1
$(\overline{a},\overline{c})$	$(\overline{3},1)_{-\frac{2}{3}}$	-1	0	-3	$\frac{1}{2}$	0	1

• 105 **3-node quivers** (≤ 5 additions)

Multiplicity	Matter Additions										
4	_{шь} , (1,3) ₀	_{шb} , (1,3)₀	$_{{}_{\sf Bb}}$, $(1,1)_0$	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$(\overline{a},\overline{b}), (\overline{3},2)_{-\frac{1}{6}}$						
4	ш _b , (1,3) ₀	$_{\boxplus_{b}}$, $(1,1)_{0}$									
4	$\overline{\mathbb{T}}_{b}$, $(1,3)_{0}$	∃b, (1,1)0									
4	${}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_$	∃ _b , (1, 1) ₀	$\exists b$, $(1,1)_0$	(b,\overline{c}) , $(1,2)_{-\frac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$						
4	\equiv_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$	$_{egin{smallmatrix} {\mathbb H}_b}$, $(1,1)_0$	(b,\overline{c}) , $(1,2)_{-\frac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$						
4	\square_{b} , $(1,3)_{0}$	$\bar{\exists}_b$, $(1,1)_0$	$\bar{\scriptscriptstyle{B}}_{b}$, $(1,1)_{0}$	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$(\overline{a},\overline{b}), (\overline{3},2)_{-\frac{1}{6}}$						
4	$\bar{\scriptscriptstyle{\mathbb{B}}}_{b}$, $(1,1)_{0}$	$\bar{\scriptscriptstyle{\mathbb{B}}}_{b}$, $(1,1)_{0}$									
4	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$								
4	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$							
4	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	$\exists_a, (\overline{3}, 1)_{\frac{1}{3}}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	$(\overline{a},\overline{c})$, $(\overline{3},1)_{-\frac{2}{3}}$	$\square_{\mathbf{c}}$, $(1,1)_1$						
4	m_{b} , $(1,3)_{0}$	∃ _b , (1,1) ₀	$_{\exists b}$, $(1,1)_0$	$_{igstar{b}}$, $(1,1)_0$	_{⊟b} , (1,1) ₀						
4	\equiv_b , $(1,3)_0$	∃b, (1,1)0	Bb, $(1,1)_0$	_{∃b} , (1,1) ₀	_{∃b} , (1,1) ₀						
4	\overline{m}_b , $(1,3)_0$	$\bar{\underline{a}}_b$, $(1,1)_0$	$\bar{\scriptscriptstyle{B}}_{b}$, $(1,1)_{0}$								
4	\equiv_b , $(1,3)_0$	$_{\mathbb{B}_{b}}$, $(1,1)_{0}$	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$							
4	\equiv_b , $(1,3)_0$	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$						
4	∃ b, (1,1)0										
4	$_{\mathbb{B}}$, $(1,1)_0$	∃ _b , (1, 1) ₀	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$							
4	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$\bar{\scriptscriptstyle{B}}_{\!$	$ar{}_{\!$							
4	\equiv_b , $(1,3)_0$	\overline{m}_{b} , $(1,3)_{0}$	$\bar{\scriptscriptstyle{B}}_{b}$, $(1,1)_{0}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$						
4	∃ _b , (1, 1) ₀	∃ b, (1, 1)0	Bb, $(1,1)_0$	$_{igstar{b}}$, $(1,1)_0$							

Multiplicity	Matter Additions									
4	\equiv_b , $(1,3)_0$	Ξ _b , (1,3) ₀	\equiv_b , $(1,3)_0$	$\bar{\exists}_b$, $(1,1)_0$	$\bar{\exists}_b$, $(1,1)_0$					
4	\blacksquare_b , $(1,3)_0$	Ξ _b , (1,3) ₀	$_{igstar{b}}$, $(1,1)_0$							
1	$_{\exists a}$, $(\overline{3},1)_{rac{1}{3}}$	_{шь} , (1,3) ₀	$_{oxtimes b}$, $(1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$						
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	щ _о , (1,3) ₀	$_{egin{smallmatrix} {}_{eta}{}_{b},\ (1,1)_{0} \end{array}$	(\overline{a}, c) , $(\overline{3}, 1)_{\frac{1}{3}}$						
1	$_{\exists a}$, $(\overline{3},1)_{rac{1}{3}}$	\equiv_b , $(1,3)_0$	$_{oxed{H}b}$, $(1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$						
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	\square_b , $(1,3)_0$	$_{igstar{b}}$, $(1,1)_0$	(\overline{a}, c) , $(\overline{3}, 1)_{\frac{1}{3}}$						
1	$\exists_a, (\overline{3}, 1)_{\frac{1}{3}}$	$_{b}$, $(1,1)_{0}$	$\bar{\scriptscriptstyle{B}}_b$, $(1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$						
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$\bar{\scriptscriptstyle{\mathbb{B}}}_{b}$, $(1,1)_{0}$	$\bar{\scriptscriptstyle{B}}_{b}$, $(1,1)_{0}$	(\overline{a}, c) , $(\overline{3}, 1)_{\frac{1}{3}}$						
1	$\exists_a, (\overline{3}, 1)_{\frac{1}{3}}$	$\bar{\scriptscriptstyle{B}}_{b}$, $(1,1)_{0}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$	(a, \overline{c}) , $(3, 1)_{-\frac{1}{3}}$					
1	$\bar{\exists}_{a}$, $(3,1)_{-\frac{1}{3}}$	$\bar{\scriptscriptstyle{\mathbb{H}}}_{b}$, $(1,1)_{0}$	$(b,\overline{c}), (1,2)_{-\frac{1}{2}}$	(b,c) , $(1,2)_{\frac{1}{2}}$	(\overline{a}, c) , $(\overline{3}, 1)_{\frac{1}{3}}$					
1	$(a, \overline{b}), (3, 2)_{\frac{1}{6}}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	$(\overline{a}, c), (\overline{3}, 1)_{\frac{1}{3}}$	$(\overline{a},\overline{c}), (\overline{3},1)_{-\frac{2}{3}}$	\square_{c} , $(1,1)_1$					
1	$_{\exists a}$, $(\overline{3},1)_{rac{1}{3}}$	\equiv_b , $(1,3)_0$	$ar{}_{b}$, $(1,1)_{0}$	$_{b}$, $(1,1)_{0}$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$					
1	$\bar{\scriptscriptstyle{\mathbb{H}}}_{a}$, $(3,1)_{-rac{1}{3}}$	Ξ _b , (1,3) ₀	$\bar{\scriptscriptstyle{B}}_{b}$, $(1,1)_{0}$	$\bar{\exists}_b$, $(1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{rac{1}{3}}$					
1	\exists_a , $(\overline{3}, 1)_{rac{1}{3}}$	$\exists_a, (\overline{3}, 1)_{\frac{1}{3}}$	$_{igstar{b}}$, $(1,1)_0$	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$					
1	$\bar{\scriptscriptstyle{\mathbb{H}}}_{a}$, $(3,1)_{-rac{1}{3}}$	$\bar{\scriptscriptstyle{B}}_{a}$, $(3,1)_{-rac{1}{3}}$	$_{igstar{b}}$, $(1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{rac{1}{3}}$	(\overline{a},c) , $(\overline{3},1)_{rac{1}{3}}$					
1	$\exists_a, (\overline{3}, 1)_{\frac{1}{3}}$	∃ b, (1,1)0	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$							
1	$\bar{\exists}_{a}$, $(3,1)_{-\frac{1}{3}}$	$_{\exists b}$, $(1,1)_0$	(\overline{a}, c) , $(\overline{3}, 1)_{\frac{1}{3}}$							
1	$\exists a, (\overline{3}, 1)_{\frac{1}{3}}$	\overline{m}_b , $(1,3)_0$	\square_b , $(1,3)_0$	_∃ , (1, 1) ₀	$(a, \overline{c}), (3, 1)_{-\frac{1}{3}}$					
1	$\bar{\exists}_a, (3,1)_{-\frac{1}{3}}$	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$	$(\overline{a}, c), (\overline{3}, 1)_{\frac{1}{3}}$					

M.C., J. Halverson & H. Piragua, to appear II. Implications for MSSM's with additional nodes Up-to two additional U(1)'s or one U(N) Systematic search (implement global consistency conditions)

i) SM singlets by far the most common fields &(light anomalous) U(1)'-monochromatic gamma ray line dark matter scenario à la Dudas, Mambrini, Pokorski, Romagnoni 1205.1520

w/ coupling to SM automatically forbidden by anomalous U(1) dacay to Z γ possible (via Z' - B_Y - B_Y . ``Chern-Simons'' vertex)[.]

ii) E.g., Stringy dynamical SUSY breaking scenario (à la Fayet) Aharony, Kachru, Silverstein'07

Quasi –chiral matter \rightarrow messenger masses instanton suppressed; lifetime of metastable vacuum set by instanton superpotential

$$W \supset \lambda_{(0,0)} M_* S\tilde{S} + \lambda_{(-2,0)} M_* Q\tilde{Q} + \lambda_{(-2,0)} \frac{1}{M_*} S\tilde{S}Q\tilde{Q}$$

M.C., J. Halverson & P. Langacker, to appear

. .

III. Axigluons w/ quiver embedding $[SU(3)_{CL} \times SU(3)_{CR}]$ (playground to explain Tevatron tŦ anomaly)

Accounting for the correct sign of the asymmetry requires a "mirror" generations, e.g.,

$$Q_{1,2} \sim (3,1,2)_{\frac{1}{6}} \qquad Q_3 \sim (1,3,2)_{\frac{1}{6}}$$

Quiver constraint: no tri-fundamental Higgs \rightarrow need effective Yukawas (e.g., A,C) & w/ mirror generations giving some perturbative Yukawas, (e.g., P_u)

$$Y_{QH_uu^c} = \begin{pmatrix} A & A & P_u \\ A & A & P_u \\ P_u & P_u & C \end{pmatrix} \qquad A = rac{M_Q}{\lambda_Q \, v_\phi} \qquad C = rac{M_u}{\lambda_u v_{\overline{\phi}}} \ ilde{QH_uu^c_2}, \lambda_Q \Phi ilde{Q} ilde{Q}^c, ext{ and } M_Q ilde{Q}^c Q_2$$

anomalous U(1)'s and instantons can help with scales of A, C (still major difficulties with Yukawa couplings)

Foresee further progress:

 a) DEVELOPMENT of TECHNIQUES! →generalize constructions to general Calabi Yau spaces (advanced algebraic geometry techniques); Fluxes in F-theory

b) Quantitatively improve realistic model constructions, including further progress on nonperturbative effects

Conclusions/Outlook

``Glimpses'' of particle physics from String Theory Focus on D-branes → Type II (and F-theory)

- a) Progress: development of techniques for constructions sizable number of semi-realistic models
- b) "The devil is in the details!"-typically not fully realistic typically exotic matter → but viewed as a string prediction
- c) Systematic searches within local D-quivers w/SSM (compatible with string constraints)
 - → probe for SM exotics; nature of hidden; SUSY breaking...
 - Hopefully, LHC & Astrophysics experiments → inputs toward realistic particle physics from string theory w/ efforts presented here playing a role