Neutrino experiments and nonstandard interactions

Omar G. Miranda Romagnoli

Cinvestav

Neutrino experiments and nonstandard interactions - p. 1

Contents

- Neutrino flavors
- Neutrino oscillations
- Solar and atmospheric Neutrinos
- Beyond the Standard Model

Neutrino flavors

Neutrino flavors

For neutrinos coming from the decay:

$$n \to p + e^- + \bar{\nu}$$

we observe the reaction

$$\bar{\nu} + p \rightarrow n + e^+$$

When neutrinos are coming from the decay:

$$\pi^- \to \mu^- + \bar{\nu}$$

we observe the reaction

$$\bar{\nu} + p \to n + \mu^+$$

Muon neutrinos on nuclei CHARM, CDHS, NuTeV

$$R^{\nu} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)}$$

Muon neutrinos on electrons CHARM II

$$\sigma(\nu_{\mu}e^{-} \to \nu_{\mu}e^{-})$$

NuTeV PRL 88 091802 (2002); NNPDF NPB 823 195 (2009); Bentz et al PLB 693 462 (2010)

- Electron neutrinos on nuclei Bugey, Chooz...
- Electron neutrinos on electrons
 LAMPF, Irvine (Reines, Gurr, Sobel), ..., MUNU, Texono

 $\sigma(\nu_e e^- \to \nu_e e^-)$

Barranco, OGM, Rashba PLB 662 431 (2008): $\sin^2 \theta_{\rm W} = 0.259 \pm 0.025$ TEXONO PRD 81 072001 (2010): $\sin^2 \theta_{\rm W} = 0.251 \pm 0.039$

Neutrino oscillations

Pontecorvo (1957,1967), Maki, Nakagawa, Sakata (1962)

Massive ν 's :

the massive states ν_i (i=1,2,3) are not equal to the flavor states (weak interactions) ν_a (e, μ , τ)

$$\left|\nu_{a}\right\rangle = \sum_{i} U_{ai} \left|\nu_{i}\right\rangle$$

Time:
$$t = 0$$
 $|\nu_a(x, t = 0)\rangle = \sum_i U_{ai} e^{ip_i x} |\nu_i\rangle$

Time:
$$t > 0$$
 $|\nu_a(x,t)\rangle = \sum_i U_{ai} e^{ip_i x - iE_i t} |\nu_i\rangle$

Ultrarrelativistic
$$\nu$$
-s $m_i \ll p_i$ $E_i = \sqrt{m_i^2 + p_i^2} \approx p_i + \frac{m_i^2}{2p_i}$

$$\mathbf{y} \ x \approx t \quad |\nu_a(x,t)\rangle = \sum_i U_{ai} e^{-i\frac{m_i^2}{2p_i}t} |\nu_i\rangle$$

Two neutrinos

conversion Probability $\nu_e \rightarrow \nu_\mu$

$$P_{\nu_e \to \nu_\mu}(x) = \sin^2(2\theta) \sin^2 \frac{\pi x}{L_{\text{OSC}}}$$

oscillation lenght

$$L_{\text{OSC}} \approx 250 \,\text{km} \left(\frac{E}{\text{MeV}}\right) \left(\frac{10^{-5} \text{eV}^2}{\Delta m^2}\right)$$

Oscillations in matter

Wolfenstein 1978, Mikheev & Smirnov 1985

- Neutral currents (NC): exchange of Z_0
- Charge currents (CC): exchange of W_{\pm}

$$V_e = \sqrt{2} G_F \left(N_e - \frac{N_n}{2} \right) , \qquad V_\mu = V_\tau = \sqrt{2} G_F \left(-\frac{N_n}{2} \right)$$

Evolution equation

$$i\frac{d}{dt}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right) = \left(\begin{array}{c}-\frac{\Delta m^{2}}{4E}\cos 2\theta + \sqrt{2}G_{F}N_{e} & \frac{\Delta m^{2}}{4E}\sin 2\theta\\\frac{\Delta m^{2}}{4E}\sin 2\theta & \frac{\Delta m^{2}}{4E}\cos 2\theta\end{array}\right)\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right)$$

Constant density case

Conversion probability $\nu_e \leftrightarrow \nu_\mu$:

$$P(\nu_e \to \nu_\mu; L) = \sin^2 2\theta_m \sin^2 \left(\pi \frac{L}{l_m}\right) ,$$

Mixing angle in matter

$$\sin^2 2\theta_m = \frac{\left(\frac{\Delta m^2}{2E}\right)^2 \sin^2 2\theta}{\left(\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right)^2 + \left(\frac{\Delta m^2}{2E}\right)^2 \sin^2 2\theta}$$

Resonance $\sqrt{2}G_F N_e = \frac{\Delta m^2}{2E}\cos 2\theta$

Three families

$$U = R_{23}(\theta_{23}; 0) R_{13}(\theta_{13}; \delta) R_{23}(\theta_{23}; 0) P,$$

$$R_{13}(\theta_{13};\delta) = \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} \,\mathbf{e}^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13} \,\mathbf{e}^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix}$$

 $P = \text{diag}(\mathbf{e}^{i\alpha}, \mathbf{e}^{i\beta}, 1)$

٠

Three families

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \, \mathrm{e}^{-i\delta} \\ -(s_{12}c_{23} + c_{12}s_{23}s_{13} \, \mathrm{e}^{i\delta}) & (c_{12}c_{23} - s_{12}s_{23}s_{13} \, \mathrm{e}^{i\delta}) & s_{23}c_{13} \\ (s_{12}s_{23} - c_{12}c_{23}s_{13} \, \mathrm{e}^{i\delta}) & -(c_{12}s_{23} + s_{12}c_{23}s_{13} \, \mathrm{e}^{i\delta}) & c_{23}c_{13} \end{pmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j} U_{\alpha j}^{*} U_{\beta j} \, \mathrm{e}^{-i \frac{m_{j}^{2}}{2E} L} \right|^{2} = \delta_{\alpha \beta} - 4 \sum_{i>j} \Re \left\{ U_{\alpha i}^{*} U_{\alpha j} U_{\beta i} U_{\beta j}^{*} \right\} \sin^{2} \left(\frac{\Delta m_{ij}^{2}}{4E} L \right) + 2 \sum_{i>j} \Im \left\{ U_{\alpha i}^{*} U_{\alpha j} U_{\beta i} U_{\beta j}^{*} \right\} \sin \left(\frac{\Delta m_{ij}^{2}}{2E} L \right)$$
(1)

The solar interior

Nuclear reactions in the Sun

solar neutrino spectrum

Homestake Experiment, R.Davis'68

 $\nu_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$ Pontecorvo'46

Homestake Experiment, R. Davis'68

 $\nu_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$ Pontecorvo'46

Super-Kamiokande

 $\nu_e + e \rightarrow \nu_e + e \text{ and } \nu_x + e \rightarrow \nu_x + e$

Super-Kamiokande

- Predicted ⁸ B neutrino flux: $4.85 \times 10^6 cm^{-2} s^{-1}$
- Super-Kamiokande I PLB 539 179 (2002); PRD 73 112001 (2006)

 $\phi = 2.35 \pm 0.02 \,(\text{stat} \pm 0.08 \,(\text{syst}) \times 10^6 cm^{-2} s^{-1}$

Super-Kamiokande II PRD 78 032002 (2008)

 $\phi = 2.38 \pm 0.05 \,(\text{stat} \pm 0.16 \,(\text{syst}) \times 10^6 cm^{-2} s^{-1}$

Super-Kamiokande III PRD 83 052010 (2011)

 $\phi = 2.32 \pm 0.04 \,(\text{stat} \pm 0.05 \,(\text{syst}) \times 10^6 cm^{-2} s^{-1}$

PRL 89 011301 '02

- $u_e + \mathsf{d} \rightarrow \mathsf{p} + \mathsf{p} + \mathsf{e}^-$ (CC),
- $\nu_x + d \rightarrow p + n + \nu_x$ (NC),
- $\nu_x + \mathbf{e}^- \rightarrow \nu_x + e^-$ (ES).

$$\phi_e = 1.76^{+0.05}_{-0.05} (\text{stat.})^{+0.09}_{-0.09} (\text{syst.})$$

$$\phi_{\mu\tau} = 3.41^{+0.45}_{-0.45} (\text{stat.})^{+0.48}_{-0.45} (\text{syst.})$$

$$\phi_{\text{NC}}^{\text{SNO}} = 6.42^{+1.57}_{-1.57} \text{(stat.)}^{+0.55}_{-0.58} \text{ (syst.)}$$

theory vs. experiment

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

[Bahcall's home page]

solar neutrino spectrum

Borexino experiment

SNO experiment

KamLAND '02

PRL 90 021802 '03

Neutrino experiments and nonstandard interactions - p. 29

KamLAND '02

Other solutions

Barranco et al PRD 66 093009 (2002)

Data fit

KamLAND PRL 100 221803 (2008)

$$\Delta m^2 = 7.59 imes 10^{-5}$$
 eV 2 , $an^2 heta_\odot = 0.47$

 Δm_{21}^2 and $\sin^2 \theta_{12}$

 $\sin^2 \theta_{12} = 0.312^{+0.017}_{-0.015}, \qquad \Delta m^2_{21} = 7.59^{+0.20}_{-0.18} \times 10^{-5} \text{ eV}^2$ Schwetz, Tortola, Valle New J.Phys. 13 (2011) 063004

Atmospheric Neutrinos

Atmospheric Neutrinos

We will have the decays:

$$\pi^+ \to \mu^+ + \nu_\mu$$
$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

and

$$\pi^- \to \mu^- + \bar{\nu}_\mu$$
$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$
Atmospheric Neutrinos

Super-Kamiokande PRD 74 032002 (2006)

Atmospheric Neutrinos

Super-Kamiokande PRL 93 101801 (2004)

Accelerator Neutrinos

Schwetz, Tortola, Valle New J. Phys. 13 063004 (2011)

Schwetz, Tortola, Valle New J. Phys. 13 063004 (2011)

T2K PRL 107 041801 (2011)

Schwetz, Tortola, Valle New J. Phys. 13 063004 (2011)

parameter	best fit $\pm 1\sigma$	2σ	3σ
$\Delta m_{21}^2 [10^{-5} eV^2]$	$7.59^{+0.20}_{-0.18}$	7.24–7.99	7.09–8.19
$\Delta m_{31}^2 \left[10^{-3} eV^2 \right]$	$2.50^{+0.09}_{-0.16} \\ -(2.40^{+0.08}_{-0.09})$	2.25 - 2.68 -(2.23 - 2.58)	2.14 - 2.76 -(2.13 - 2.67)
$\sin^2 heta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.28–0.35	0.27–0.36
$\sin^2 \theta_{23}$	$\begin{array}{c} 0.52^{+0.06}_{-0.07} \\ 0.52 \pm 0.06 \end{array}$	0.41–0.61 0.42–0.61	0.39–0.64
$\sin^2 \theta_{13}$	$\begin{array}{c} 0.013\substack{+0.007\\-0.005}\\ 0.016\substack{+0.008\\-0.006}\end{array}$	0.004–0.028 0.005–0.031	0.001–0.035 0.001–0.039
δ	$\begin{pmatrix} -0.61^{+0.75}_{-0.65} \end{pmatrix} \pi \\ \begin{pmatrix} -0.41^{+0.65}_{-0.70} \end{pmatrix} \pi$	$0-2\pi$	$0-2\pi$

Nonstandar interactions

Beside the Standard Model Lagrangian:

$$\mathcal{L}_{eff} = -2\sqrt{2}G_F([\bar{\nu}_{\beta}\gamma_{\rho}L\ell_{\beta}][\bar{f}\gamma^{\rho}Lf'] + \text{h.c.})$$

$$-2\sqrt{2}G_F \sum_{P,f,\beta} g_P^f [\bar{\nu}_\beta \gamma_\rho L \nu_\beta] [\bar{f}\gamma^\rho P f]$$

$$\begin{pmatrix} -\frac{\Delta m^2}{4E}\cos 2\theta + \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix}$$

Non Standard Interactions (NSI)

Most extensions of the SM predict neutral current non-standard interactions (NSI) of neutrinos which can be either flavor preserving (FD or NU) or flavor-changing (FC).

NSI effective Lagragian:

$$\mathcal{L}_{eff}^{NSI} = -\sum_{\alpha\beta fP} \varepsilon_{\alpha\beta}^{fP} 2\sqrt{2} G_F(\bar{\nu}_{\alpha}\gamma_{\rho}L\nu_{\beta})(\bar{f}\gamma^{\rho}Pf)$$

Here $\alpha, \beta = e, \mu, \tau;$ f = e, u, d; P = L, R; $L = (1 - \gamma_5)/2;$ $R = (1 + \gamma_5)/2$

\mathbb{R}_p parity violating SUSY

An example of non-standard neutrino-electron and neutrino quark interactions:

FIG. 2. Feynman diagrams for $\nu_{\mu}e$ scattering from (a) the standard model, and (b) the *R*-breaking interactions.

Barger, Giudice & Han'89

Solar ν Oscillations and NSI with quarks

Solar ν **Oscillations and NSI with quarks**

$$H_{\rm NSI} = \sqrt{2}G_F N_f \left(\begin{array}{cc} 0 & \varepsilon \\ \varepsilon & \varepsilon' \end{array}\right)$$

with

$$\varepsilon = -\sin\theta_{23}\,\varepsilon_{e\tau}^{fV}$$
 $\varepsilon' = \sin^2\theta_{23}\,\varepsilon_{\tau\tau}^{fV} - \varepsilon_{ee}^{fV}$

and

$$\varepsilon_{\tau\tau}^{fV} = \varepsilon_{\tau\tau}^{fL} + \varepsilon_{\tau\tau}^{fR}$$

Non Standard Interactions

$$H_{\rm NSI} = \sqrt{2}G_F N_f \left(\begin{array}{cc} 0 & \varepsilon \\ \varepsilon & \varepsilon' \end{array}\right)$$

Mixing angle in matter + NSI

$$\tan 2\theta_m = \frac{\left(\frac{\Delta m^2}{2E}\right)\sin 2\theta + 2\sqrt{2}G_F\varepsilon N_d}{\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e + \sqrt{2}G_F\varepsilon' N_d}.$$
Resonance
$$\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e + \sqrt{2}G_F\varepsilon' N_d = 0$$

$$\varepsilon' > \frac{N_e}{N_d}$$

Data fit

OGM, Tortola, Valle JHEP 0610:008,2006

Data fit

Tortola, OGM, Valle, JHEP 0610:008,2006

Nonstandar interactions

Predictions for the probability

NSI-d constraints from Solar + Kamland

NSI-d constraints from Solar + Kamland

Palazzo, Valle PRD 80 091301 (2009)

NSI-d constraints for ν_e and ν_{τ}

$$R^e = \frac{\sigma(\nu_e N \to \nu X) + \sigma(\bar{\nu_e} N \to \bar{\nu} X)}{\sigma(\nu_e N \to eX) + \sigma(\bar{\nu_e} N \to \bar{e} X)} = (\tilde{g}_{Le}) + (\tilde{g}_{Re})$$

	Constraints from CHARM II experiment
ε^L_{ee}	$-0.3 < \varepsilon_{ee}^L < 0.3$
ε^R_{ee}	$-0.6 < \varepsilon_{ee}^R < 0.5$
$\varepsilon^L_{e\mu}$	$ \varepsilon^L_{e\mu} < 0.5$
$arepsilon^R_{e\mu}$	$ arepsilon_{e\mu}^R < 0.5$
$\varepsilon^L_{e au}$	$ \varepsilon^L_{e au} < 0.5$
$arepsilon_{e au}^R$	$ arepsilon_{e au}^R < 0.5$

CHARM II Collaboration, P. Vilain et. al. Phys. Lett. **B335** 246 (1994) Davidson, Peña-Garay, Rius, Santamaria JHEP 0303:011 (2003) hep-ph/0302093

NSI-d constraints for ν_e

$$\nu + d \rightarrow \nu + p + n$$

SNO NC is proportional to g_A^2

$$\epsilon_A = -\sum_{\alpha=e,\mu,\tau} \langle P_{e\alpha} \rangle_{NC} \, \epsilon_{\alpha\alpha}^{dA} \; ,$$

$$R^{\mu} = \frac{\sigma(\nu_{\mu}N \to \nu X) + \sigma(\bar{\nu_{\mu}N} \to \bar{\nu}X)}{\sigma(\nu_{\mu}N \to \mu X) + \sigma(\bar{\nu_{\mu}N} \to \bar{\mu}X)} = (\tilde{g}_{L\mu}) + (\tilde{g}_{R\mu})$$

Escrihuela, Miranda, Tortola, Valle, PRD 83 093002 (2011)

$$R^{\mu} = \frac{\sigma(\nu_{\mu}N \to \nu X) + \sigma(\bar{\nu_{\mu}N} \to \bar{\nu}X)}{\sigma(\nu_{\mu}N \to \mu X) + \sigma(\bar{\nu_{\mu}N} \to \bar{\mu}X)} = (\tilde{g}_{L\mu}) + (\tilde{g}_{R\mu})$$

Escrihuela, Miranda, Tortola, Valle, PRD 83 093002 (2011)

Global with NuTeV reanalysis	NSI with down	NSI with up	
	NU	NU	
NNPDF	$-0.042 < \epsilon^{dV}_{\mu\mu} < 0.042$	$-0.044 < \epsilon^{uV}_{\mu\mu} < -0.044$	
	$-0.091 < \epsilon^{dA}_{\mu\mu} < 0.091$	$-0.15 < \epsilon^{uA}_{\mu\mu} < 0.18$	
Bentz at al.	$-0.042 < \epsilon^{dV}_{\mu\mu} < 0.042$	$-0.044 < \epsilon^{uV}_{\mu\mu} < -0.044$	
	$-0.072 < \epsilon^{dA}_{\mu\mu} < 0.057$	$-0.094 < \epsilon^{uA}_{\mu\mu} < 0.14$	
	FC	FC	
NNPDF/Bentz et al.	$-0.007 < \epsilon^{dV}_{\mu\tau} < 0.007$	$-0.007 < \epsilon^{uV}_{\mu\tau} < 0.007$	
	$-0.039 < \epsilon^{dA}_{\mu\tau} < 0.039$	$-0.039 < \epsilon^{uA}_{\mu au} < 0.039$	

Escrihuela, Miranda, Tortola, Valle, PRD 83 093002 (2011)

NSI-e Laboratory constraints

- Laboratory experiments:
 - 1. Reactor neutrinos
 - 2. LEP data ($e^+e^- \rightarrow \nu \bar{\nu} \gamma$)
 - 3. CHARM

The $\nu_e e$ interaction

$$\sigma(\nu_{e}e \to \nu_{e}) = \frac{2G_{F}^{2}m_{e}E_{\nu}}{\pi} \left[(1 + g_{L}^{e} + \varepsilon_{ee}^{eL})^{2} + \sum_{\alpha \neq e} |\varepsilon_{\alpha e}^{eL}|^{2} + \frac{1}{3}(g_{R}^{e} + \varepsilon_{ee}^{eR})^{2} + \frac{1}{3}\sum_{\alpha \neq e} |\varepsilon_{\alpha e}^{eR}|^{2} \right]$$

- Davidson, Peña-Garay, Rius, Santamaria JHEP 0303:011 (2003) hep-ph/0302093: $-0.07 < \varepsilon_{ee}^{eL} < 0.1 \qquad -1.0 < \varepsilon_{ee}^{eR} < 0.50 \text{ at } 90 \% \text{ C L}$
- Berezhiani, Raghavan, Rossi PLB 535 207 (2002) hep-ph/0111138: $-0.15 < \varepsilon_{ee}^{eL} < 0.17 \qquad -0.95 < \varepsilon_{ee}^{eR} < 0.50 \text{ at } 99 \% \text{ C L}$

The $\nu_e e$ interaction

Experiment	Energy (MeV)	events	measurement
LSND $\nu_e e$	10-50	191	$\sigma = [10.1 \pm 1.5] \times E_{\nu_e} (\text{MeV}) \times 10^{-45} \text{cm}^2$
Irvine $\bar{\nu}_e - e$	1.5 - 3.0	381	$\sigma = [0.86 \pm 0.25] \times \sigma_{V-A}$
Irvine $\bar{\nu}_e - e$	3.0 - 4.5	77	$\sigma = [1.7 \pm 0.44] \times \sigma_{V-A}$
Rovno $\bar{\nu}_e - e$	0.6 - 2.0	41	$\sigma = (1.26 \pm 0.62) \times 10^{-44} \text{cm}^2/\text{fission}$
MUNU $\bar{\nu}_e - e$	0.7 - 2.0	68	1.07 ± 0.34 events day $^{-1}$

The $\nu_{\mu}e \rightarrow \nu_{\mu}e$ interaction

The $e^+e^- \rightarrow \nu \bar{\nu} \gamma$ interaction

$$\sigma_{\text{LEP}}^{\text{theo}}(s) = \int \mathrm{d}x \int \mathrm{d}c_{\gamma} \ H(x, s_{\gamma}; s) \ \sigma_{0}^{\text{theo}}(\hat{s}) \,,$$

$$H(x, s_{\gamma}; s) = \frac{2\alpha}{\pi x s_{\gamma}} \left[\left(1 - \frac{x}{2} \right)^2 + \frac{x^2 c_{\gamma}^2}{4} \right] ,$$

$$\begin{split} \sigma_0^{\rm SM} & (s) = \frac{N_\nu G_F^2}{6\pi} M_Z^4 (g_R^2 + g_L^2) \frac{s}{\left[(s - M_Z^2)^2 + (M_Z \Gamma_Z)^2 \right]} \\ & + \quad \frac{G_F^2}{\pi} M_W^2 \left\{ \frac{s + 2M_W^2}{2s} - \frac{M_W^2}{s} \left(\frac{s + M_W^2}{s} \right) \log \left(\frac{s + M_W^2}{M_W^2} \right) \right. \\ & - \quad \frac{g_L M_Z^2 (s - M_Z^2)}{(s - M_Z^2)^2 + (M_Z \Gamma_Z)^2} \left[\frac{(s + M_W^2)^2}{s^2} \log \left(\frac{s + M_W^2}{M_W^2} \right) - \frac{M_W^2}{s} - \frac{3}{2} \right] \right\}, \end{split}$$

The $e^+e^- \rightarrow \nu \bar{\nu} \gamma$ interaction

$$\begin{split} \sigma_{0}^{\rm NU}(s) &= \sum_{\alpha=e,\mu,\tau} \frac{G_{F}^{2}}{6\pi} s \left[(\varepsilon_{\alpha\alpha}^{L})^{2} + (\varepsilon_{\alpha\alpha}^{R})^{2} - 2(g_{L}\varepsilon_{\alpha\alpha}^{L} + g_{R}\varepsilon_{\alpha\alpha}^{R}) \frac{M_{Z}^{2}(s - M_{Z}^{2})}{(s - M_{Z}^{2})^{2} + (M_{Z}\Gamma_{Z})^{2}} \right] \\ &+ \frac{G_{F}^{2}}{\pi} \varepsilon_{ee}^{L} M_{W}^{2} \left[\frac{(s + M_{W}^{2})^{2}}{s^{2}} \log \left(\frac{s + M_{W}^{2}}{M_{W}^{2}} \right) - \frac{M_{W}^{2}}{s} - \frac{3}{2} \right], \\ \sigma_{0}^{\rm FC}(s) &= \sum_{\alpha \neq \beta=e,\mu,\tau} \frac{G_{F}^{2}}{6\pi} s \left[(\varepsilon_{\alpha\beta}^{L})^{2} + (\varepsilon_{\alpha\beta}^{R})^{2} \right]. \end{split}$$

Laboratory constraints

Barranco, Miranda, Moura, Valle PRD 77 093014 '08

Laboratory constraints

Laboratory constraints

	Region at 90% C. L.	one parameter	previous limits
ε^L_{ee}	$-0.14 < \varepsilon^L_{ee} < 0.09$	$-0.03 < \varepsilon^L_{ee} < 0.08$	$-0.05 < \varepsilon^L_{ee} < 0.1$
ε^R_{ee}	$-0.03 < \varepsilon^R_{ee} < 0.18$	$0.004 < \varepsilon^R_{ee} < 0.15$	$0.04 < \varepsilon^R_{ee} < 0.14$
$\varepsilon^L_{\mu\mu}$	$-0.033 < \varepsilon^L_{\mu\mu} < 0.055$	$ \varepsilon^L_{\mu\mu} < 0.03$	$ \varepsilon^L_{\mu\mu} < 0.03$
$arepsilon^R_{\mu\mu}$	$-0.040 < \varepsilon^R_{\mu\mu} < 0.053$	$ arepsilon_{\mu\mu}^R < 0.03$	$ \varepsilon^R_{\mu\mu} < 0.03$
$\varepsilon^L_{ au au}$	$-0.6 < \varepsilon^L_{\tau\tau} < 0.4$	$-0.5 < \varepsilon^L_{\tau\tau} < 0.2$	$ \varepsilon^L_{\tau\tau} < 0.5$
$arepsilon_{ au au}^R$	$-0.4 < \varepsilon^R_{\tau\tau} < 0.6$	$-0.3 < \varepsilon^R_{\tau\tau} < 0.4$	$ \varepsilon^R_{\tau\tau} < 0.5$

Barranco, Miranda, Moura, Valle PRD 77 093014 '08

Solar neutrinos

- solar neutrinos could be sensitive to the NSI with electrons
- Propagation could be affected
- Detection could also be affected! especially in SuperKamiokande
Solar neutrinos

Bolaños, OGM, Palazzo, Tortola, Valle PRD79:113012,2009

Solar neutrinos

Bolaños, Miranda, Palazzo, Tortola, Valle Phys.Rev.D79:113012,2009

Solar neutrinos

	Solar analysis	Laboratory	Previous limits
ε^L_{ee}	$-0.036 < \varepsilon^L_{ee} < 0.063$	$-0.14 < \varepsilon^L_{ee} < 0.09$	$-0.05 < \varepsilon^L_{ee} < 0.1$
ε^R_{ee}	$-0.27 < \varepsilon^R_{ee} < 0.59$	$-0.03 < \varepsilon^R_{ee} < 0.18$	$0.04 < \varepsilon^R_{ee} < 0.14$
$arepsilon_{\mu\mu}^L$		$-0.033 < \varepsilon^L_{\mu\mu} < 0.055$	$ \varepsilon^L_{\mu\mu} < 0.03$
$arepsilon_{\mu\mu}^R$		$-0.040 < \varepsilon^R_{\mu\mu} < 0.053$	$ arepsilon_{\mu\mu}^R < 0.03$
$\varepsilon^L_{ au au}$	$-0.16 < \varepsilon^L_{\tau\tau} < 0.11$	$-0.6 < \varepsilon^L_{\tau\tau} < 0.4$	$ \varepsilon^L_{\tau\tau} < 0.5$
$\varepsilon^R_{ au au}$	$-1.05 < \varepsilon^R_{\tau\tau} < 0.31$	$-0.4 < \varepsilon^R_{\tau\tau} < 0.6$	$ \varepsilon^R_{\tau\tau} < 0.5$

Bolaños, OGM, Palazzo, Tortola, Valle PRD79:113012,2009

Improving NSI constraints

Coloma, Donini, López-Pavón, Minakata 1105.5936

$$\mathcal{R}_{e\mu} \approx A \, s_{13}^2 + B \, s_{13} \epsilon_P + C \, \epsilon_P^2 + D \, \epsilon_P \epsilon_S + E \, \epsilon_S^2 + F \, s_{13} \epsilon_S$$

$$\epsilon_S \equiv \epsilon_{e\tau}^S \,, \quad \epsilon_P \equiv \epsilon_{e\tau}^P \,.$$

Huber, Schwetz, Valle, PRD 66 013006 '02.

Ribeiro, Minakata, Nunokawa, S. Uchinami, R. Zukanovich-Funchal JHEP 0712:002,2007.

Ribeiro, Minakata, Nunokawa, S. Uchinami, R. Zukanovich-Funchal JHEP 0712:002,2007.

Neutrino factory + two different neutrino detectors

400

10 000 12 000

Kopp, Ota, Winter, PRD **78** 053007 '08

Improving NSI constraints

[J. Barranco, OGM, T.I. Rashba JHEP 0512:021 '05] Neutrino-nuclei coherent scattering (for $qR \ll 1$)

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} \left\{ (G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu}\right)^2 - \left(G_V^2 - G_A^2\right) \frac{MT}{E_\nu^2} \right\},\,$$

M is the nucleus mass; *T* recoil nucleus energy (from 0 to $T_{max} = 2E_{\nu}^2/(M + 2E_{\nu})$); E_{ν} neutrino energy.

Coherent scattering

J. Barranco, OGM, T.I. Rashba JHEP 0512:021 '05

Coherent scattering

J. Barranco, OGM, T.I. Rashba JHEP 0512:021 '05

Estimated bounds on NSI from TEXONO-like experiment (Ge+Si)

Conclusions

- The solar neutrino problem remained unsolved for more than 30 years.
- It was the motivation, together with the atmospheric neutrino puzzle, for several experiments that have allowed to get a better knowledge of the Standard Model and of the neutrino properties.
- Neutrino physics counts now with several experiments that are improving the measurements of neutrino parameters and it is expected that new generation experiments could give a clue of the direction for physics beyond the Standard Model.
- Although we now better the neutrino masses diferences and mixings, there are many open question

*R***-parity breaking Susy**

J. Barranco, OGM, T.I. Rashba PRD 76 073008 (2007)

$R\mbox{-}parity$ breaking Susy

J. Barranco, OGM, T.I. Rashba PRD 76 073008 (2007)