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B4-meson system Bs-meson syste
Tensions in UT fit * CPVin Bs-meson mi
Vi crisis * Anomalous like-sign
sin2p tree vs. penguin dimuon production
B—1K puzzle * Rare decay Bs—p*p

At present, some of the most tantalizing hints (not more) of BSM physics --
besides (g-2), and the top-quark forward-backward asymmetry at the Tevatron
-- come from the flavor sector!

We live in exciting times, since many of these hints will very
soon be cross-checked and perhaps corroborated at LHC!
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Symmetries?

Old and over-studied?

Are there other ideas?



You bet!
Standard Model and beyond

4™ generation  extended Higgs extended left-right
sectors technicolor symmetry

universal extra large extra warped extra gauge-Higgs
dimensions dimensions dimensions unification

leptoquarks

&

Higgsless
models

SUSY GUTs

unparticles Little Higgs hidden valleys not yet thought of ...
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Basic idea

We need a symmetry that can explain the observed patterns in
masses and mixing angles.

o SM masses come from Yukawa terms: YS\TJ,‘T@WJ?’

Consider the following Yukawa term for the up-type quarks

\Tlldb\Ul + @149“12 + -4+ + ®3¢W3

Now, lets impose a new symmetry such that the only invariant
Yukawa term is the 3-3 term and add new scalar fields a /a
Higgs to obtain invariant higher dimension operators involving
the other generations:

VLW + WLV, + - Wby
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Flavor symmetries

e When the symmetry is (partially) broken
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e A remnant symmetry remains and protects first generation
fields



Flavor symmetries

o When the symmetry is completely broken

000 0 00O
Yo = 000 || —]|0 € ¢
0 01 0 ¢ 1




Flavor symmetries

o When the symmetry is completely broken




Flavor symmetries

e When the symmetry is completely broken

g &)

e Goal: find a symmetry and breaking pattern that works!!!
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Flavor symmetries

e Simplest — U(1) (local or global)

e 2 very successful symmetry in the quark sector — U(2)
[Barbieri, Hall, Ross, King, ...]

e Discrete symmetries — several virtues
A4, S4, etc. — tribimaximal mixing in the lepton sector [Lam,
Ma, and hundreds more]
Difficult to incorporate both sectors with a single symmetry
Usually products of several abelian and nonabelian groups
Tipically require a |arge number of additional fields to those

of the SM
Main price: lack of predictivity.
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Neutrinos

Quarks more or less alright, but neutrinos ....

Their mass scale is significant
The mixing is large and very structural
Dirac or Majorana? — breaking of U(1).7

. and they even travel faster than c!
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A minimalist model !

A minimalist renormalizable model with the following
characteristics:

Only SM matter — no vg
A flavor symmetry — Non-Abelian and Discrete
Small neutrino masses — radiatively generated.

Smallest possible scalar sector

LAA, Bonilla, Ramos, Rojas: Phys. Rev. D 84, 016009 (2011)
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Quaternion group Q4

Pk =_1
—ji =k
—kj =1
L=

representations: 17T 17— 177 17— 2

DA
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Particle content:

SM matter:

Q
dr
UR

L
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1" o1t 91t ={Q:0 Q. Qs}
2017 ={(dr1 dr2) D drs}

2017 = {(ur2 uRr1) D urs}

2017 ={(L; L) ® L3}

1" 017 ® 17" = {er1 D err @ er3}

NO RIGHT-HANDED NEUTRINOS

Additional fields:

H ~ 201 @17~ ={Hp=(H1 H) @ Hs @ Hy}
n ~ 2={np=(m mn)}



Mass matrices for charged fermions:
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Mass matrices for charged fermions:

0 Ayg O
Mu,d - _Au,d 0 Bu,d
0 Du d Cu,d

)

0.974386 0.224853  0.00363
V&l = | 0.224723 0.973587 0.0403354
0.00844 0.0396092  0.99918

6ty = 1.19528

0.97428 £ 0.00015  0.2253 & 0.0007  0.003477 % 99016
ng(pM = 0.2252 £ 0.0007  0.973457 ¢ 9001E 0.04107% S
+0.00026 +0.0010 +0.000030
0.00862179,99026  0,040319,9010 = . 999152+0:000030

Sckm = 1.2014610-04225
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b ¢
0 0
0 d

sin?(2012) = 0.087 £ 0.03
sin?(203) > 0.92
sin?(2013) < 0.15
Am3; = 7.597319 x 107° eV?

Am3, 2.43+0.13 x 1073 eV?
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Pheno

e predictions for 613 — 013 >0
e predictions for neutrino mass hierarchy — INVERTED

in the 3-neufrino picture

i

Normal

atmospheric
~2x10™%

In progress:
e Search fro interesting signals at LHC (scalar sector)
e Dark matter (77)
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other possible explorations

Discrete symmetries as remnants from GUTs

Famili unification (7)
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Mass spectrum?

Symmetries can be related to mixing angles

... but they really don’t say much about mass patterns

maybe combined with something else?
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Extra dimensions

Flavor in Randall Sundrum [Randall, Sundrum|

)

2
ultraviolet R infrared
a r— () ('r]m_,d;z:“d;r" — dzz) e

(IR) brane

(UV) brane

Solution to the gauge hierarchy problem

Ads/CFT calculable strong EW braking: Holographic
technicolor, composite Higgs

Possible to achieve unification ...



Extra dimensions

Localization - O(1) parameters (5D-masses)

Overlaps exponentially small for light fields and O(1) for top
quark [Grossman, Neubert, Ghergetta, Pomarol]

UV brane IR brane

heavy quarks




SM mass matrices become:

v

V2

mq diag[F (Qi)]Yqdiag[F(qi)] =

Yy Structureless O(1) entries

F(Qi) « F(Qj), F(qi) « F(gj), for i < j [Casagrande et. al. ,
Blanke et. al]



SM mass matrices become:

v

ﬁdiag[F( Qi)Y qdiag[F(qi)] =

Mmq

Yy Structureless O(1) entries
F(Qi) « F(Qj), F(qi) « F(gj), for i < j [Casagrande et. al. ,
Blanke et. al]

e Matrices of this form give rise to
hierarchical mass eigenvalues
and mixing matrices (in analogy
to seesaw mech.)

e Hierarchies adjusted by O(1)
variations in bulk mass
parameters

e CKM phase predicted to be O(1)
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Lepton sector?

Localization - also works for neutrino mass smallness
mixing can be obtained as before — discrete symmetry

An interesting scenario incorporating these ideas uses As
symmetry [Kadosh, Pallante]
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Recap....

Symmetries might help us explain the observed patterns.
specially in the lepton sector

Extra dimensions can help as well. Still lots to be explored:
GHU, compactification and discrete symmetries, ...

... yet other approaches? (see talk by Ramos)

Simple conclusions:
e We do not know much about mass

e Neutrinos are really weird!






Hints for New Physics in B-meson mixing




Basic formulae

s

- . \ :
Schridinger equation: ic—i |};:$’q(t}, (e lipe
i \|B,(t)) 2

Three observables: ¢, = arg(—M},/TY,)

CPV phase

AT _age Ard N rd oscillation frequency
‘A"U'Q = "‘IH _"‘UTL = 2| M| (short-distance)

/ - T? 19 — q 3 o width difference
Arq FL' rH - ‘rm‘ COS &g (common final states)

Flavor-specific (e.g. semileptonic) asymmetries, assuming no CPV in the
decay amplitudes:

Fl{? _ |F(1;2| I Fq

al = ad _ _ y
& sk Mh T [ T AN,

tan ¢,

Parametrization of New Physics effects (assuming NP only in M29):
MY,
MMa

= A, = A, el =1+ hyg el2%e




CP-violating observables

Mixing-induced, time-dependent CP asymmetries in decays to CP eigenstates:

at B factories: "—"-g‘L
Flavor-specific asymmetry in tree-level B— p+DsX decays (
Like-sign dimuon charge asymmetry (DO):

Cy=0.594+0

determined from data




Tevatron data

Like-sign dimuon charge asymmetry (D@):
* ot an easy measurement

* if taken at face value, a rather

Standard Model
compelling hint of New Physics!

I E= B Factory W.A.
DO B,—~uDX
I DoAY
DO A}95% CL.

Do, 9.0 /"
-0.04

Mixing-induced CP asymmetry (Bs):

N Preliminary CDF Bun Il Preliminary L
DO Run il 8 b AM, = 17.77 +0.12 pa™" 6 —— ®kaL
a3 - : — eemo
Y/ SM pvalue = 20.8% I prvccnon




The drama of Lepton-Photon 2011

Tevatron results for @

CDF Run Il Preliminary  L=5.215"
— 85%CL
— 68%CL
—— SM prediction

(yem

SM pvalue = 44%

1] 2
¢3/¥¢ =26, (rad)

D@ Run IL, 8 b Preliminary

SM p-valup =30%

-2 1 2 3
1% (rad)

LHCD result for ®s at LP11

— o
LHCh Preiiminary
Va=7 TeV, L=337 pb "'

4

.= 0.13 % 0.18 (stat) * 0.07 (syst)
Als = 0.123 % 0.029 (stat) + 0.008 (syst) ps’'

When combined with Bs—J/p fo:
¢ =0.03 £0.16 £ 0.07 rad
SM: ®s=-0.004




The drama of Lepton-Photon 2011

Implication for the interpretation of the D& dimuon asymmetry:

«z0.02

derived from ®s at
LHCb (95% CL)

« Standard Model
o B Factory WA.
DG B—-uD X

I Do Ay
DO A3 95% CL.
D@, 9.0 ! ‘ ‘
-0.04 -0.02 1 0 0&02
ag
derived from measurement of sin2p




Theoretical analyses without CPV in Bs mixing

Much of this is driven by the anomalous like-sign dimuon
asymmetry seen at DO, but there is also tension in the standard
unitarity-triangle fit if the results on CP violating in Bs mixing and

the dimuon asymmetry are left out: Lenz, Nierste + CKMfitter (2010)

1-CL
T 1.0

¢ — 105 | determined from global fit

. 1 il without these inputs
T I N N £ 1 1 1
or 0e 0o

sin 2p




Theoretical analyses without CPV in Bs mixing

Unitarity-triangle fit with different inputs:
input: Ven, £, ¥, AMas, B—Tv
. output: sin2p, e, [Vub|
| et IVl \ | . . —
e 1o obtain excellent fit, hinting at New
o .. — Physics in Ba mixing

= 0591 £ 0.052 (28 )
0.7 4 B.6) MeV (0.8 7]

input: same as above, but without use
of semileptonic decays (Veb)

ex+BRIBord-AM,

| pvatess - 20%

B 4T

itz = 0291 £ 0054 (24 )
fa = (195. £ 11) MeV 1.}

input: same as above, but without use
of K-K mixing

Lunghi, Soni (2010}




Theoretical analyses without CPV in Bs mixing

T T T T
Inputs: sin(28) fe(MeV|
€. AM,, [Vasl, ¥, BTy 03867+0048 (337) 20049

e, AMy, Vo 0.829:0079 (211 19611
e, AMg, 7, By 0.891:0052 (2871 2019

AMg,, [Verl,7, BT 08910054 (240) 195411 | my  gpnsistent determination of sin2p much
€x. AM,, Ve, BTy 037+0048 (340) 20049 X
e, AM,, V). y, B1v, [Vig 079140042 (25¢) 19848 larger than direct measurement !
. AM,, Vs, ¥ 0819:0077 (200)  195£10
€x, AMy, [Vesl, ¥, [Visl 07390049 (130) 18949
lex. AM,, [V, ¥, B=my]™ 0.854:0052 (300 20213
lex. AM, [Vesl. ¥, B-1y] " 0.867:0052 (3201 200+9

bsccs  tree direct measurement from mixing-

induced CP violation in tree-level decays

cetlll6

o )G-DJR

059007

0.58+0.065 direct measurement from mixing-

induced CP violation in penguin modes

(interpreted as a hint for New Physics in

penguin-induced FCNC processes)

nguin (otherk

JoKs pe

K

KKK 0.82£007
1 1

-05 ! 05 1.0

sin(25)

lattice errors increased by 50%
+++ adding hadronic uncertainty 3ASyk=0.021

Lunghi, Soni (2010)

ahk




Rare decays Bgs—ptu-

¥* interesting rare decays, which can be much
enhanced in models with a warped extra
dimension or SUSY models with large tanp

o< tansgd

Excess in Bs mode reported by CDF:

SM: (3.24+0.2)-107° ]

B(B, - p*u”) = (1.8%5) - 107°
SM: (1.0+0.1)-1071°

B(Bs —» ptu~) < 6.0-107°

Unfortunately no excess seen at LHCb and CMS:

B(Bs »pp )< 1.1-107%  (at95% GL)

These bounds to not rule out the CDF result, but without refined
LHC measurements the situation is inconclusive!
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