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You bet!



Basic idea

• We need a symmetry that can explain the observed patterns in
masses and mixing angles.

• SM masses come from Yukawa terms: Ya
ijΨ̄

a
i ΦΨa

j

• Consider the following Yukawa term for the up-type quarks

Ψ̄1ΦΨ1 + Ψ̄1ΦΨ2 + · · ·+

+ Ψ̄3ΦΨ3

• Now, lets impose a new symmetry such that the only invariant
Yukawa term is the 3-3 term and add new scalar fields a là
Higgs to obtain invariant higher dimension operators involving
the other generations:

Ψ̄1Φξ1Ψ1 + Ψ̄1Φξ2Ψ2 + · · ·+ Ψ̄3ΦΨ3
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Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector

→ U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries

→ several virtues

A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector

→ U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries

→ several virtues

A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries

→ several virtues

A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries

→ several virtues
A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries → several virtues

A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries → several virtues
A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]

Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries → several virtues
A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry

Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries → several virtues
A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries → several virtues
A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM

Main price: lack of predictivity.



Flavor symmetries

• Simplest → U(1) (local or global)

• a very successful symmetry in the quark sector → U(2)
[Barbieri, Hall, Ross, King, ...]

• Discrete symmetries → several virtues
A4, S4, etc.→ tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups

Tipically require a large number of additional fields to those
of the SM
Main price: lack of predictivity.



Neutrinos

Quarks more or less alright, but neutrinos ....

Their mass scale is significant
The mixing is large and very structural
Dirac or Majorana? → breaking of U(1)L?
.... and they even travel faster than c!
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less ambitious...

Most flavor models are constructed trying to describe big
mansions (but in the dark)

One usually worries about: the hierarchy problem, grand
unification, FCNC produced by the new physics,
non-observability of what should not be observed, leptogenesis,
dark matter, etc... and of course, we now need to worry about
fast neutrinos ;)
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• Recently renewed interest in so-called renormalizable models

• Only contain renormalizable terms and the SU(2) Higgs fields
transform nontrivially under the assumed flavor symmetry.

• Cannot explain the mass spectrum but can give insight into
the mixing angles.

• Do not necessarily involve higher energy scales

• Can in principle lead to interesting collider pheno (in particular
the scalar sector)

• Valle, Morisi, Peinado, Frampton, Mondragon, Mondragon,
..... See the parallel talks by Diaz-Cruz, Gonzalez,
Mondragon, and Saldaña.
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A minimalist model 1

A minimalist renormalizable model with the following
characteristics:

Only SM matter → no νR

A flavor symmetry → Non-Abelian and Discrete
Small neutrino masses → radiatively generated.
Smallest possible scalar sector

1AA, Bonilla, Ramos, Rojas: Phys. Rev. D 84, 016009 (2011)
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ij = −ji = k
jk = −kj = i
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representations: 1++, 1+−, 1−+, 1−−, 2
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Particle content:

SM matter:

Q ∼ 1++ ⊕ 1+− ⊕ 1−+ ≡ {Q1 ⊕ Q2 ⊕ Q3}
dR ∼ 2⊕ 1+− ≡ {(dR1 dR2)⊕ dR3}
uR ∼ 2⊕ 1+− ≡ {(uR2 uR1)⊕ uR3}
L ∼ 2⊕ 1+− ≡ {(L1 L2)⊕ L3}

eR ∼ 1++ ⊕ 1+− ⊕ 1−+ ≡ {eR1 ⊕ eR2 ⊕ eR3}

NO RIGHT-HANDED NEUTRINOS

Additional fields:

H ∼ 2⊕ 1++ ⊕ 1−− ≡ {HD ≡ (H1 H2)⊕ H3 ⊕ H4}
η ∼ 2 ≡ {ηD ≡ (η1 η2)}
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Mass matrices for charged fermions:

Mu,d =

 0 Au,d 0
−Au,d 0 Bu,d

0 Du,d Cu,d

 .

=⇒

|V th
CKM | =

 0.974386 0.224853 0.00363
0.224723 0.973587 0.0403354
0.00844 0.0396092 0.99918


δthCKM = 1.19528

V exp
CKM =

(
0.97428 ± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012
0.2252 ± 0.0007 0.97345+0.00015

−0.00016 0.0410+0.0011
−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0010

−0.0007 0.999152+0.000030
−0.000045

)
δCKM = 1.20146+0.04758

−0.06963
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Majorana neutrino masses obtained radiatively
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Extra dimensions

Flavor in Randall Sundrum [Randall, Sundrum]

Solution to the gauge hierarchy problem
Ads/CFT calculable strong EW braking: Holographic
technicolor, composite Higgs
Possible to achieve unification ...
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Extra dimensions
Localization - O(1) parameters (5D-masses)
Overlaps exponentially small for light fields and O(1) for top
quark [Grossman, Neubert, Ghergetta, Pomarol]



SM mass matrices become:

mq =
v√
2
diag [F (Qi )]Yqdiag [F (qi )] =

Yq Structureless O(1) entries
F (Qi ) « F (Qj), F (qi ) « F (qj), for i < j [Casagrande et. al. ,
Blanke et. al]

• Matrices of this form give rise to
hierarchical mass eigenvalues
and mixing matrices (in analogy
to seesaw mech.)

• Hierarchies adjusted by O(1)
variations in bulk mass
parameters

• CKM phase predicted to be O(1)
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