

Big-bang nucleosynthesis with a long-lived CHAMP including ⁴He spallation process

Masato Yamanaka (KEK)

Based on PRD84, 035008 (2011)

Long-lived charged massive particle

Predicted in many models of beyond SM

 Various hunting (collider experiments, neutrino telescope, etc.)

 Cosmological constraints on its property (Big-Bang Nucleosynthesis(BBN), large scale structure, etc.)

One of the interesting objects for particle physics, astrophysics, and nuclear physics

Longevity of charged massive particle

Origin of longevity of charged massive particle (CHAMP)

Suppression of small phase space
 NLSP stau (neutralino LSP scenario)
 NLSP chargino (anomaly-mediated scenario) and so on

Suppression of super-weakly interaction
 NLSP stau (gravitino LSP scenario)
 NLKP KK lepton (graviton LKP scenario in UED) and so on

Longevity of charged massive particle

☑ Suppression of small phase space

NLSP stau (neutralino LSP scenario)

Suppression of super-weakly interaction
 NLSP stau (gravitino LSP scenario)

To clear and simplify discussion, this talk focuses on the NLSP stau as a long-lived CHAMP

Notice!

Results for the NLSP stau are applicable to other CHAMP

Long-lived stau and BBN

Modifications to light elements abundances are induced by Long-lived stau depending on property of the stau

- Destruction of light elements by its decay products
- Catalyzed fusion after forming bound state with nuclei
 etc.

Big-bang nucleosynthesis (BBN) is one of the best stage for studying long-lived stau

Important point and aim of work

Important for understanding stau property and each scenario

- (1) To identify what exotic reactions are induced by each type of long-lived stau
- (2) To understand what light elements are over-produced or over-destructed by each type of reactions

Important point and aim of work

Important for understanding stau property and each scenario

- (1) To identify what exotic reactions are induced by each type of long-lived stau
- (2) To understand what light elements are over-produced or over-destructed by each type of reactions

- ☑ Proposing a new process(⁴He spallation process)
- Constraining the property of long-lived stau including this new process

Catalyzed fusion [M. Pospelov, PRL98]

Bound state formation via EM int. $\tilde{\tau} + {}^{4}\text{He} \rightarrow (\tilde{\tau}^{-4}\text{He})$

Catalyzed fusion $(\tilde{\tau}^{-4}\text{He}) + \text{d} \rightarrow {}^{6}\text{Li} + \tilde{\tau}^{-}$

⁶Li is over-produced via catalyzed fusion

⁴He spallation process

[T. Jittoh, K. Kohri, M. Koike, J. Sato, K. Sugai, K. Yazaki, and MY, PRD84]

Bound state formation via EM int. $\tilde{\tau} + {}^{4}\text{He} \rightarrow (\tilde{\tau} {}^{4}\text{He})$

Spallation process $(\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + t + n$

Reaction rate $\Gamma((\tilde{\tau}^4 \text{He}) \rightarrow \tilde{\chi}_1^0 \nu_\tau \text{tn}) = |\psi|^2 \cdot \sigma v_{\text{tn}}$

⁴He spallation process

Bound state formation via EM int. $\tilde{\tau} + {}^{4}\text{He} \rightarrow (\tilde{\tau} {}^{4}\text{He})$

Spallation process $(\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + t + n$

Reaction rate

Overlap of initial state wave functions

 $\sigma \mathrm{v_{tn}}$

 $\Gamma((\tilde{\tau}^{4}\mathrm{He}) \to \tilde{\chi}_{1}^{0}\nu_{\tau}\mathrm{tn}) = |\psi|^{2}$

Overlap of wave functions

Approximation

Localization of $\tilde{\tau}$ at center position in $(\tilde{\tau}^4 \text{He})$ $[m_{\text{He}} \ll m_{\tilde{\tau}}]$

Overlap = 4 He wave function at the center position

Overlap of wave functions

Approximation

Localization of $\tilde{ au}$ at center position in $(\tilde{ au}^4 {
m He})$ [$m_{
m He} \ll m_{ ilde{ au}}$]

Overlap = 4 He wave function at the center position

Wave function of 4He

$$\psi_{1S}^{(He)}(r;Z) = \frac{(Z\alpha m_{He})^{3/2}}{\sqrt{\pi}} \exp(-Z\alpha m_{He}r)$$

Overlap of wave functions $|\psi|^2 = |\psi_{1S}^{(He)}(0;2)|^2 = \frac{(2\alpha m_{He})^3}{2}$

⁴He spallation process

Bound state formation via EM int. $\tilde{\tau} + {}^{4}\text{He} \rightarrow (\tilde{\tau} {}^{4}\text{He})$

Spallation process $(\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + t + n$

Reaction rate $\Gamma((\tilde{\tau}^4 \text{He}) \to \tilde{\chi}_1^0 \nu_\tau \text{tn}) = |\psi|^2 \cdot \sigma v_{\text{tn}}$

Cross section of elemental reaction

Cross section

Cross section of elemental reaction

$$\begin{aligned} \sigma v_{\rm tn} &= \frac{1}{2E_{\tilde{\tau}}} \int \frac{d^3 p_{\nu}}{(2\pi)^3 2E_{\nu}} \frac{d^3 p_{\tilde{\chi}}}{(2\pi)^3 2E_{\tilde{\chi}}} \frac{d^3 q_{\rm n}}{(2\pi)^3} \frac{d^3 q_{\rm t}}{(2\pi)^3} \\ &\times \left| \mathcal{M} \left((\tilde{\tau}^4 \text{He}) \to \tilde{\chi}_1^0 \nu_{\tau} \text{tn} \right) \right|^2 (2\pi)^4 \delta^{(4)} (p_{\tilde{\tau}} + p_{\rm He} - p_{\nu} - q_{\rm t} - q_{\rm n}) \end{aligned}$$

Amplitude

 $\begin{aligned} \mathcal{M} \big((\tilde{\tau}^4 \text{He}) &\to \tilde{\chi}_1^0 \nu_\tau \text{tn} \big) \\ &= \langle \operatorname{tn} \tilde{\chi}_1^0 \nu_\tau | \mathcal{L}_{\text{int}} |^4 \text{He} \tilde{\tau} \rangle \\ &= \langle \operatorname{tn} | J^\mu |^4 \text{He} \rangle \ \langle \tilde{\chi}_1^0 \nu_\tau | j_\mu | \tilde{\tau} \rangle \end{aligned}$

Leptonic part; calculated straightforwardly

Hadronic matrix element

Building up wave functions of 4 He, t, d, and n

spatial part

(symmetric)

Requirement: anti-symmetric under the exchange of two nucleons

spin, isospin part
$$|^{4}\text{He}\rangle = \frac{1}{2\sqrt{6}} [|\text{pnpn}\rangle(|\uparrow\uparrow\downarrow\downarrow\rangle + |\downarrow\downarrow\uparrow\uparrow\rangle - |\uparrow\downarrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\downarrow\downarrow\rangle)]$$

(anti-symmetric) $+ \dots + |\text{nnpp}\rangle(-|\uparrow\downarrow\uparrow\downarrow\rangle + |\uparrow\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\downarrow\downarrow\rangle)]$

$$egin{aligned} \psi_{ ext{He}}(m{r}_1,m{r}_2,m{r}_3,m{r}_4) &= \left(2rac{a_{ ext{He}}^3}{\pi^3}
ight)^{3/4} \ & imes \expigg\{-a_{ ext{He}}igg[m{r}_1^2+m{r}_2^2+m{r}_3^2+m{r}_4^2-rac{1}{4}(m{r}_1+m{r}_2+m{r}_3+m{r}_4)^2igg]igg\} \end{aligned}$$

011

9

$$a_{\rm He} = \frac{9}{16} \frac{1}{(R_{\rm m})_{\rm He}^2}, \ a_{\rm t} = \frac{1}{2} \frac{1}{(R_{\rm m})_{\rm t}^2} \quad (R_{\rm m} : {\rm matter \ radius})$$

Hadronic matrix element

Explicit form of the hadronic current

In non-relativistic limit

$$J_{\mu} = V_{\mu} + g_A A_{\mu} \to (V_0, \ g_A A_i)$$

 V^0 : Time component in vector current A^i : Spatial components in axial vector current g_A : axial vector coupling

Taking operators as a sum of $V^0 = \sum_{a=1}^4 \tau_a^- e^{i \boldsymbol{q} \cdot \boldsymbol{r}_a}$, $A^i = \sum_{a=1}^4 \tau_a^- \sigma_a^i e^{i \boldsymbol{q} \cdot \boldsymbol{r}_a}$

 $\left(\begin{array}{c} \tau_a^{-} \\ \vdots \\ \sigma_a^i \\ \vdots \\ \text{spin operator of a-th nucleon} \end{array}\right)$

Calculated result of cross section

Cross section of elemental reaction

$$\sigma v_{\rm tn} = \frac{8}{\pi^2} \left(\frac{32}{3\pi}\right)^{3/2} g^2 \tan^2 \theta_W \sin^2 \theta_\tau (1+3g_A^2) G_F^2$$
$$\times \Delta_{\rm tn}^4 \frac{m_{\rm t} m_{\rm n}}{m_{\tilde{\tau}} m_{\tau}^2} \frac{a_{\rm He}^{3/2} a_{\rm t}^3}{(a_{\rm He}+a_{\rm t})^5} I_{\rm tn}$$

$$\begin{split} \Delta_{\rm tn} &\equiv m_{\tilde{\tau}} - m_{\tilde{\chi}} + \Delta_{\rm He} - \Delta_{\rm t} - \Delta_{\rm n} - E_{\rm b} \\ \Delta_{\rm He} &= m_{\rm He} - 4A, \\ \Delta_{\rm t} &= m_{\rm t} - 3A, \\ \Delta_{\rm n} &= m_{\rm n} - A \\ A : \text{Unified atomic mass unit} \end{split}$$

- ☑ Catalyzed fusion
- ☑ Spallation process
- ☑ Standard particle decay

⁶Li over-production

d and t over-production

Free from BBN constraint

Important

Which is dominant process?

- ☑ Catalyzed fusion
- Spallation process
- ☑ Standard particle decay

⁶Li over-production

d and t over-production

Free from BBN constraint

- ☑ Catalyzed fusion
- Spallation process
- ☑ Standard particle decay

⁶Li over-production

d and t over-production

Free from BBN constraint

⁴He spallation processes

Why are spallation processes dominant?

- Large overlap of initial state wave functions
- Without external deuteron

- ☑ It is important for understanding the property of long-lived charged massive particle
 - → To identify what exotic reactions are induced
 - → To understand what nuclei are over-produced(-destructed)
- ☑ This work proposed new exotic reaction: ⁴He spallation process

Most stringent bound on Long-lived CHAMP comes from ⁴He spallation process, if the longevity is guaranteed by phase space suppression.

Red band: consistent with DM abundance

Green band: consistent with DM abundance

Consistent with relic abundance of neutralino dark matter

0

Reducing⁷Li and ⁷Be abundances

Solving the problem

Formation rate of bound state

Internal conversion

[T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura and MY, PRD76 (2007)] [C. Bird, K. Koopmans and M. Pospelov, PRD78 (2008)]

Bound state formation $\tilde{\tau}^- + {}^{7}\text{Li}({}^{7}\text{Be}) \rightarrow (\tilde{\tau}^{-7}\text{Li}({}^{7}\text{Be}))$ Internal conversion $(\tilde{\tau}^{-7}\text{Li}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + {}^{7}\text{He}$ $(\tilde{\tau}^{-7}\text{Be}) \rightarrow \tilde{\chi}_{1}^{0} + \nu_{\tau} + {}^{7}\text{Li}$

 Timescale of internal conversion
 <<1</td>
 Overlap of initial state

 Timescale of BBN era (~1sec)
 <<1</td>
 Overlap of initial state

 (c.f. electron capture)

[C. Bird, K. Koopmans and M. Pospelov, PRD78 (2008)]

How to constrain the property of long-lived stau

Requirement in light of BBN

- Evading overproduction of d and t (⁴He spallation process)
- Evading overproduction of ⁶Li (catalyzed fusion)
- Solving the⁷Li problem (internal conversion)

Theoretical prediction $(4.15^{+0.49}_{-0.45}) \times 10^{-10}$ Discrepancy between them 7 Li problem

Observation $(1.26^{+0.29}_{-0.24}) \times 10^{-10}$

How to constrain the property of long-lived stau

Requirement in light of BBN

- Evading overproduction of d and t (⁴He spallation process)
- Evading overproduction of ⁶Li (catalyzed fusion)
- Solving the⁷Li problem (internal conversion)

Requirement in light of dark matter

Reproducing observed relic abundance of neutralino

Favored parameter space in MSSM

Favored parameter space in MSSM

Prediction to observable from the physics of BBN and dark matter

Complementary information for the test of MSSM in terrestrial experiments

Region in solid line: Consistent with observed dark matter abundance

Red cross points: Consistent with observed light elements abundance

Candidate of long-lived CHAMP: NLSP stau in SUSY models NLSP: Next Lightest SUSY particle

Scenarios predicting long-lived stau

neutralino LSP scenario (phase space suppression)

[S. Profumo, K. Sigurdson, P. Ullio and M. Kamionkowski, PRD71 (2005)] [T. Jittoh, J. Sato, T. Shimomura and MY, PRD73 (2006)]

Gravitino LSP scenario (Planck suppressed coupling) [W. Buchmuller, K. Hamaguchi, M. Ratz and T. Yanagida, PLB588 (2004)] [J. L. Feng, S. Su and F. Takayama, PRD70 (2004)]

axino LSP scenario (loop suppression)

[A. Freitas, F. D. Steffen, N. Tajuddin and D. Wyler, arXiv:1105.1113]

Catalyzed fusion [M. Pospelov, PRL98]

Bound state formation via EM int. $\tilde{\tau} + {}^{4}\text{He} \rightarrow (\tilde{\tau}^{-4}\text{He})$

Catalyzed fusion $(\tilde{\tau}^{-4}\text{He}) + d \rightarrow {}^{6}\text{Li} + \tilde{\tau}^{-}$

Standard BBN reaction

 $\frac{\langle \sigma v \rangle_{\text{catalyzed}}}{\langle \sigma v \rangle_{\text{standard}}} \simeq 10^7 \quad \left(\begin{array}{c} \cdot \cdot \end{array} \right)$

Standard: forbidden E1 transition Catalyzed: α transfer reaction