Renormalización del Líquido de Fermi NoConmutativo

Sendic Estrada Jiménez

Universidad Autónoma de Chiapas sestrada@unach.mx

ICN-UNAM

Organización

- Motivación
- 2 El problema de Landau y la NC
- 3 Liquido normal de Fermi
- 4 Análisis del Grupo de Renormalización del Líquido de Fermi
- 6 Conclusiones

¿Es el FL una teoría emergente?

- Existe interés desde la teoría de cuerdas hacia el estudio de líquidos de Fermi.
- Teoría M, no crítica en 2+1 dimensiones. JHEP 07, 059 (2007)
- En sentido inverso se describen ciertas transiciones de fase para densidades finitas del líquido de Fermi mediante la correspondecnia ADS/CFT. Science V325, 439, (2009).
- Se puede encontrar de manera implícita por ejemplo en Superconductividad con alta T_c y FQHE. Proc. Natl. Acad. Sci. USA, 106, 9131 (2009).

Modelos NC en materia condensada

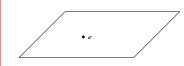
- En materia condensada ha habido mucho trabajo en ver las modificaciones debidas a la noconmutatividad principalmente en el FQHE.
- Se ha usado el RG para estudiar modificaciones al exponente crítico en la teoría noconmutativa de Landau-Ginzburg para fluidos de Bose.
- El RG permite recuperar la teoría normal del Líquido de Fermi de Landau

El problema de Landau

$$\mathcal{L} = \frac{m}{2}\dot{\mathbf{x}}^2 + \frac{e}{c}\dot{\mathbf{x}}\cdot\mathbf{A}(\mathbf{x}) - V(\mathbf{x})$$

con

$$\mathbf{A}(\mathbf{x}) = \frac{B}{2} \epsilon^{ij} x_j$$



Cuantizando

$$[x_i,x_j]=0,$$

$$[p_i,p_j]=0$$

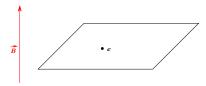
$$[p_i, p_j] = 0,$$
 $[x_j, p_j] = i\hbar \delta_{ij}$

21 de Septiembre de 2011

El problema de Landau

Proyectando al LLL

$$\mathcal{L} = rac{eB}{2c} \epsilon^{ij} \dot{x}_i x_j - V(\mathbf{x})$$



Cuantizando

$$[x_i, x_j] = -i\epsilon^{ij} \frac{\hbar c}{eB}$$

$$\Theta_B = \frac{\hbar c}{eB}$$

21 de Septiembre de 2011

En teoría de cuerdas

En una D-brana con un campo de Neveu-Schwarz

$$S_{\Sigma} = \frac{1}{4\pi I_s^2} \int_{\Sigma} d^2\xi \Big(g_{\mu\nu} \partial^a X^{\mu} \partial_a X^{\nu} - 2i\pi I_s^2 B_{\mu\nu} \epsilon^{ab} \partial_a X^{\mu} \partial_b X^{\nu} \Big),$$

si $B_{\mu\nu}$ es constante, se integra el segundo término

$$S_{\partial\Sigma} = -rac{i}{2}\oint_{\partial\Sigma}dt B_{\mu
u}X^{\mu}(t)\dot{X}^{
u}(t),$$

t es la frontera de la hoja de mundo de la cuerda sobre la D-brana Es la misma forma del problema de Landau

Producto estrella

NoConmutatividad

- ullet $\mathbb{R}^d_\star imes \mathbb{R}$: donde d son las coordenadas espaciales noconmutativas que satisfaces
- $[\widehat{x}^i, \widehat{x}^j] = i\Theta^{ij}$, donde Θ^{ij} es antisimétrica y real.
- El tiempo t es considerado una variable conmutativa por lo cual $\Theta^{0i} = 0$.
- La teoría de campo en el espacio noconmutativo se manifiesta deformando el álgebra en el espacio de funciones
- \mathbb{R}^d_\star puede ser observado como \mathbb{R}^d con la introducción de producto estrella de Moyal que se define como:

$$(\phi_1 \star \phi_2)(x) = \exp\left(\frac{i}{2}\Theta^{\mu\nu}\partial^y_\mu\partial^z_\nu\right)\phi_1(y)\phi_2(z)|_{y=z=x}.$$

• La parte cuadrtica de la acción en la teoría de campo es la misma que en el caso conmutativo (mas una divergencia total)

21 de Septiembre de 2011

Teoría de Landau del LF

Partícula

$$\mathbf{p}$$
, σ

$$\frac{p^2}{2m}$$

Cuasipartícula

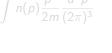
$$n(\mathbf{p})$$

$$\epsilon(p)$$

$$\mu(T=0)=\epsilon_F$$

$$E = \int n(p) \frac{p^2}{2m} \frac{d^3p}{(2\pi)^3}$$

$$\tau \alpha \frac{1}{(k-k_F)^2}$$



Teoría de Landau del LF

Partícula

$$\mathbf{p}, \quad \sigma$$
 $n(\mathbf{p})$

$$\frac{p^2}{2m}$$

Cuasipartícula

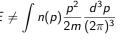
$$n(\mathbf{p})$$

$$\epsilon(p)$$

$$\mu(T=0)=\epsilon_F$$

$$E = \int n(p) \frac{p^2}{2m} \frac{d^3p}{(2\pi)^3} \qquad E \neq \int n(p) \frac{p^2}{2m} \frac{d^3p}{(2\pi)^3}$$

$$\tau \alpha \frac{1}{(k-k_F)^2}$$



Teoría de Landau del LF

Partícula

$$p, \quad \sigma$$

$$n(\mathbf{p})$$

$$\frac{p^2}{2m}$$

Cuasipartícula

$$n(\mathbf{p})$$

$$\epsilon(p)$$

$$\mu(T=0)=\epsilon_F$$

$$E = \int n(p) \frac{p^2}{2m} \frac{d^3p}{(2\pi)^3} \qquad E \neq \int n(p) \frac{p^2}{2m} \frac{d^3p}{(2\pi)^3}$$

$$E \neq \int n(p) \frac{p^2}{2m} \frac{d^3p}{(2\pi)^3}$$

$$\tau\alpha\frac{1}{(k-k_F)^2}$$

Si n(p) es cercano a $n_0(p)$

$$E = E_0 + \int \epsilon(p) \delta n(p) \frac{d^3p}{(2\pi^3)}$$

Si cambia E y el número de partículas, cambia $\epsilon(p)$

$$E - E_0 = \int_{p} (\epsilon(p) - \mu) \delta n(p) + \frac{1}{2} \int_{p} f(p, p') \delta n(p) \delta n(p')$$

- f(p, p') corresponde al término de interacción (fenomenológico)
- Γ⁽⁴⁾ en la teoría microscópica.

Si n(p) es cercano a $n_0(p)$

$$E = E_0 + \int \epsilon(p) \delta n(p) \frac{d^3p}{(2\pi^3)}$$

Si cambia E y el número de partículas, cambia $\epsilon(p)$

$$E - E_0 = \int_{p} (\epsilon(p) - \mu) \delta n(p) + \frac{1}{2} \int_{p} f(p, p') \delta n(p) \delta n(p')$$

- f(p, p') corresponde al término de interacción (fenomenológico)
- Γ⁽⁴⁾ en la teoría microscópica.

$$Z = \int [d\phi] e^{-S[\phi]}$$

$$\phi_{<} = \phi(p) \quad \text{para} \quad 0 < p < \Lambda/s,$$

$$\phi_{>} = \phi(p) \quad \text{para} \quad \Lambda/s \le p \le \Lambda.$$

$$S[\phi_{<}, \phi_{>}] = S_{0}(\phi_{<}) + S_{0}(\phi_{>}) + S_{I}(\phi_{<}, \phi_{>}).$$

$$Z = \int [d\phi_{<}] e^{-S'(\phi_{<})}, \qquad e^{S'(\phi_{<})} = e^{S_{0}(\phi_{<})} \left\langle e^{S_{I}(\phi_{<}, \phi_{>})} \right\rangle_{0}$$

$$\left\langle e^{\Omega} \right\rangle = e^{\langle \Omega \rangle + \frac{1}{2} [\langle \Omega^{2} \rangle - \langle \Omega \rangle^{2}] + \cdots].$$

$$Z = \int [d\phi]e^{-S[\phi]}$$
 $\phi_{<} = \phi(p)$ para $0 ,
 $\phi_{>} = \phi(p)$ para $\Lambda/s \le p \le \Lambda$.

 $S[\phi_{<}, \phi_{>}] = S_{0}(\phi_{<}) + S_{0}(\phi_{>}) + S_{1}(\phi_{<}, \phi_{>})$.

 $Z = \int [d\phi_{<}]e^{-S'(\phi_{<})}, \qquad e^{S'(\phi_{<})} = e^{S_{0}(\phi_{<})} \left\langle e^{S_{1}(\phi_{<}, \phi_{>})} \right\rangle_{0}$
 $\left\langle e^{\Omega} \right\rangle = e^{\langle \Omega \rangle + \frac{1}{2}[\langle \Omega^{2} \rangle - \langle \Omega \rangle^{2})] + \cdots]$.$

$$Z = \int [d\phi] e^{-S[\phi]}$$

$$\phi_{<} = \phi(p) \quad \text{para} \quad 0 < p < \Lambda/s,$$

$$\phi_{>} = \phi(p) \quad \text{para} \quad \Lambda/s \le p \le \Lambda.$$

$$S[\phi_{<}, \phi_{>}] = S_{0}(\phi_{<}) + S_{0}(\phi_{>}) + S_{I}(\phi_{<}, \phi_{>}).$$

$$Z = \int [d\phi_{<}] e^{-S'(\phi_{<})}, \qquad e^{S'(\phi_{<})} = e^{S_{0}(\phi_{<})} \left\langle e^{S_{I}(\phi_{<}, \phi_{>})} \right\rangle_{0>}$$

$$\left\langle e^{\Omega} \right\rangle = e^{\langle \Omega \rangle + \frac{1}{2} [\langle \Omega^{2} \rangle - \langle \Omega \rangle^{2})] + \cdots}.$$

21 de Septiembre de 2011

$$\begin{split} Z &= \int [d\phi] e^{-S[\phi]} \\ \phi_< &= \phi(p) \quad \mathrm{para} \quad 0 < p < \Lambda/s, \\ \phi_> &= \phi(p) \quad \mathrm{para} \quad \Lambda/s \leq p \leq \Lambda. \\ \\ S[\phi_<, \phi_>] &= S_0(\phi_<) + S_0(\phi_>) + S_I(\phi_<, \phi_>). \\ \\ Z &= \int [d\phi_<] e^{-S'(\phi_<)}, \qquad e^{S'(\phi_<)} &= e^{S_0(\phi_<)} \left\langle e^{S_I(\phi_<, \phi_>)} \right\rangle_{0>} \\ \left\langle e^{\Omega} \right\rangle &= e^{\langle \Omega \rangle + \frac{1}{2} [\langle \Omega^2 \rangle - \langle \Omega \rangle^2)] + \cdots}]. \end{split}$$

$$Z[\eta,\eta^{\dagger}] = \int [d\psi][d\psi^{\dagger}] \expigg(-S_0-S_I+\int \psi^{\dagger}\eta + \int \eta^{\dagger}\psiigg),$$

donde η y η^{\dagger} son fuentes, ψ y ψ^{\dagger} son los campos fermiónicos los cuales se consideran variables de Grassmann. S_0 es la acción libre y S_I es el término de interacción.

$$S_0 = \int_{-\infty}^{\infty} d\omega \int_{-\Lambda}^{\Lambda} d^d P \bigg(\psi_{\sigma}^{\dagger}(\mathbf{P}) i\omega \psi_{\sigma}(\mathbf{P}) - (\mathcal{E}(\mathbf{P}) - \mathcal{E}_F) \psi_{\sigma}^{\dagger}(\mathbf{P}) \psi_{\sigma}(\mathbf{P}) \bigg),$$

Propagador para el Gas de Fermi

$$G(\mathbf{x}, \mathbf{y}) = \int \frac{d^{d+1}P}{(2\pi)^{d+1}} \frac{\exp\left\{i\left[\mathbf{P}\cdot(\mathbf{x} - \mathbf{y}) + i\omega(\tau_{x} - \tau_{y})\right]\right\}}{i\omega - \left(\frac{\mathbf{p}^{2}}{2m} - \mu\right)}.$$

Nuestro propagador

$$G(\mathbf{x}, \mathbf{y}) = \int \frac{d^{d+1}P}{(2\pi)^{d+1}} \frac{\exp\left\{i\left[\mathbf{P}\cdot(\mathbf{x} - \mathbf{y}) + i\omega(\tau_{x} - \tau_{y})\right]\right\}}{i\omega - (\mathcal{E}(\mathbf{P}) - \mathcal{E}_{F})}$$

21 de Septiembre de 2011

El estado base del sistema está determinado por la superficie de Fermi, así que cuando la energía va a cero, el momento tiende hace la superficie de Fermi. Descomponemos el vector como

$$P = k + p$$

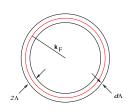
donde ${\bf k}$ est sobre la superficie de Fermi y ${\bf p}$ es normal a ella. Cerca de la superficie de Fermi

$$\mathcal{E}(\mathbf{P}) - \mathcal{E}_F = \mathbf{p} \cdot \mathbf{v}_F(\mathbf{k}) + O(\mathbf{p}^2)$$

Escalando $\mathbf{k} \to \mathbf{k}$, $\mathbf{p} \to s\mathbf{p}$ y $\omega \to s\omega$. temenos que

$$\psi'(\omega, \mathbf{k}', \mathbf{p}') = s^{-3/2}\psi(\omega, \mathbf{k}, \mathbf{p})$$

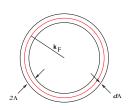
- Integramos los momentos en el intervalo $[\Lambda/s, \Lambda]$
- Escalamos los momentos ${f P} o s {f P}$ recuperando el corte original Λ
- Se introducen los campos escalados $\phi'(\mathbf{P}') = \zeta^{-1}\phi_{<}(\mathbf{P}'/s)$ y se reescribe la acción en términos de estos nuevos campos



$$S_0 = \int \frac{d\omega}{2\pi} \int \frac{d\phi}{2\pi} \int \frac{dp}{2\pi} \psi_{\sigma}^{\dagger}(\omega, \phi, p) (i\omega - pv_F) \psi_{\sigma}(\omega, \phi, p)$$

- La acción libre es un punto fijo
- Realizamos una perturbación alrededor de él.

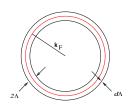
- Integramos los momentos en el intervalo $[\Lambda/s, \Lambda]$
- Se introducen los campos escalados $\phi'(\mathbf{P}') = \zeta^{-1}\phi_{<}(\mathbf{P}'/s)$ y se reescribe la acción en términos de estos nuevos campos



$$S_0 = \int \frac{d\omega}{2\pi} \int \frac{d\phi}{2\pi} \int \frac{dp}{2\pi} \psi_{\sigma}^{\dagger}(\omega, \phi, p) (i\omega - pv_F) \psi_{\sigma}(\omega, \phi, p)$$

- La acción libre es un punto fijo
- Realizamos una perturbación alrededor de él.

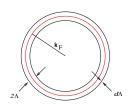
- Integramos los momentos en el intervalo $[\Lambda/s, \Lambda]$
- Se introducen los campos escalados $\phi'(\mathbf{P}') = \zeta^{-1}\phi_{<}(\mathbf{P}'/s)$ y se reescribe la acción en términos de estos nuevos campos



$$S_0 = \int rac{d\omega}{2\pi} \int rac{d\phi}{2\pi} \int rac{dp}{2\pi} \psi^\dagger_\sigma(\omega,\phi,p) (i\omega - pv_F) \psi_\sigma(\omega,\phi,p),$$

- La acción libre es un punto fijo
- Realizamos una perturbación alrededor de él.

- Integramos los momentos en el intervalo $[\Lambda/s, \Lambda]$
- Escalamos los momentos ${f P} o s {f P}$ recuperando el corte original Λ
- Se introducen los campos escalados $\phi'(\mathbf{P}') = \zeta^{-1}\phi_{<}(\mathbf{P}'/s)$ y se reescribe la acción en términos de estos nuevos campos



$$S_0 = \int rac{d\omega}{2\pi} \int rac{d\phi}{2\pi} \int rac{dp}{2\pi} \psi^\dagger_\sigma(\omega,\phi,p) (i\omega - p v_F) \psi_\sigma(\omega,\phi,p),$$

- La acción libre es un punto fijo
- Realizamos una perturbación alrededor de él.

Término de Interacción

$$S_{I} = \int d\tau \, d^{2}x \, d^{2}y \, \psi^{\dagger}(\mathbf{x}) \star \psi(\mathbf{x}) \star V(\mathbf{x} - \mathbf{y}) \star \psi^{\dagger}(\mathbf{y}) \star \psi(\mathbf{y})$$

en el espacio de momentos

$$S_I = \int_{\mathbf{P}} \psi^{\dagger}(\mathbf{P}_4) \psi(\mathbf{P}_3) \psi^{\dagger}(\mathbf{P}_2) \psi(\mathbf{P}_1) V(\mathbf{P}_4, \mathbf{P}_3, \mathbf{P}_2, \mathbf{P}_1) e^{-\frac{i}{2}(\mathbf{P}_1 \wedge \mathbf{P}_2 + \mathbf{P}_3 \wedge \mathbf{P}_4)},$$

donde $\mathbf{p} \wedge \mathbf{q} \equiv \Theta^{\mu\nu} p_{\mu} q_{\nu}$

Se debe imponer para el caso conmutativo que $V(\mathbf{P}_4, \mathbf{P}_3, \mathbf{P}_2, \mathbf{P}_1) = V(\mathbf{P}_3, \mathbf{P}_4, \mathbf{P}_1, \mathbf{P}_2) = -V(\mathbf{P}_3, \mathbf{P}_4, \mathbf{P}_2, \mathbf{P}_1) = -V(\mathbf{P}_4, \mathbf{P}_3, \mathbf{P}_1, \mathbf{P}_2)$. Esta simetría implica sin embargo que

$$S_I = \int_{\mathbf{P}} \psi^{\dagger}(\mathbf{P}_4) \psi^{\dagger}(\mathbf{P}_3) \psi(\mathbf{P}_2) \psi(\mathbf{P}_1) U_{\Theta}(\mathbf{P}_4, \mathbf{P}_3, \mathbf{P}_2, \mathbf{P}_1),$$

Término de Interacción

donde

$$U_{\Theta}(\mathbf{P}_{4}, \mathbf{P}_{3}, \mathbf{P}_{2}, \mathbf{P}_{1}) = \frac{1}{2}V(\mathbf{P}_{4}, \mathbf{P}_{3}, \mathbf{P}_{2}, \mathbf{P}_{1}) \left[e^{-\frac{i}{2}(\mathbf{P}_{1} \wedge \mathbf{P}_{4} + \mathbf{P}_{2} \wedge \mathbf{P}_{3})} + e^{-\frac{i}{2}(\mathbf{P}_{1} \wedge \mathbf{P}_{3} + \mathbf{P}_{2} \wedge \mathbf{P}_{4})} \right]$$

Por ejemplo para $V(\mathbf{x} - \mathbf{y}) = g\delta(\mathbf{x} - \mathbf{y})$

$$S_{I} = \frac{1}{2}g \int_{\mathbf{P}} \psi^{\dagger}(\mathbf{P}_{4})\psi^{\dagger}(\mathbf{P}_{3})\psi(\mathbf{P}_{2})\psi(\mathbf{P}_{1})$$
$$\left[e^{-\frac{i}{2}(\mathbf{P}_{1}\wedge\mathbf{P}_{4}+\mathbf{P}_{2}\wedge\mathbf{P}_{3})}-e^{-\frac{i}{2}(\mathbf{P}_{1}\wedge\mathbf{P}_{3}+\mathbf{P}_{2}\wedge\mathbf{P}_{4})}\right],$$

El cual se hace cero cuando $\Theta \rightarrow 0$, En concordacia para fermiones sin espín.

¿Qué pasa con la medida?

$$\int_{\mathbf{P}} = \left[\prod_{i=1}^{3} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \int_{-\Lambda}^{\Lambda} \frac{dp}{2\pi} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \right] \theta(\Lambda - |p_{4}|),$$

donde $p_4 = |\mathbf{P}_4| - P_F$ Recordemos que \mathbf{P} está restringido a un anillo de espesor 2Λ .

donde

$$p_4 = |(P_F + p_1)\Omega_1 + (P_F + p_2)\Omega_2 - (P_F + p_3)\Omega_3| - P_F,$$

y Ω_i es el vector unitario en ladirección de \mathbf{P}_i , i.e., $\Omega_i = \mathbf{i}\cos\phi_i + \mathbf{j}\sin\phi_i$. ϕ_i es el ángulo azimutal del momento \mathbf{P}_i .

Renormalización a nivel árbol

Al hacer el reescalamiento

$$\theta(\Lambda - |p_4|(p_1, p_2, p_3, P_F)) \rightarrow \theta(\Lambda - |p_4'|(p_1', p_2', p_3', sP_F)).$$

introduciendo un corte suave de la forma

$$\theta(\Lambda - |p_4|) \rightarrow e^{-p_4/\Lambda}$$

obtenemos como condición

$$U_{\Theta}'(\mathbf{p}',\omega',\phi)=e^{-[(s-1)P_{F}/\Lambda]||\mathbf{\Delta}|-1|}U_{\Theta}(\frac{\mathbf{p}'}{s},\frac{\omega'}{s},\phi).$$

la cual da contribuciones sin disminuir después de las transformaciones del RG, es

$$|\mathbf{\Delta}| = |\mathbf{\Omega}_1 + \mathbf{\Omega}_2 - \mathbf{\Omega}_3| = 1$$

Términos sobrevivientes

Entonces los casos que tienen contribución no trivial son

Case I:
$$\Omega_4 = \Omega_1$$
, (hence $\Omega_2 = \Omega_3$)

Case II:
$$\Omega_4 = \Omega_2$$
, (hence $\Omega_1 = \Omega_3$)

Case III:
$$\Omega_1 = -\Omega_2$$
, (hence $\Omega_3 = -\Omega_4$).

teniendo que:

$$V'(\mathbf{p}',\omega',\phi) = V(\frac{\mathbf{p}'}{s},\frac{\omega'}{s},\phi).$$

21 de Septiembre de 2011

Función de Interacción

A nivel árbol el punto fijo es caracterizado por tres funciones independientes

$$U_{\Theta}[\phi_4 = \phi_1; \phi_3 = \phi_2; \phi_2; \phi_1] = F_{\Theta}(\phi_1; \phi_2),$$

$$U_{\Theta}[\phi_4 = \phi_2; \phi_3 = \phi_1; \phi_2; \phi_1] = F'_{\Theta}(\phi_1; \phi_2),$$

$$U_{\Theta}[\phi_4 = \phi_3 + \pi; \phi_2 = \phi_1 + \pi] = V_{\Theta}(\phi_1; \phi_3).$$

donde $\mathbf{p} \wedge \mathbf{q} = \Theta(p_x q_y - p_y q_x)$ en coordenadas polares

$$\mathbf{p} \wedge \mathbf{q} = \Theta pq \left[\cos(\phi_p) \sin(\phi_q) - \cos(\phi_q) \sin(\phi_p) \right] = \Theta pq \sin(\phi_q - \phi_p).$$

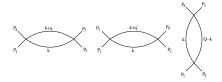
21 / 35

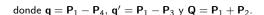
Función de Interacción

$$\begin{split} F_{\Theta}(\phi_1;\phi_2) &= V(\phi_4 = \phi_1;\phi_3 = \phi_2;\phi_2;\phi_1) \frac{1}{2} \left[1 + e^{-\frac{i\Theta}{2} [(P_2 P_4 - P_1 P_3) \sin(\phi_1 - \phi_2)]} \right], \\ F_{\Theta}'(\phi_1;\phi_2) &= V(\phi_4 = \phi_2;\phi_3 = \phi_1;\phi_2;\phi_1) \frac{1}{2} \left[1 + e^{-\frac{i\Theta}{2} [(P_1 P_4 - P_2 P_3) \sin(\phi_2 - \phi_1)]} \right], \\ V_{\Theta}(\phi_1;\phi_3) &= V(\phi_4 = \phi_3 + \pi;\phi_2 = \phi_1 + \pi) \\ &\qquad \times \frac{1}{2} \left[e^{-\frac{i\Theta}{2} [(P_2 P_3 + P_1 P_4) \sin(\phi_1 - \phi_3)]} + e^{-\frac{i\Theta}{2} [(P_2 P_4 + P_1 P_3) \sin(\phi_3 - \phi_1)]} \right]. \end{split}$$

Renormalización de la interacción a un lazo

$$\begin{split} d\,U_\Theta &= \int_\infty^\infty \int_{d\Lambda} \frac{d\omega dK}{4\pi^2} \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{U_\Theta(\mathbf{P_4},\mathbf{K}+\mathbf{q},\mathbf{K},\mathbf{P_1})U_\Theta(\mathbf{K},\mathbf{P_3},\mathbf{P_2},\mathbf{K}+\mathbf{q})}{[i\omega-E(\mathbf{K})][i\omega-E(\mathbf{K}+\mathbf{q})]} \\ &- \int_\infty^\infty \int_{d\Lambda} \frac{d\omega dK}{4\pi^2} \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{U_\Theta(\mathbf{P_3},\mathbf{K}+\mathbf{q'},\mathbf{K},\mathbf{P_1})U_\Theta(\mathbf{K},\mathbf{P_4},\mathbf{P_2},\mathbf{K}+\mathbf{q'})}{[i\omega-E(\mathbf{K})][i\omega-E(\mathbf{K}+\mathbf{q'})]} \\ &- \frac{1}{2} \int_\infty^\infty \int_{d\Lambda} \frac{d\omega dK}{4\pi^2} \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{U_\Theta(\mathbf{Q}-\mathbf{K},\mathbf{K},\mathbf{P_2},\mathbf{P_1})U_\Theta(\mathbf{P_4},\mathbf{P_3},\mathbf{Q}-\mathbf{K},\mathbf{K})}{[i\omega-E(\mathbf{K})][-i\omega-E(\mathbf{Q}-\mathbf{K})]}, \end{split}$$





Las fases

Los términos de fase se reducen para cada inetgral a:

$$\begin{split} &\frac{1}{2}\left\{\cos\left[\frac{\textbf{P}_1\wedge\textbf{P}_4+\textbf{P}_2\wedge\textbf{P}_3}{2}\right]+\cos\left[\frac{\textbf{P}_1\wedge\textbf{P}_4-\textbf{P}_2\wedge\textbf{P}_3+2\textbf{K}\wedge(\textbf{P}_1-\textbf{P}_4)}{2}\right]\right\}.\\ &\frac{1}{2}\left\{\cos\left[\frac{\textbf{P}_1\wedge\textbf{P}_3+\textbf{P}_2\wedge\textbf{P}_4}{2}\right]+\cos\left[\frac{\textbf{P}_1\wedge\textbf{P}_3-\textbf{P}_2\wedge\textbf{P}_4+2\textbf{K}\wedge(\textbf{P}_4-\textbf{P}_2)}{2}\right]\right\}.\\ &\frac{1}{2}\left\{\cos[\textbf{K}\wedge(\textbf{P}_4-\textbf{P}_1)+\frac{1}{2}\textbf{Q}\wedge(\textbf{P}_1-\textbf{P}_4)]+\cos[\textbf{K}\wedge(\textbf{P}_4-\textbf{P}_2)+\frac{1}{2}\textbf{Q}\wedge(\textbf{P}_2-\textbf{P}_4)]\right\}. \end{split}$$

E imponemos las condiciones sobrevientes a la renormalización a nivel árbol. Teniendo así tres casos a analizar, con tres diagramas cada uno.

Caso I

Diagrama ZS:

Con la condición I, el primer factor de fase se reduce a

$$\cos\left[\frac{(P_1P_4-P_2P_3)\Theta\sin(\phi_2-\phi_1)}{2}\right]$$

$$+\cos\left[\frac{(P_1P_4+P_2P_3)\Theta\sin(\phi_2-\phi_1)}{2}+\Theta Kq\sin(\phi_q-\phi)\right].$$

considerando $(P_1-P_4)\mathbf{\Omega}_1pprox 0$ este factor se reduce a

$$1 + \cos[\theta Kq \sin(\phi_q - \phi)],$$

considerando además que ${\bf q}={\bf P}_1-{\bf P}_4\approx 0$, este diagrama se reduce al caso conmutaivo usual.

Diagrama ZS':

Con la condición I, el segundo factor de fase se reduce a

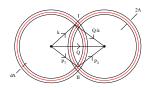
$$\frac{1}{2}\left\{1+\cos[P_1P_3\Theta\sin(\phi_1-\phi_3)+\mathit{Kq}'\Theta\sin(\phi_q-\phi)]\right\}.$$

en este caso $q' \approx k_F$ y la integral es

$$\frac{1}{2}\int \frac{d\omega}{2\pi} \int_{d\Lambda} \frac{dK}{2\pi} \int d\phi 2\pi \frac{V(\phi_1,\phi)V(\phi,\phi_3)[1+\cos[a+Kq'\Theta\sin(\phi_q-\phi)]]}{[i\omega-E(K)][i\omega-E(K+q')]},$$

donde $a = P_1 P_3 \Theta \sin(\phi_1 - \phi_3)$.

Para que esta integral tenga una contribución diferente de cero, E(K) y E(k+q') deben estar de direfentes lado del plano



Expandiendo el numerador en serie de Taylor para K alrededor de Λ tenemos

$$\cos(a + 2Kq'\Theta\sin(\phi_q - \phi)) \approx \cos(a + q'\Theta\Lambda\sin(\phi_q - \phi)) \\ - q'\Theta(\Lambda - K)\sin(\phi_q - \phi)\sin(a + q'\Theta\Lambda\sin(\phi_q - \phi)) + \mathcal{O}(\Theta^2).$$

- ullet orden por orden que la contrubución de este diagrama no contribuye , ya que los términos son del orden $(d\Lambda/\Lambda)(\Lambda/k_F)$
- los cuales no contribuyen para la función β ya que ésta tiende a cero en el Imite $|d\Lambda|/\Lambda \to 0$.

para el diagrama BCS, después de usar la primera condición, el factor de fase se reduce a:

$$\frac{1}{2}\left[1+\cos\left({\it K}\wedge {\it q}'-\frac{1}{2}{\it Q}\wedge {\it q}'\right)\right].$$

el cual es el mismo que para el diagrama ZS' por lo cual no contribuye a la función beta.

Caso II

Este caso da resultados similares al caso I, intercambiando $P_3 \leftrightarrow P_4$, lo cual es esperado pues la función F'_{θ} permite recuperar la estadística de Fermi.

Caso III

Con la condición 3, los factores de fase para los diagramas ZS y ZS' son:

$$\frac{1}{2} \left\{ \cos[P_1 P_4 \Theta \sin(\phi_4 - \phi_1) + \cos[Kq\Theta \sin(\phi_q - \phi)] \right\},$$

$$\frac{1}{2} \left\{ \cos[P_1 P_3 \Theta \sin(\phi_4 - \phi_1)] + \cos[Kq' \Theta \sin(\phi_q - \phi)] \right\}.$$

haciendo un análisis como en el caso I, se encuentra que estos diagramas no contribuyen a la función beta.

Sin embargo para el diagrama BCS después de integrar en ω y hacer las aproximaciones correspondientes es de la forma

$$-\frac{1}{4\Lambda}\int_{0}^{2\pi}\frac{d\phi}{2\pi}\int_{d\Lambda}\frac{dK}{2\pi}V(\phi_{1}-\phi)V(\phi-\phi_{3})\{\cos(qK\Theta\sin(\phi-\phi_{q}))+\cos(q'K\Theta\sin(\phi-\phi_{q'}))\}.$$

• Desarrollamos en serie las fases en K alrededor de Λ .

- Nos quedamos a primer orden en Θ .
- depreciamos los términos de orden $(d\Lambda)^2$ ya que no contribuyen a la función β .
- Hacemos el cambio de variable $d\Lambda/\Lambda = dt$
- obtenemos un medio de la contribución usual conmutativa más las modificaciones debidas a la noconmutatividad

-0

$$\frac{dV(\phi_1 - \phi_3)}{dt} = -\frac{1}{2} \int_0^{2\pi} \frac{d\phi}{8\pi^2} V(\phi_1 - \phi) V(\phi - \phi_3) \{\cos[q\Lambda\Theta\sin(\phi - \phi_q)] - q\Theta\Lambda\sin(\phi - \phi_q)\sin[q\Lambda\Theta\sin(\phi - \phi_q)] + (q \leftrightarrow q')\}.$$

- Desarrollamos en serie las fases en K alrededor de Λ .
- Nos quedamos a primer orden en Θ .
- depreciamos los términos de orden $(d\Lambda)^2$ ya que no contribuyen a la función β .
- Hacemos el cambio de variable $d\Lambda/\Lambda = dt$
- obtenemos un medio de la contribución usual conmutativa más las modificaciones debidas a la noconmutatividad

-

$$\frac{dV(\phi_1 - \phi_3)}{dt} = -\frac{1}{2} \int_0^{2\pi} \frac{d\phi}{8\pi^2} V(\phi_1 - \phi) V(\phi - \phi_3) \{\cos[q\Lambda\Theta\sin(\phi - \phi_q)] - q\Theta\Lambda\sin(\phi - \phi_q)\sin[q\Lambda\Theta\sin(\phi - \phi_q)] + (q \leftrightarrow q')\}.$$

- Desarrollamos en serie las fases en K alrededor de Λ .
- Nos quedamos a primer orden en Θ .
- depreciamos los términos de orden $(d\Lambda)^2$ ya que no contribuyen a la función β .
- Hacemos el cambio de variable $d\Lambda/\Lambda = dt$
- obtenemos un medio de la contribución usual conmutativa más las modificaciones debidas a la noconmutatividad

-

$$\frac{dV(\phi_1 - \phi_3)}{dt} = -\frac{1}{2} \int_0^{2\pi} \frac{d\phi}{8\pi^2} V(\phi_1 - \phi) V(\phi - \phi_3) \{\cos[q\Lambda\Theta\sin(\phi - \phi_q)] - q\Theta\Lambda\sin(\phi - \phi_q)\sin[q\Lambda\Theta\sin(\phi - \phi_q)] + (q \leftrightarrow q')\}.$$

- Desarrollamos en serie las fases en K alrededor de Λ .
- Nos quedamos a primer orden en Θ .
- depreciamos los términos de orden $(d\Lambda)^2$ ya que no contribuyen a la función β .
- Hacemos el cambio de variable $d\Lambda/\Lambda = dt$
- obtenemos un medio de la contribución usual conmutativa más las modificaciones debidas a la noconmutatividad

-0

$$\frac{dV(\phi_1 - \phi_3)}{dt} = -\frac{1}{2} \int_0^{2\pi} \frac{d\phi}{8\pi^2} V(\phi_1 - \phi) V(\phi - \phi_3) \{\cos[q\Lambda\Theta\sin(\phi - \phi_q)] - q\Theta\Lambda\sin(\phi - \phi_q)\sin[q\Lambda\Theta\sin(\phi - \phi_q)] + (q \leftrightarrow q')\}.$$

- Desarrollamos en serie las fases en K alrededor de Λ .
- Nos quedamos a primer orden en Θ.
- depreciamos los términos de orden $(d\Lambda)^2$ ya que no contribuyen a la función β .
- Hacemos el cambio de variable $d\Lambda/\Lambda = dt$
- obtenemos un medio de la contribución usual conmutativa más las modificaciones debidas a la noconmutatividad

-

$$\frac{dV(\phi_1 - \phi_3)}{dt} = -\frac{1}{2} \int_0^{2\pi} \frac{d\phi}{8\pi^2} V(\phi_1 - \phi) V(\phi - \phi_3) \{\cos[q\Lambda\Theta\sin(\phi - \phi_q)] - q\Theta\Lambda\sin(\phi - \phi_q)\sin[q\Lambda\Theta\sin(\phi - \phi_q)] + (q \leftrightarrow q')\}.$$

- ullet Desarrollamos en serie las fases en K alrededor de Λ .
- Nos quedamos a primer orden en Θ.
- depreciamos los términos de orden $(d\Lambda)^2$ ya que no contribuyen a la función β .
- Hacemos el cambio de variable $d\Lambda/\Lambda = dt$
- obtenemos un medio de la contribución usual conmutativa más las modificaciones debidas a la noconmutatividad

0

$$\frac{dV(\phi_1 - \phi_3)}{dt} = -\frac{1}{2} \int_0^{2\pi} \frac{d\phi}{8\pi^2} V(\phi_1 - \phi) V(\phi - \phi_3) \{\cos[q \Lambda \Theta \sin(\phi - \phi_q)] - q\Theta \Lambda \sin(\phi - \phi_q) \sin[q \Lambda \Theta \sin(\phi - \phi_q)] + (q \leftrightarrow q')\}.$$

escribiendo el potencial en términos de sus modos angulares

$$V(\phi) = \sum_{l=0}^{\infty} V_l e^{-il\phi}, \qquad ext{donde} \qquad V_l = \int_0^{2\pi} rac{d\phi}{2\pi} e^{il\phi} V(\phi).$$

otenemos una ecuación de flujo

$$\sum_{l=0}^{\infty} \frac{dV_{l}}{dt} e^{-il(\phi_{1}-\phi_{3})} = -\frac{1}{8\pi} \sum_{l,l'=0}^{\infty} V_{l} V_{l'} e^{-i(l\phi_{1}-l'\phi_{3})} e^{i(l'-l)\phi_{q}} \left[\frac{d}{d x_{\Theta}} x_{\Theta} J_{l'-l}(x_{\Theta}) \right] + (q \leftrightarrow q'),$$

donde $x_{\Theta} = q\Lambda\Theta$

Conclusiones

- Obtenemos un término de interacción no permitido para la teoría de fermiones sin espín.
- ullet No obtenemos modificaciones a la función eta en el caso noconmutativo, es decir, se mantiene el punto fijo.
- Se obtiene una modificación en el flujo del potencial de interacción para el canal BCS.

References

S. Estarada Jiménez, H. García-Compeán, Y.S. Wu Renormalization group flow for noncommutative Fermi liquids. *PRD* 83(2011), 125006.

33 / 35

GRACIAS

Extra

Extensiones del modelo

- Estudiar el efecto de esta nueva interacción.
- Explorar numéricamente cada modo del flujo de potencial de interacción modificado para ver su comportamiento.
- Extender este modelo a dos lazos donde ya toma relevancia el diagrama BCS
- Explorar superficies de Fermi no circulares

Extra

Extensiones del modelo

- Estudiar el efecto de esta nueva interacción.
- Explorar numéricamente cada modo del flujo de potencial de interacción modificado para ver su comportamiento.
- Extender este modelo a dos lazos donde ya toma relevancia el diagrama BCS.
- Explorar superficies de Fermi no circulares

