Twenty-first Century Lattice Gauge Theory:

Consequences of the QCD Lagrangian

Andreas S. Kronfeld
美 Fermilab
21 October 2011
XIIIth Mexican Workshop on Particles and Fields, León, Guanajuato

Fermilab and Mexico

- Many contributions in experimental physics to the Fermilab program.
- Theoretical Physics Department offers opportunity for aspiring young theorists: "Latin American Graduate Students".
- Six month visit to Fermilab to work with one of us, coordinated by Marcela Carena y López.
- See http:theory.fnal.gov for details.

Aim of this talk

- Provide a survey of results about QCD, obtained using numerical lattice gauge theory, that are both
- quantitatively impressive;
- qualitatively noteworthy.
- Some quoted results have replaced ignorance, guesses, and beliefs with scientific knowledge.
- Others aid the interpretation of experiments or observations in particle physics, nuclear physics, and astrophysics.

Quantum Chromodynamics—QCD

- Modern theory of the strong force: quarks+gluons \rightarrow hadrons \rightarrow nuclei.
- A gauge theory, mathematically similar to quantum electrodynamics:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}} & =-\frac{1}{2} F_{\mu \nu} F^{\mu \nu} & \mathcal{L}_{\mathrm{QCD}} & =-\frac{1}{2 g_{0}^{2}} F_{\mu \nu}^{a} F^{\mu \nu a} \\
& -\sum_{\text {charged } l} \bar{\psi}_{l}\left(\not D_{l}+m_{l}\right) \psi_{l} & & -\sum_{\operatorname{colored~} f} \bar{\psi}_{f}^{i}\left(\not D+m_{f}\right)_{i j} \psi_{f}^{i} \\
D_{l} & =\gamma^{\mu}\left(\partial_{\mu}+q_{l} e_{0} A_{\mu}\right) & \not D_{i j} & =\gamma^{\mu}\left(\partial_{\mu} \delta_{i j}+A_{\mu}^{a} a_{i j}^{a}\right)
\end{aligned}
$$

- Now the gauged quantum number is not electric charge, but color.
- SU(3) gauge symmetry: gauge boson "gluon" carries color.
- Laws of Nature.

Color vs. colour

- With SU(3), states with equal amounts of colors red, green, and blue (or equal amounts of cyan, magenta, and yellow) are neutral.
- In vision, light (ink) with equal amounts of colours red, green, and blue (equal amounts of cyan, magenta, and yellow) are white (black) or gray.
- For QCD, I will follow spelling of physicists Greenberg, Gell-Mann, Nambu, ..., rather than francophile administrators and secretaries at CERN.

The QCD Lagrangian

- $\operatorname{SU}(3)$ gauge symmetry and $1+n_{f}+1$ parameters:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right] & & r_{1} \text { or } m_{\Omega} \text { or } \mathrm{Y}(2 \mathrm{~S}-1 \mathrm{~S}), \ldots \\
& -\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f} & & m_{\pi}, m_{K}, m_{\mathrm{J} / \psi}, m_{\mathrm{Y}}, \ldots \\
& +\frac{i \theta}{32 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right] & & \theta=0 .
\end{aligned}
$$

- Observable CP violation $\propto \vartheta=\theta-\arg \operatorname{det} m_{f}$ (if all masses nonvanishing):
- neutron electric-dipole moment sets limit $\vartheta \leqslant 10^{-11}$;
- bafflingly implausible cancellation called the strong CP problem.

Quantum Chromodynamics

- The most perfect theory-asymptotic freedom.
- Triumph of reductionism: quark model \oplus parton model \oplus color $=$ QCD.
- Multi-scale problem: $m_{\mathrm{u}}, m_{\mathrm{s}}, m_{\pi}, m_{K}, \Lambda_{\mathrm{QCD}}, m_{\mathrm{c}}, m_{\mathrm{b}}, m_{\mathrm{t}} ; Q^{2 ;} ; a^{-1} ; L^{-1}$.
- Rich in symmetry: C, P, T; chiral symmetry, heavy-quark symmetry.
- Rich in emergent phenomena: hadron masses, chiral symmetry breaking, phase transitions, atomic nuclei ...
- ... requiring nonperturbative methods (lattice gauge theory) and a full exploitation of symmetries, asymptotic freedom.

Asymptotic Freedom

- At short-distances, the force in QCD looks similar to QED:

$$
F(r)=-\frac{4}{3} \frac{\alpha_{s}(1 / r)}{r^{2}}
$$

where the $4 / 3$ is a color factor.

- The key difference is that virtual gluons reduce the effective α_{s} at short distances.
- Verified in experiment.

- Relates α_{s} to a physical scale, Λ_{QcD}.

ASK \& Quigg, arXiv:1002.5032

Lattice Gauge Theory

K. Wilson, PRD 10 (1974) 2445

- Invented to understand asymptotic freedom without the need for gauge-fixing and ghosts [Wilson, hep-lat/0412043].
- Gauge symmetry on a spacetime lattice:
- mathematically rigorous definition of QCD functional integrals;

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet]
$$

- enables theoretical tools of statistical mechanics in quantum field theory and provides a basis for constructive field theory.
- Lowest-order strong coupling expansion demonstrates confinement.

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique, in which the functional integral is integrated numerically on a computer.
- A big computer.
- Some compromises:
- finite human lifetime \Rightarrow Wick rotate to Euclidean time: $x^{4}=i x^{0}$;
- finite memory \Rightarrow finite space volume \& finite time extent;
- finite CPU power \Rightarrow light quarks heavier than up and down.

Lattice Gauge Theory

$$
\left.\langle\bullet\rangle=\frac{1}{Z} \int \begin{array}{l}
\mathscr{D} U D \psi \mathcal{D} \bar{\psi} \\
M C \text { hand }
\end{array}\right] \exp (-S)[\bullet]
$$

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define QFT
- Finite lattice: can evaluate integrals

$L=N_{S} a$

Some Jargon

- QCD observables (quark integrals by hand):

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \prod_{f=1}^{n_{f}} \operatorname{det}\left(D D+m_{f}\right) \exp \left(-S_{\text {gauge }}\right)[\bullet]
$$

- Quenched means replace det with 1.
(Obsolete.)
- Unquenched means not to do that.
- Partially quenched (usually) doesn't mean " n_{f} too small" but $m_{\text {val }} \neq m_{\text {sea }}$, or even $D_{\text {val }} \neq D_{\text {sea }}$ ("mixed action").

Some algorithmic issues

e.g., ASK, hep-lat/0205021

- lattice $N_{5}^{3} \times N_{4}$, spacing a
- memory $\propto N_{S}^{3} N_{4}=L_{S}^{3} L_{4} / a^{4}$
- $\tau_{\mathrm{g}} \propto a^{-(4+z)}, z=1$ or 2 .
- $\tau_{\mathrm{q}} \propto\left(m_{\mathrm{q}} a\right)^{-p}, p=1$ or 2.
- Imaginary time:
- static quantities
- $\operatorname{size} L_{S}=N_{S} a, L_{4}=N_{4} a$;
- dimension of spacetime $=4$
- critical slowing down
- especially dire with sea quarks
- thermodynamics: $T=1 / N_{4} a$

$$
\begin{aligned}
\langle\bullet\rangle & =\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet] \\
& =\operatorname{Tr}\left\{\bullet e^{-\hat{H} / T}\right\} / \operatorname{Tr}\left\{e^{-\hat{H} / T}\right\}
\end{aligned}
$$

Sea Quarks

- Staggered quarks, with rooted determinant, $\mathrm{O}\left(a^{2}\right)$.
- Wilson quarks, $\mathrm{O}(a)$:
- tree or nonperturbatively $\mathrm{O}(a)$ improved $\Rightarrow \mathrm{O}\left(a^{2}\right)$;
- twisted mass term—auto $\mathrm{O}(a)$ improvement $\Rightarrow \mathrm{O}\left(a^{2}\right)$.
- Ginsparg-Wilson (domain wall or overlap), $\mathrm{O}\left(a^{2}\right)$:
- $D \gamma_{5}+\gamma_{5} D D=2 a D^{2}$ implemented w/sign $\left(D_{\mathrm{W}}\right)$.

- Many numerical simulations with sea quarks are called (perhaps misleadingly) "full QCD."
- $n_{f}=2$: with same mass, omitting strange sea;
- $n_{f}=3$: may (or may not) imply 3 of same mass;
- $n_{f}=2+1$: strange sea +2 as light as possible for up and down;
- $n_{f}=2+1+1$: add charmed sea to $2+1$.
- "Full QCD" can also mean $m_{\mathrm{val}}=m_{\text {sea }}$, or $D_{\mathrm{val}}=D_{\text {sea }}$.

Correlators Yield Masses \& Matrix Elements

- Two-point functions for masses $\pi(t)=\bar{\psi}_{u} \gamma_{5} S \psi_{d}$:

$$
\left.\left\langle\pi(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \hat{\pi}| \pi_{n}\right\rangle\left.\right|^{2} \exp \left(-m_{\pi_{n}} t\right)
$$

- Two-point functions for decay constants:

$$
\left\langle J(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \hat{J}\left|\pi_{n}\right\rangle\left\langle\left\langle\pi_{n}\right| \hat{\pi}^{\dagger} \mid 0\right\rangle \exp \left(-m_{\pi_{n}} t\right)
$$

- Three-point functions for form factors, mixing:

$$
\begin{aligned}
\left\langle\pi(t) J(u) B^{\dagger}(0)\right\rangle=\sum_{m n}\langle 0| \hat{\pi}\left|\pi_{m}\right\rangle & \left\langle\pi_{n}\right| \hat{J}\left|B_{m}\right\rangle
\end{aligned}\left\langle B_{m}\right| \hat{B}^{\dagger}|0\rangle,
$$

Standard Model: 19 Parameters or 28

- Gauge couplings: $\alpha_{\mathrm{s}}, \alpha_{\mathrm{QED}}, \alpha_{\mathrm{W}}=\left(m_{W} / v\right)^{2} / \pi$;
- Lepton masses: $m_{\mathrm{e}}, m_{\mu}, m_{\tau} ; m_{v 1}, m_{v 2}, m_{v 3}$;
- Quark masses: $m_{\mathrm{u}} e^{i \theta}, m_{\mathrm{d}}, m_{\mathrm{s}}, m_{\mathrm{c}}, m_{\mathrm{b}}, m_{\mathrm{t}} ; \quad$ "Instability" \rightarrow "renormalization."
- CKM: $\left|V_{\mathrm{us}} \mathrm{l}, \mathrm{I} V_{\mathrm{cb}} \mathrm{l}, \mathrm{I} V_{\mathrm{ub}}\right|, \exp \left(i \delta_{\mathrm{KM}}\right) ; \theta_{12}, \theta_{23}, \theta_{13}, \delta_{\mathrm{PMNS}}, \phi_{1}, \phi_{2} ;$
- EWSB: $v=246 \mathrm{GeV}, \lambda=\left(m_{H} / v\right)^{2} / 2$. "Infinite λ " \rightarrow "triviality."
- Need lattice QCD, lattice Yukawa.

2+1 Sea Quarks!

HPQCD, MILC, Fermilab Lattice, hep-lat/0304004

Predictions

Fermilab Lattice, MILC, HPQCD, hep-ph/0408306, hep-lat/0411027, hep-lat/0506030

- Semileptonic form factor for $D \rightarrow K l v$
- Mass of B_{c} meson
- Charmed-meson decay constants

2004
$2005 \longrightarrow$

Outline

- Introduction
- Chiral Symmetry Breaking
- Hadron Spectrum
- QCD Parameters
- Flavor Physics
- Thermodynamics
- Summary \& Challenges

Chiral Symmetry Breaking

Chiral Symmetry

- The hadron spectrum has a striking feature:
- $m_{\pi}=135 \mathrm{MeV}$ but $m_{\varrho}=770 \mathrm{MeV}, m_{\mathrm{p}}=938 \mathrm{MeV}$, etc.
- Nambu applied lessons from superconductivity, noting (4 years before quarks) that the pion's small mass could be arise from a spontaneously broken axial symmetry (moderated with a small amount of explicit breaking).
- QCD explained the origin: if up and down quark masses are neglected, the Lagrangian has an $S U_{\llcorner }(2) \times S U_{R}(2)$ chiral symmetry, which provides candidate axial symmetry.
- (If so, pions break $\mathrm{SU}_{\mathrm{L}}(2) \times \mathrm{U}_{\mathrm{Y}}(1)$: without terascale EWSB, $W^{ \pm}$and Z would have masses around 100 MeV .)
- In the 20th century, we were already confident that QCD was a good theory of the strong interactions, based on, e.g., its explanation of the SLAC deepinelastic scattering experiments.
- Because QCD was (considered) right, and since Nambu's picture was (considered) right, it was believed that QCD must drive spontaneous chiral symmetry breaking.
- But does it?
- Goldstone formula: $m_{\pi}^{2}\langle\bar{\psi} \psi\rangle=0$, if $\langle\bar{\psi} \psi\rangle \neq 0$, then $m_{\pi}=0$.
- What is it?

Chiral Condensate

> e.g., H. Fukaya et al. [JLQCD], arXiv:0911.5555

$$
\begin{array}{r}
m_{\mathrm{u}}, m_{\mathrm{d}} \rightarrow 0, m_{\mathrm{s}} \text { physical } \\
\langle\bar{\psi} \Psi\rangle\rangle^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=\left[242 \pm 4_{\text {stat }}^{-18 \text { syst }}+19 \mathrm{MeV}\right]^{3}
\end{array}
$$

- At the hadronic level, the spontaneous breaking of chiral symmetry allows the nucleon mass to be nonzero [Nambu], even when $m_{\mathrm{u}}=m_{\mathrm{d}}=0$.
- In nature, $m_{\mathrm{u}} \& m_{\mathrm{d}}$ are small, so the physical picture of chiral symmetry is:
- dominantly spontaneously broken (Nambu's mechanism);
- small corrections from explicit breaking (chiral perturbation theory).

Hadron Spectrum

Why Compute Hadron Masses?

- Show that the QCD Lagrangian generates hadron masses.
- Understand more deeply Nature's only known mechanism for generating masses.
- At short distances, the potential (force) is Coulombic.
- At large distances, the potential (force) rises linearly (flattens at a positive value).

G. Bali, hep-ph/0001312

Hadron Spectrum 1

MILC Collaboration, PRD 70 (2004) 094505; arXiv:0903.3598

- $a=0.12 \& 0.09 \mathrm{fm}$;
- $\mathrm{O}\left(a^{2}\right)$ improved: asqtad;
- FAT7 smearing;
- $2 m_{l}<m_{q}<m_{s} ;$
- $\pi, K, \mathrm{Y}(2 \mathrm{~S}-1 \mathrm{~S})$ input.

QCD postdicts the low-lying hadron masses!

Hadron Spectrum 2

PACS-CS Collaboration, $\underline{\text { PRD } 79 \text { (2009) } 034503}$
cf. earlier work by CP-PACS

- $a=0.091 \mathrm{fm} ;$
- NP O(a) Wilson;
- no smearing;
- $m_{q} \approx 1.3 m_{l} ;$
- π, K, Ω input

QCD postdicts the low-lying hadron masses!

Hadron Spectrum 3

BMW Collaboration: Science 322 (2008) 1224

- $a=0.125,0.085, \&$ 0.065 fm ;
- tree $\mathrm{O}(a)$ Wilson;
- $6 \times$ stout smearing;
- $2 m_{l}<m_{q}<1.7 m_{s} ;$
- π, K, Ξ input.

QCD postdicts the low-lying hadron masses!

Now, quark masses are MeV not GeV!

$$
m=E_{0} / c^{2}
$$

D. Leinweber

QCD Parameters: α_{s} and Quark Masses

Light Quark Masses

- The nonzero pion (kaon) mass is very sensitive to the light (strange) masses.
- Chiral perturbation theory predicts ratios of masses, but not the overall scale.

Lattice QCD	MILC	RBC	BMW	HPQCD
	1.9 ± 0.2	2.24 ± 0.35	2.15 ± 0.11	
$\bar{m}_{u}(2 \mathrm{MeV})$				
$\bar{m}_{d}(2 \mathrm{MeV})$	4.6 ± 0.3	4.65 ± 0.35	4.79 ± 0.14	
$\bar{m}_{s}(2 \mathrm{MeV})$	88 ± 5	97.6 ± 6.2	95.5 ± 1.9	92.4 ± 1.5

- These are small-up \& down masses are 4 \& 9 times electron mass.
- The up mass is far from 0 : the strong CP problem is indeed a problem.

Strong CP Problem

- Quark masses arise from Yukawa couplings, $\boldsymbol{m}=v \boldsymbol{y} / \sqrt{ } 2$, and from low-energy QCD instantons (tunneling between classical vacua):
- observable $C P$ violation $\propto \vartheta=\theta_{\mathrm{QCD}}-\arg \operatorname{det} \boldsymbol{y}<10^{-11}$.
- If y has a zero mode, then its phase can be anything and, thus, chosen so that $\vartheta=0$; no $C P$ violation arises.
- Though m_{u} is small, lattice QCD calculations show no evidence for an instanton effect big enough to allow a zero mode in \boldsymbol{y}.
- A non-Standard symmetry (Peccei-Quinn) is then the least implausible explanation for the cancellation. Consequence: weird particles called axions.

Heavy Quark Masses

- The charmonium correlator also yields impressive precision on the charm mass [Bochkarev \& de Forcrand, hep-lat/9505025]; analogous to determination from $\mathrm{e}^{+} \mathrm{e}^{-}$by Chetyrkin et al.:
- lattice + PT: $m_{\mathrm{c}}\left(m_{\mathrm{c}}\right)=1.268(9) \mathrm{GeV}$ [arXiv:0807.1687];
- $\mathrm{e}^{+} \mathrm{e}^{-}+\mathrm{PT}: \quad m_{\mathrm{c}}\left(m_{\mathrm{c}}\right)=1.279(13) \mathrm{GeV}$ [arXiv:0907.2110].
- Similarly, $m_{\mathrm{b}}\left(m_{\mathrm{b}}\right)=4.164(23) \mathrm{GeV}[H P Q C D, ~ a r X i v: 1004.4285]$, cf. $m_{\mathrm{b}}\left(m_{\mathrm{b}}\right)=4.163(16) \mathrm{GeV}$ [Chetyrkin et al. $\mathrm{e}^{+} \mathrm{e}^{-}$, arXiv:0907.2110].
- Even more stunning [HPQCD, arXiv:0910.3102]: $m_{\mathrm{c}} / m_{\mathrm{s}}=11.85(16)$, whence $m_{s}(2 \mathrm{GeV})=92.4(1.5) \mathrm{MeV}$.

Strong Coupling α_{s}

- In lattice gauge theory, the bare coupling $-g_{0}^{2}(1 / a)-$ is an input. Aim is to relate this to $\alpha_{\mathrm{s}}\left(m_{Z}\right)=g_{\mathrm{s}}^{2}\left(m_{\mathrm{Z}}\right) / 4 \pi$. Alas, conversion in PT does not converge.
- Two main strategies:
- compute a short-distance lattice quantity (e.g., small Wilson loop, Creutz ratio of small Wilson loops, ...); compare MC with (lattice) PT $\rightarrow \alpha_{\mathrm{s}}(1 / a)$;
- compute short-distance continuum quantity (e.g., Schrödinger functional, quarkonium correlator, Adler function); compare MC with PT $\rightarrow \alpha_{s}\left(2 m_{\mathrm{Q}}\right)$.

Results for $\alpha_{\mathrm{s}}\left(\right.$ all $\left.n_{f}=2+1\right)$:

- Schrödinger [PACS-CS, arXiv:0906.3906] | Adler [JLQCD, arXiv:1002.0371]:
- $\alpha_{s}\left(m_{z}\right)=0.1205(8)(5)(+0 /-17) \mid \alpha_{s}\left(m_{z}\right)=0.1181(3)(+13 /-4) ;$
- Wilson Creutz, etc. [HPQCD, arXiv:0807.1687 | Maltman, arXiv:0807.2020]:
- $\alpha_{s}\left(m_{Z}\right)=0.1183(8) \mid 0.1192(11) ;$
- Charmonium correlator [HPQCD + Karlsruhe, arXiv:0805.2999]:
- $\alpha_{s}\left(m_{z}\right)=0.1174(12)$ [update in arXiv:1004.4285];
- Bethke's world average (without lattice | with HPQCD WL) [arXiv:0908.1135]:
- $\alpha_{s}\left(m_{Z}\right)=0.1186(11) \mid 0.1184(7)$.

QCD of hadrons = QCD of partons

Bethke, arXiv:0908.1135

Flavor Physics

Weak Interactions

- At energies probed by the Tevatron and the LHC, left- and right-handed quarks are different:

$$
\begin{array}{ccc}
\binom{u}{d}_{L} & \binom{c}{s}_{L} & \binom{t}{b}_{L}
\end{array}
$$

9 fields: 3 doublets and 6 singlets under $S U_{L}(2) \times U_{Y}(1)$.

- The electroweak interactions treat all three "generations" same, and the fields can be transformed so the $S U_{\llcorner }(2) \times U_{Y}(1)$ gauge fields don't couple generations to each other-"weak eigenstate basis."

Identity from Higgs and Yukawa

- Whatever breaks electroweak symmetry has a weak-SU(2) doublet, Φ, so it can have Yukawa interactions

$$
\begin{aligned}
& y_{i j}^{u} \bar{Q}_{L}^{i} \Phi U_{R}^{j}+y_{i j}^{d} \bar{Q}_{L}^{i} \tilde{\Phi}^{*} D_{R}^{j}+\text { h.c. }= \\
& y_{i j}^{u}(\bar{U} \quad \bar{D})_{L}^{i}\binom{\Phi^{0}}{\Phi^{-}} U_{R}^{j}+y_{i j}^{d}\left(\begin{array}{ll}
\bar{U} & \bar{D})_{L}^{i}\binom{\Phi^{+}}{\bar{\Phi}^{0}} D_{R}^{j}+\text { h.c. }
\end{array}\right.
\end{aligned}
$$

where indices label generations.

- Spontaneous symmetry breaking driven by $\Phi=\binom{v}{0}$:
- generates masses for the quarks (as noted above on strong CP problem).

Kobayashi, Maskawa, Prog. Theor. Phys. 49 (1973) 652

- Mass and weak eigenstates of quarks are related by unitary transformations.
- Observable part of these rotations is the CKM matrix.
- 4 parameters: $\left|V_{\mathrm{us}} \mathrm{l}, \mathrm{I} V_{\mathrm{cb}}\right|,\left|V_{\mathrm{ub}}\right|, i \delta_{\mathrm{KM}} —$ as fundamental as electron mass.
- Unitarity relations, e.g., $V_{u d}^{*} V_{u b}+V_{c d}^{*} V_{c b}+V_{t d}^{*} V_{t b}=0$:
- triangle in the complex plane.
- Probed by many measurements + corresponding QCD.

Unitarity Triangle

c.f., Laiho, Lunghi, Van de Water, arXiv:0910.2928

B-Meson Averages from Lattice QCD

inclusive $\left|V_{c b}\right|$ is $\sim 2 \sigma$ higher

inclusive $\left|V_{u b}\right|$ is $\sim 1 \sigma$ higher

$\pi-\& K$-Meson Averages from Lattice QCD

plots from latticeaverages.org

Lessons

- Lattice QCD plays a crucial role for neutral-meson mixing (K, B, B_{s}).
- Lattice QCD plays a key role in $\left|V_{\text {us }},\left|V_{\text {cs }}\right|,\left|V_{\mathrm{ub}} / V_{\text {cb }}\right|,\left|V_{\mathrm{cb}}\right|\right.$.
- Suite of experiments, pQCD, and IQCD shows that CKM flavor violation and KM CP violation predominates.
- Still room for new physics: tension at 2-3б level:
- confidence level of global fit improves more, if NP in kaon mixing [LLV];
- ε_{K} band uses corrections of ASK, Ligeti, Nierste [hep-ph/0201071].

Tension in $D_{s} \rightarrow l v ?$

- Earlier 3.8б, now $<2 \sigma$.
- New physics, e.g., leptoquark?
- $\mathrm{w} / A_{\mathrm{LQ}} \sim+0.1 A_{\mathrm{Sm}}$?
- Dobrescu \& ASK arXiv:0803.0512

Tension in $D_{s} \rightarrow l v ?$

- Gray: running IQCD avg.
- Yellow: running expt avg.
- Orange: BaBar, Belle.
- Red: CLEO.
- Green (right y axis): running deviation in σ.
- σ is mostly exptl stats.

Tension in $B \rightarrow \mathrm{\tau v}$?

- New physics, e.g., charged Higgs of MSSM?
- w/ $A_{\text {mssm }} \sim-1.1 A_{\text {sm }} ?$

Tension in $b \rightarrow u$?

- Right-handed currents could explain different " $V_{u b}$ " from exclusive, inclusive, $B \rightarrow \tau v$.
- Best fit is $\sim-15 \%$ RH current.

Thermodynamics

QCD Phase Diagram

QCD Phase Transition ($\mu=0$)

Y. Aoki et al. Nature 443 (2006) 675; A. Bazavov et al., arXiv: 0903.4379

- Temperature $T=1 / N_{\tau} a$.
- Smooth crossover to phase, in which the grand canonical average becomes:
- chirally symmetric;
- deconfined.
- Same transition temperature: also for other observables, e.g., susceptibilities peak.

Quarks and gluons vs. hadrons

- The thermal average is

$$
\langle\bullet\rangle=\frac{\operatorname{Tr}\left[\bullet e^{-\hat{H} / T}\right]}{\operatorname{Tr} e^{-\hat{H} / T}}
$$

which is as "inclusive" as possible.

- Parton-hadron duality in scattering \& decay seems to work once $E>2 \mathrm{GeV}$; at such T exchange trace over hadronic states for trace over partons.
- Does not contradict "chiral symmetry restoration" or "deconfinement" at lower temperatures: average includes a state and its chiral partner \& and includes states with lots of hadrons.

Quark Masses are Key

from de Forcrand \& Philipsen arXiv:0808.1096

- Explicit χ SB softens the transition.
- Quark masses are small, but...
- ... if even smaller, the $\mu=0$ transition would be second order, or even first order.
- Implications for the early universe.

Equation of State $(\mu \neq 0)$

Summary and Challenges

Summary:

 from "QCD should work this way" to "QCD does work this way"- Quantitative
- Precise $\alpha_{\mathrm{s}}, m_{\mathrm{c}}, m_{\mathrm{b}}$:
- Precise $m_{\mathrm{s}}, m_{\mathrm{d}}, m_{\mathrm{u}}$:
- Hadron masses:
- CKM $V_{c b}, V_{u b}, V_{t d} / V_{t s} \oplus B_{K}, f_{B}$:
- Chiral condensate $\langle\bar{q} q\rangle$:
- Smooth crossover:
- Qualitative
- QCD $_{\text {hadrons }}=$ QCD $_{\text {partons }}$
- strong CP is a problem
- Your mass $=E_{0} / c^{2}$;
- Nobelкм \oplus BSM hints;
- QCD breaks chiral symmetry;
- Cooling universe.

Challenges

- Particle physics:
- 1\% precision for flavor physics;
- reliable moments for the nucleon's gluon distribution;
- non-QCD gauge theories of electroweak symmetry breaking.
- Nuclear physics:
- larger chemical potential;
- excited states;
- multi-hadron states, mixing, and, soon enough, nuclei-

Excited Baryons

J. Bulava et al., arXiv:0901.0027, arXiv:0907.4516

- Future applications to glueball spectra and mixing.

Atomic Nuclei from QCD HALQCD, PRL 106 (2011) 162002; NPLQCD, PRL 106 (2011) 162001, arXiv:1103.2821

- The simplest nucleus is the deuteron, pn.
- Barely bound: fine tuning of QCD parameters.
- Do similar dibaryons exist? Conjectured $H=\Lambda \Lambda$.
- Recent lattice QCD calculations, with slightly unphysical quark masses, suggest that the H is indeed bound.

